
1

Paper 60-2010

More to it than Meets the Eye:

Creating Custom Legends that Really Tell a Story

Pete Lund, Looking Glass Analytics, Olympia, WA

ABSTRACT

Merriam-Webster defines a legend as “an explanatory list of the symbols on a map or chart.” We‟re used
to seeing just that – a table of symbols or a series of colored boxes with a word or two explaining what the
symbols or colors mean. In almost every case, this is sufficient. However, what if a legend did more than
just explain the colors on the map – what if it had some descriptive or analytic of its own?

This paper discusses techniques to build custom legends using the SAS/Graph Annotate facility. Two
real-world examples will be presented. One creates a typical legend and then adds quantitative,
descriptive information to it. The other creates a graphic that not only defines the colors on the map, but
also stands alone as an analytic display.

INTRODUCTION

The examples presented in the paper come from a project, funded by the National Institute on Drug
Abuse (NIDA), which creates reports detailing measures of alcohol and drug epidemiology. The project
uses a web-based user interface, where different measures, time frames and levels of geography can be
selected. For example, a user might select a report detailing the change in per-capita admissions to
alcohol treatment between 2004 and 2006 by zip code. These selections are made on a web page and
passed back,, via SAS/Intrnet, to a SAS-based back end which creates a PDF report that is passed back
to the browser.

The resulting report contains a map of rate change values, with an accompanying legend and explanatory
notes, and a supporting table with details for each zip code. All of the different reports for this project are
similar in that all have a map and related detail tables. One important note – we did not use SAS/Graph
to create the maps. SAS makes a call to a map server, forwarding some of the parameters passed back
from the web site, which creates an image file containing the map. This image file is then included in the
PDF with the SAS-generated output.

Because SAS is not creating the map, we cannot use the LEGEND statement to create the legend. The
map server could have created the legend and made it part of the map graphic, however there was little
control over the appearance and placement of that legend. That led us to use the SAS/Graph Annotate
facility to create a separate, stand-alone graphic file containing the legend. That also allowed us to think
“outside the box” and do a bit more than just a traditional legend.

Note: in this paper, for reasons of confidentiality and privacy, the real measures being displayed in the
maps and tables are masked and reported in ways such as “selected measure” or “measure 1.”

STARTING OUT SIMPLE

Our first example compares the rates for a selected measure in two different years. The map displays the
difference between the rate in the first year and the rate in the second year selected. Areas in which
rates went up are shown in various shades of red and areas where the rates went down are shown in
shades of green. You can see this on the map snippet of King County, WA zip code shown below.
Notice that there are also tan areas, where there was very little change and a few white areas as well.
The white zip codes are those that too few cases to reliably compute rates, so the information is

2

suppressed. As we‟ll see later, this affords us a nice opportunity to
customize the legend a bit, in a way not easy to do with a LEGEND
statement.

There are always seven ranges of rate differences displayed on the
map; three in red, three in green and one tan. There is an algorithm
that examines the distribution of rate change values and assigns
each data value a mapping value of 1 through 7 corresponding to the
. A dynamic format is build which contains the text label with the
range of values that correspond to each of the mapping values. For
our example, this generated format
(BarLabel) would be equivalent to the
one shown here. There is also a static
format (BarColor) that defines the colors
to be used for each value.

These labels and colors defined in
these formats will be used to build a
legend for the map. Most often we
would use SAS/Graph LEGEND
statements but, as noted above,
SAS/Graph is not used to create the
map. We will use the Annotate facility
to create all the components of the legend and much more.

A QUICK INTRODUCTION TO THE SAS/GRAPH ANNOTATE FACILITY

SAS/Graph procedures can create many different types of charts, plots and maps. There are a number
of mechanisms for adding information to that output including axis, symbol, pattern and legend
statements and also procedure-specific options. In addition, the SAS/Graph Annotate facility allows you
to define commands to create graphics or to “annotate” other SAS/Graph-generated output with additional
graphical elements.

Annotate Data Sets

The Annotate commands are stored in SAS data sets. The data set variables have specific names – not
all of the variables will be used for every Annotate commands. Some of the variables include:

 Function – the type of Annotate command
 X and Y – specify the x and y coordinates of the output
 Color – the color of the output
 Text – text to display
 Style – font, bar pattern or image type (depending on the command)

If a variable is not used by a particular command it is ignored, as are any non-Annotate variables in the
dataset.

Each observation contains information for a single command, specified in the Function variable. It‟s often
helpful to keep a little history in mind when creating an Annotate data set. Think of the output being
generated on a plotter. We might need to move the pen to a specific location on the paper, then draw a
line, move the pen again, then add some text, and so on. Commands include,

 Move – moves the “pen” to the specified x,y location
 Label – places text on the page
 Draw – draws a line from the current location to the specified x,y
 Bar – treats the current location as one corner of a bar and the specified x,y as the other corner
 Image – places an image (gif, jpg, png, etc.) on the page

Note: there are a number of Annotate data set variables which define the “environment” of the annotation:
the coordinate system to use, whether an element should be placed before or after other graphics, etc.
See the Resource section at the end of the paper for details on these variables.

 value BarLabel

 1 = '21 and above'

 2 = '13 to 20'

 3 = '5 to 12'

 4 = '-4 to 4'

 5 = '-5 to -12'

 6 = '-13 to -20'

 7 = '-21 and below';

Note: this format is dynamically generated,
not “hard-coded”

3

Annotate Macros

There are many different Annotate commands and it can be challenging to remember which commands
need which variables. Also, a great number of graphic elements require more than one Annotate
command. For example, to draw a bar on the page requires a “move” command, which places the “pen”
at one corner of the bar, and a “bar” command, which contains the coordinates for the opposite corner of
the bar. SAS has supplied a number of macros that simplify the process of creating the Annotate dataset.

By default, the Annotate macros are not available to be used. Issue a call to the %Annomac macro to
make the library of Annotate macros accessible.

Each macro has the parameters necessary to create the needed command(s). For example, the %BAR
macro has the following seven parameters:

 X1,Y1 – the first corner of the bar
 X2,Y2 – the second corner of the bar (diagonally opposite from the first
 Color – the color of the bar
 Line – which lines should be drawn
 Style – the fill style of the bar

A call to this macro generates two observations in the data set – first, a “move” command using the X1,Y1
parameters and then a “bar” command using the X2,Y2 and the rest of the parameters.

Using Annotate Data Sets with SAS/Graph Procedures

As noted above, Annotate data sets are often used with SAS/Graph procedures that generate output.
The ANNO= option on the procedure statement references the dataset to be used. Annotate data sets
can be displayed on their own with the GSLIDE procedure. GSLIDE creates no output of its own, but will
display annotations, as well as titles and footnotes.

This paper is not intended to be a tutorial on Annotate data sets or the Annotate variables, functions and
macros, but rather a discussion of a particular use of the Annotate facility. See the resource section at
the end of the paper to get more general annotate information.

A SIMPLE LEGEND…

Back to our example – we could always build a very simple legend using the Annotate macros. We want
to have a stacked legend, one colored box and label on top of the next. Remember, the map will always
have seven possible regions, so the layout of the legend will always look the same - the labels will
change depending on the measure, years and level of geography chosen for the report. We can create
the seven legend entries inside a little loop. What needs to change on each pass of the loop is the Y
position of the legend components, the color of the box and the text for the label. The color and text will
be obtained from the formats described above. Each legend entry is 3 units below the previous one, so
the Y parameters are just computed with an offset (i*3) from a fixed starting position.

4

Before continuing, it should be noted that the %CBAR macro is not an Annotate macro. A deficiency of
the %BAR macro is that the color parameter must be a color name or RGB value – that is, the color
cannot be referenced with a variable. This means that you need to have a separate %BAR call for each
color that you want. The %CBAR macro functions like the %BAR macro except that the color parameter
can be either a constant or a dataset variable

Another important note: In the %LABEL call above, notice the „Arial‟ font specification. If you are using a
non-SAS/Graph font you must enclose the font name in single quotes. You may also need to run the
FONTREG procedure to make fonts available to your SAS session. The following code, submitted once
per session, will generally work in the Windows environment:

What we‟ve done so far is very much like the legends we can get with SAS/Graph and the LEGEND
statement – let‟s see if we can kick it up a notch and create a legend that provides a little more
information than just the colors and labels for the map.

In this project, for reliability reasons, if there are not enough reported cases in a particular geographic
area, the result of the rate calculation is suppressed and the area remains white. The first thing we‟ll add
to our traditional legend, which would be a challenge for the LEGEND statement, is a white box labeled
“Suppressed” that is offset vertically from the rest of the legend entries.

In the code that creates the legend, shown above, the bottom (i=7) legend entry would have had a Y-
value ot 23, 44-(7*3). If we would have created the suppressed entry in the same loop, its Y-value would
be 20, 44-(8*3). However, we want to offset the suppressed entry a little bit, as it‟s not really part of the
sequence of values in the rest of the legend. So, following the loop we can add the code to create the
white box and the label. The new “Suppressed” entry, plus part of the original legend, is shown here:

…AND THEN SO MUCH MORE

One thing that often hard to notice on a shaded, or choropleth, map is how many of the areas fall into

each color value. This is especially true when there are a large number
of areas (for example, the 77 zip codes that are in King County). The
next thing we‟ll add to out legend is a histogram denoting the number of
areas in each value range.

A small dataset is created which contains an observation for each of the
legend entry values (stored in the variable ChangeGroup) - values 1
through 7 represent the seven entries in the legend and value 8
represents the suppressed areas. The count of zip codes for each value
is contained in the variable N.

Also, we will analyze this little dataset and create two macro variables:

5

 &MaxCG: contains the maximum number of areas associated with one of the ChangeGroups
(the max of the N variable). In this example, the suppressed areas (ChangeValue 8) has the
most with 15.

 &TotCG: contains the total number of areas on the map (the sum of the N variable). There are 77
zip codes on the map.

We‟ll again use %BAR, %CBAR and %LABEL macro calls. However, this time we need to actually look
at the values in the dataset, not just a static DO…END loop like we used above. Just like we did above,
we‟re going to create colored bars with labels using %BAR and %LABEL macro. The process will be
different from the above in a few ways:

 These new bars will be aligned with the ones we already have in the legend, so the offset of the Y
parameters will be done exactly the same as we did above. However, this time we‟ll use the
value of the ChangeGroup variable rather than the loop counter (i) to calculate the Y values. See
the calculation of CY1 and CY2 below.

 The original bars were all the same size; these bars will have a width based on the value of N
relative to the largest value of N, (N/&MaxCG). The widest bar will be 25 units across – see the
calculation of CX2 below.

 The text next to the bar is composed of two pieces and is stored in the variable N_TEXT:
o put(N,comma5.) writes out the value of N, with a comma thousands separator

o ('||put(N/&TotCG*100,5.1)||'%) writes out the percentage, wrapped in

parentheses

In the example below you can see that the right X value of the bar (contained in variable CX2) is based
on the current value of N, divided by the maximum value of N (&MaxCG). This makes each bar
proportional in width to the maximum, with the largest value having a bar that is 25 units wide.

Notice that the code above is only executed when the ChangeGroup value is less than 8. When the
value is 8, it is the count of suppressed areas. To match the main legend above, we need to offset the
suppressed row from the rest of the rows – it was simpler to code a separate section for this. The code is
very similar, except that most of the X,Y values can be hard-coded. The exception is the right X value
which, like those above, is based on the proportion of the maximum. In this example, there happen to be
more suppressed values than any other value, so the suppressed bar will be the maximum 25 units wide.

The final steps needed to make our new legend are some headers and a single line on the left edge of
the value bars in order to make it more like a histogram. Here‟s the final result:

6

:We‟ve talked about all these Annotate macro calls as if they are creating the graphics themselves. In
reality, all they do is write observations to a dataset. When all the code we‟ve talked about above is done
we‟re left with a dataset containing 98 observations, xx for the “legend” and xx for the “histogram”, with
the instructions to create a graphic.

CREATING THE GRAPHIC FILE…

How do we actually make the graphic? Well, this is the simplest part so far. The most common use of
Annotate datasets is to reference them in a SAS/Graph procedure that is already producing some output.
However, as mentioned earlier, we can use the GSLIDE procedure to generate a graphic from the
annotate instructions without being attached to any other output.

The syntax of the GSLIDE procedure is the simplest of all SAS procedures – there are no statements and
only a single argument: the name of the annotate dataset. The only other things we need are a
FILENAME statement giving a reference to the desired location of the graphic image file and a
GOPTIONS statement giving the type of image file to create.

The above code would create a gif image (change legend.gif) of the legend shown above.

…AND PLACING IT ON THE PAGE

Now that we have the image, how do we put it on the page? You can see an example of the report below
and in Appendix 1. Notice that there are titles, the map, the legend, and some explanatory text. To get
all these pieces where we want them on the page, we will use the following ODS tools:

 ODS PDF – sends output to a PDF file

7

 ODS LAYOUT and ODS REGION – allows specification of predefined regions on the page where
output is placed

 Inline styles – allows use of CSS-like style attributes to control text (font, color, size, etc) and
other “cell” attributes

 ODS TEXT – writes text to the page. This text can be formatted (with style references) and has
no restriction on length.

You can see in the code above that we do not have any SAS procedure output. As we did with the
GSLIDE to create the legend image, a FILENAME statement provides a reference to both the map image
(change map.gif) and the legend (change legend.gif). The map and legend are then placed on the page
with a PREIMAGE style attribute to place the graphic files in the “cell” defined by the ODS REGION. For
much more information on ODS, see the reference to PDF Can be Pretty Darn Fancy… in the Resources
section.

THE EVOLUTION OF A LEGEND

In another report, two measures are selected and every area (i.e., zip code) is ranked as high, medium or
low for each of them. The medium range is defined as values within ½ standard deviation of the mean.
The high range is more than ½ standard deviation above the mean and the low is
less than ½ standard deviation below the mean. A map displays the nine possible
combinations (high/high, high/medium, high/low, medium/high, medium/medium,
medium/low, low/high, low/medium, and low/low).

The large number of values makes a legend a challenge, but the natural 3x3
pattern led to a choice of display that evolved to become a standalone analytic tool.
The first goal of a legend is to explain what‟s on the map. In this case, we wanted
it to be clear that the low values were light and high values were dark, that the
values for one measure tended to be green and for the other tended to be purple.

8

The portion of the map shown here demonstrates the nine colors plus, as we had in the first example, the
white suppressed areas.

Again, the map is not created by SAS/Graph so we turned to Annotate to create a legend for the report.
The first attempt at a legend was just to create a set of nine colored squares with %BAR macro calls,
similar to what we‟ve already seen.

The question then was how to label the squares. We could put the “Low,” “Medium,” and “High” labels
inside the bars themselves, but since there are two labels for each that could be confusing. We decided
to place the labels above and to the left of the squares.

Once these labels were on the legend it seemed prudent to add some more text to explain what labels
like “High” meant. So, for example, we use another %LABEL macro calls to add “+ ½ sd, ” “- ½ sd” and
“mean” labels to the top of the squares. Other %LABEL calls add the actuals value to the same boundary
on the bottom of the squares. We also use another annotate macro, %LINE, to add a black line between
the color boundaries to help set them apart and another %LINE macro to put a dashed line along the
mean. Notice that the parameter following the color (black) on the %LINE macros is the line type: 1 for
solid, 20 for dashed.

9

We‟ll use four sets of the standard deviation boundary macro calls; between low and medium and
between medium and high on each axis. We‟ll also have two sets of the mean line/label macro calls; one
for each axis. We‟ve now added almost all the information about the actual values, except for one. The
“high” range of values is open ended and the maximum values for the measures are not shown. Again,
the %LABEL macro is used to put a “0” on the left edge of the legend square the maximum value on the
right edge. The %CYARROW macro is called to place an arrow between the two values.

The final task is to label the axes – two additional %LABEL statements are used to place the text
“Measure 1” below the arrow on the bottom of the legend and “Measure 2” next to the arrow on the right
side of the legend.

BUT IT’S NOT QUITE RIGHT

We‟ve used a total of 9 %BAR, 24 %LABEL, 6 %LINE and 2 %CYARROW macro calls – a total of 41. All
the information is there, but something seems a little off. Now that we‟ve added the numbers, it‟s quite
obvious that the “squares” shouldn‟t be – the ranges are not of equal size. The next step in the process
was to take all the X,Y parameters that we‟ve hard-coded so far and make them based on the actual
values of the data so that the colored areas of the legend are proportional to the data.

On the left is the legend as it‟s been described so far and on the right is what we get when the size of the
colored areas and the placement of the lines are based on the data values. Remember, there‟s no

10

dataset used here – all this is done in a single pass through a datastep. Here‟s how that was done.

The mean, +½ standard deviation, -½ standard deviation and maximum values for each of the two
measures are stored in macro variables. For example, &M1Mean, &M1Low, &M1Mid and &M1Max are
these values for the Measure 1 variable.

The bottom left corner of the legend square is not at 0.0, in order to have room for the text labels (for
example, “Low,” ”Medium,” “High). Also, we need room on top and to the right as well. So, the offset is
10 (out of 100) units in all directions, leaving the colored box to be 80x80.

All that is said to make sense of the equations for calculating the X and Y parameters of the %BAR,
%LABEL and %LINE macros. The above example should help make this a little more clear.

ADDING SOME DATA TO THE LEGEND – PART 1

There are two ways we are going to add some data-specific information to this legend. First, similar to
adding a histogram to our first legend, we will add a text entry to each colored area of the legend with the
count of data points for that legend. Once again, we will use %LABEL statements to do that.

In addition to the macro variables containing the + and – ½ standard deviation and maximum values,
there are also a set of nine macro variables that contain the count for each “cell” of the legend. These
variables are called GroupN11 – GroupN33, with the first digit representing the horizontal location (1=left,
2=middle, 3=right) and the second digit representing the vertical location (1=bottom, 2=center, 3=top).
So, GroupN12 would be the left center cell of the legend.

Notice that the text values are offset slightly from the positions used to draw the colored areas and the
lines (+1.5) so that the text does not hit the lines.

This report, like the first one, has suppression rules and the areas that are suppressed remain white on
the map. But, unlike the first legend, there really isn‟t a place on this legend to reference this. So, we‟ll
just use one more %LABEL call to create a line of text that notes the number of suppressed areas that
are on the map.

11

ADDING SOME DATA TO THE LEGEND – PART 2

Up to now we‟ve written 51 macro calls that create a dataset with 82 observations. All of them are
executed in a single iteration of a datastep – there is no input dataset needed. Now‟s the time for some
fun – we‟ll add a lot more information to the legend, using only two additional macro calls, with the dataset
that‟s used to create the map.

The map dataset contains one observation for each area on the map and has the values of the two
selected measures (Measure1 and Measure2). We‟re going to use two calls an Annotate macro that we
haven‟t used yet, the %SLICE macro.

The two calls gives us a yellow “dot” that is set off a bit by the black outline. If we call those two macros
for each observation in the map dataset, we get annotate instructions that will draw a dot for each area on
the map.

Because all the observations are in the same dataset

12

and scaling of the legend colored areas and the placement of the dots are based on the same algorithms,
the dots and the legend can overlay each other. We now have a legend that not only explains the colors
on the map, but provides a scatter plot of the distribution of data points as well.

We ended up writing a data step with total of 53 macro calls which generated 170 observations containing
annotate instructions – not really a lot of work to get this legend.

The same techniques as noted in the first example were used to create the files and generate the report.
The GSLIDE procedure was used to turn the annotate instructions into a GIF file. That file, along with the
map and explanatory text were placed into a PDF inside ODS LAYOUT regions with ODS TEXT
statements. As above, the PREIMAGE style attribute was used to reference and place the image files on
the page. A copy of the final report can be found in Appendix B – Comparison Map Example at the end
of the paper.

CONCLUSION

A legend can do so much more than just reference the colors or symbols on a map or chart. We‟ve seen
a couple examples of legends that have some descriptive and analytic capabilities of their own. The
SAS/Graph Annotate facility put an incredible amount of power and flexibility at the programmer‟s
disposal,

The advent of ODS LAYOUT to place data anywhere on a page, in the printer destinations, allows for
creation of reports that mix text and graphics – and maybe even your own legend!

RESOURCES

There are a couple of resources that will help you in your quest to learn about the SAS/Graph Annotate
facility.

Annotate: Simply the Basics, by Art Carpenter, SAS Publishing, 1999

The SAS Online Docs as http://support.sas.com/onlinedoc/913/docMainpage.jsp

 Click on SAS/Graph Reference and then, The Annotate Facility

For some more details on using ODS and PDF in general and ODS LAYOUT in particular:

PDF can be Pretty Darn Fancy: Advanced ODS Options for PDF Output, by Pete Lund, Proceedings of
the 31

st
 Annual SAS Users Group International, San Francisco, CA, 2006

(http://www2.sas.com/proceedings/sugi31/092-31.pdf)

ACKNOWLEDGEMENTS

Thanks to David Kelley and the ODS guys at SAS: Dan O‟Connor, Eric Gebhart, Kevin Smith, Scott
Huntley, and Tim Hunter and to Chevell Parker in SAS Tech Support. Your encouragement to the
reporting that we do and responses to questions and issues is always appreciated.

AUTHOR CONTACT INFORMATION

Please let me know other things you‟ve thought of to do with the Annotate Facility!

Pete Lund
Looking Glass Analytics
215 Legion Way SW
Olympia, WA 98501
360-528-8970 voice

http://support.sas.com/onlinedoc/913/docMainpage.jsp
http://www2.sas.com/proceedings/sugi31/092-31.pdf

13

360-570-7533 fax
pete.lund@lgan.com
www.lgan.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

14

Appendix A – Change Map Report Example

15

Appendix B – Comparison Map Example

