
1 

Paper 026-2010 

 

SAS  Views – The Best of Both Worlds 
 

 As seasoned SAS programmers, we have written and reviewed many SAS programs in 

our careers.  What I have noticed is that more often than not, people who are developing these 

programs do so in a hurry to meet a deadline.  Because of these tight timelines, very little 

attention is paid to the efficiency of these programs.  We spend a great deal of time bending our 

brains around the logic needed to solve a problem.  Once the problem is solved, we go onto the 

next problem.  Enhancing efficiency is like documentation, most of us just don’t seem to like it 

or get around to it. 

Unfortunately, if we don’t pay attention to the efficiency of our programs, they become a 

nuisance to ourselves or our coworkers who have to run them – not to mention those who share 

the cpu they run on.  This is especially true if you are passing millions of lines of data through 

these inefficient programs. 

Fortunately, there is a solution that you can employ that will yield significant time 

savings and you won’t need to completely rethink your logic.  It comes in the form of SAS 

views.  Employed properly, SAS views can allow you to move onto the next logic puzzle that 

keeps us all in this profession while reducing the resources necessary to continue running the 

tried and true gem you just created. 

 

 

Focus of this paper 

 
SAS views can help a programmer in many ways: 

• They assure processing of current data 

• They allow source code to be hidden from users 

• They allow processing of proprietary file structures 

• They minimize data replication  

 

This paper will focus on the minimization of data replication. 

 

 

Background of SAS views: 
 

SAS views have been around since version 6 was introduced.  However, they are rarely at 

the forefront of our thinking when we sit down to write code.  The idea behind a SAS view is 

that a multi-step process can be coded against a large amount of data while only reading/writing 

the data to disk once.  Most multi-step processes read/write the data once for each step.  Since 

reading and writing to disk (I/O) is typically the most time-consuming part of any process, it 

really pays to minimize this activity.  After demonstrating the syntax to create a SAS view, I will 

illustrate the potential time savings of employing a SAS view using three approaches to solving 

the same problem.  My charge is to summarize claim data for a health insurance company.  

Granted, this is a very simple illustration from a logic perspective.  However, it requires that I 

work with a great deal of data.  I will explain each approach with text, a picture and the log of 

the resulting code execution.   

 



2 

Syntax for creating a PROC SQL View: 
PROC SQL; 

Create view view_name as 

   1 as X,  

   1 as Y; 

Quit; 

  

Syntax for creating a DATA Step View: 
DATA view_name / view=view_name; 

     X=1; 

     Y=1; 

Run; 

 

When creating a data step view, the name and the view name must be the same.  Also if you use 

a data step to create a view, it is possible to view the code used to create a SAS view: 

 

DATA view=view_name; 

   describe; 

run;   

 

The log will show this: 

NOTE: DATA step view view_name is defined as: 

 

DATA view_name / view = view_name; 

   x=1; 

   y=2; 

run; 

 

I am not aware of a way to view the code used to create a SQL view. 

 

 

 

 

Approach 1:  Pull data with SQL then summarize: 
I created a SAS dataset with net pay, cover amount and process month from all claims 

that were processed between July 2009 and December 2009.  I then applied a PROC 

SUMMARY to that dataset to summarize net pay and cover amount fields.  This activity took 

approximately 46.5 minutes (adding the SQL and Summary steps together) to process 

46,620,217 claim lines. 

 

 



3 

SAS Code/Log: 
 

        
 

/*  Pull data with SQL then summarize */ 

PROC SQL; 

          create table test as 

          select netpayln, coverln, prcsmnth 

          from phidp.clm 

          where prcsmnth between 200907 and 200912; 

         quit; 

NOTE: PROCEDURE SQL used (Total process time): 

      real time           45:54.17 

      cpu time            2:10.66 

 

         PROC SUMMARY DATA=test nway missing; 

          class prcsmnth; 

          var netpayln coverln; 

          output out=summ  (drop=_type_ _freq_) sum=; 

         run; 

          

NOTE: PROCEDURE SUMMARY used (Total process time): 

      real time           33.37 seconds 

      cpu time            30.33 seconds 

       

NOTE: There were 46620217 observations read from the data set TEST. 

NOTE: The data set WORK.SUMM has 6 observations and 3 variables. 

 

 

 

Approach 2:  Summarize using a SAS VIEW: 
I applied a PROC SUMMARY to a SAS view that was created in the same way as the 

dataset in the step above.  To process the same number of rows and achieve the same PROC 

SUMMARY results took 17.5 minutes.  That is a 62% time savings.   

 

 

 
 

 



4 

 

 

SAS Code/Log: 
 

/*  Summarize directly from Oracle table   */ 

         PROC SQL; 

          create view test_view as 

          select netpayln, coverln, prcsmnth 

          from phidp.clm 

          where prcsmnth between 200907 and 200912; 

          

NOTE: SQL view WORK.TEST_VIEW has been defined. 

28       quit; 

NOTE: PROCEDURE SQL used (Total process time): 

      real time           0.01 seconds 

      cpu time            0.00 seconds 

 

 

         PROC SUMMARY DATA=test_view nway missing; 

          class prcsmnth; 

          var netpayln coverln; 

          output out=summ (drop=_type_ _freq_) sum=; 

         run; 

 

NOTE: There were 46620217 observations read from the data set PHIDP.CLM_VIEW. 

      WHERE (PRCSMNTH>=200907 and PRCSMNTH<=200912); 

NOTE: There were 46620217 observations read from the data set WORK.TEST_VIEW. 

NOTE: The data set WORK.SUMM has 6 observations and 3 variables. 

NOTE: PROCEDURE SUMMARY used (Total process time): 

      real time           17:30.45 

      cpu time            2:32.69 

 
 

CAVEAT:  A few weeks after running this test, I discovered that at the time of the test, our SAN 

storage system was experiencing some issues that were impeding I/O.  When I repeated this test 

after the SAN was fixed, I could not reproduce the same time savings.  I believe this actually 

reinforces the results, however.  The advantage SAS views offer increases as the number of 

desired rows increases or the system becomes busier or more distressed. 

 

 

Approach 3:  Summarize directly from Oracle table: 
After seeing this incredible time savings, I wondered how long it would take to perform a 

PROC SUMMARY directly against The Oracle Table.  My thought is that this method would 

require only a single read and write of the data similar to how a view would process the data.  

The time it took for this was just over 31 minutes.  It was faster than using a SAS dataset 

(Approach 1) but not as fast as the view (Approach 2).  The only explanation I could come up 

with was perhaps the SAS to SQL conversion (Oracle can only process SQL so SAS must 



5 

convert the PROC SUMMARY to SQL) isn’t as efficient as coding native SQL.  This is only a 

theory on my part, however.  

 

 
 

 

SAS Code/Log: 
 
 

libname claims oracle path="claim_path" schema="schema_name" user=claim_user 

password=password; 

 

/*   Sum directly from Oracle table    */          

         PROC SUMMARY DATA=claims.clm nway missing; 

          class prcsmnth; 

          var netpayln coverln; 

          where prcsmnth between 200907 and 200912; 

          output out=summ (drop=_type_ _freq_) sum=; 

         run; 

 

NOTE: There were 46620217 observations read from the data set PHIDP.CLM_VIEW. 

      WHERE (prcsmnth>=200907 and prcsmnth<=200912); 

NOTE: The data set WORK.SUMM has 6 observations and 3 variables. 

NOTE: PROCEDURE SUMMARY used (Total process time): 

      real time           31:11.65 

      cpu time            2:01.18 

       

 

 

Cautions: 
If you create a view with a name that has previously been given to a view, the new view 

will overwrite the old one.  However, if you try to create a view with the same name as a SAS 

dataset that already exists in the same library, you will get an error.  Similarly, you cannot sort a 

view to itself because that creates a table with the same name as the view.  You must use an out= 

clause when applying PROC SORT to a view. 

 

 

Summary: 
 SAS views offer you the ability to significantly reduce the runtime of some of your tried 

and true SAS programs without forcing you to significantly alter those programs.  Don’t neglect 

the fellow users of your SAS servers or the poor soul who has to run your program down the 

road.  Views allow you to write tighter compiled code while allowing you to maintain your 

preferred source coding style.  Essentially they give you the best of both worlds.   



6 

Author Contact Information: 
David Thul 
Blue Cross Blue Shield of Minnesota 
david_a_thul@bluecrossmn.com 

 

Reference: 
 
SAS Data Views: A Virtual View of Data 
John C. Boling, SAS Institute Inc., Cary, NC 
 


