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Abstract 
SAS® users can quickly access selected observations (rows) of data in SAS data sets using WHERE clause 
processing and indexes. This presentation explores valuable techniques for achieving improved query performance 
using indexes. Attendees learn what an index is, the purpose of an index, how an index is created, factors that 
determine when an index is warranted, how WHERE clause processing can take advantage of an index, and 
techniques for tuning indexes for better performance. 
 

Introduction 
Given the large number of books and articles on SQL, how strange it is not to find more material associated with 
indexes and WHERE clause processing. Certainly, these topics deserve special attention to assist SQL users’ better 
apply these powerful features in their programs, because good or bad usage can make all the difference in query 
outcomes. 
 
Indexes can be used to improve the access speed to desired table rows. Rather than physically sorting a table (as 
performed by the ORDER BY clause or the BY statement in PROC SORT), an index is designed to set up a logical 
data arrangement without the need to physically sort it. This has the advantage of reducing CPU and memory 
requirements. It also reduces data access time when using WHERE clause processing. This paper presents 
elements essential to achieving a better understanding of indexes and their effect on WHERE clause processing. 
 

Tables Used in Examples 
The data used in all the examples in this paper consists of a selection of movies that I’ve viewed over the years, 
along with its actors. The Movies table consists of six columns: title, length, category, year, studio, and rating. Title, 
category, studio, and rating are defined as character columns with length and year being defined as numeric 
columns. The data stored in the Movies table is illustrated below. 
 
MOVIES Table 

 

 
 
 
The data stored in the ACTORS table consists of three columns: title, actor_leading, and actor_supporting, all of 
which are defined as character columns. The data stored in the Actors table is illustrated below. 
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ACTORS Table 

 

 
 
 

Understanding Indexes 
What exactly is an index? An index consists of one or more columns in a table to uniquely identify each row of data 
within the table. Operating as a SAS object containing the values in one or more columns in a table, an index is 
comprised of one or more columns and may be defined as numeric, character, or a combination of both.  Although 
there is no rule that says a table must have an index, when present, they are most frequently used to make 
information retrieval using a WHERE clause more efficient. 
 
To help determine when an index is necessary, it is important to look at existing data as well as the way the base 
table(s) will be used. It is also critical to know what queries will be used and how they will access columns of data. 
There are times when the column(s) making up an index are obvious and other times when they are not. When 
determining whether an index provides any processing value, some very important rules should be kept in mind. An 
index should permit the greatest flexibility so every column in a table can be accessed and displayed. Indexes should 
also be assigned to discriminating column(s) only since query results will benefit greatest when this is the case. 
 
When an index is specified on one or more tables, a join process may actually be boosted. The PROC SQL 
processor may use an index, when certain conditions permit its use. Here are a few things to keep in mind before 
creating an index: 

 
- If the table is small, sequential processing may be just as fast, or faster, than processing with an index 
 
- If the page count as displayed in the CONTENTS procedure is less than 3 pages, avoid creating an index 
 
- Do not to create more indexes than you absolutely need 

 
- If the data subset for the index is not small, sequential access may be more efficient than using the index 
 
- If the percentage of matches is approximately 15% or less then an index should be used 
 
- The costs associated with an index can outweigh its performance value – an index is updated each time the 

rows in a table are added, deleted, or modified. 
 
Sample code will be illustrated below on creating simple and composite indexes using the CREATE INDEX statement 
in the SQL procedure. 
 

Creating a Simple Index 

A simple index is specifically defined for one column in a table and must be the same name as the column. Suppose you 

had to create an index consisting of movie rating (RATING) in the MOVIES table. Once created, the index becomes a 
separate object located in the SAS library. 

SQL Code 

 
PROC SQL; 

  CREATE INDEX RATING ON MOVIES(RATING); 

QUIT; 
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SAS Log Results 

 
PROC SQL; 

  CREATE INDEX RATING ON MOVIES(RATING); 

NOTE: Simple index RATING has been defined. 

     QUIT; 

 
 
 

Creating a Composite Index 
A composite index is defined for two or more columns in a table and must have a unique name that is different than the 

columns assigned to the index. Suppose you were to create an index consisting of movie rating (RATING) and movie 
category (CATEGORY) in the MOVIES table. Once the composite index is created, the index consisting of the two table 
columns become a separate object located in the SAS library. 

SQL Code 

 
PROC SQL; 

  CREATE INDEX RATING_CAT ON MOVIES(RATING, CATEGORY); 

QUIT; 

 

SAS Log Results 

 
PROC SQL; 

  CREATE INDEX RATING_CAT ON MOVIES(RATING, CATEGORY); 

NOTE: Composite index RATING_CAT has been defined. 

     QUIT; 

 
 

Index Limitations 
Indexes can be very useful, but they do have limitations. As data in a table is inserted, modified, or deleted, an index 
must also be updated to address any and all changes. This automatic feature requires additional CPU resources to 
process any changes to a table. Also, as a separate structure, an index can consume considerable storage space. 
Consequently, care should be exercised not to create too many indexes but assign indexes only when they are 
needed and only for discriminating variables in a table. 
 
Because of the aforementioned drawbacks, indexes should only be created on tables where query search time needs 
to be optimized. Any unnecessary indexes may force the SAS System to expend resources needlessly updating and 
reorganizing after insert, delete, and update operations are performed. And even worse, the PROC SQL optimizer 
may accidentally use an index when it should not. 
 

Optimizing WHERE Clause Processing with Indexes 
A WHERE clause defines the logical conditions that control which rows a SELECT statement will select, a DELETE 
statement will delete, or an UPDATE statement will update. This powerful, but optional, clause permits SAS users to 
test and evaluate conditions as true or false. From a programming perspective, the evaluation of a condition 
determines which of the alternate paths a program will follow. Conditional logic in PROC SQL is frequently 
implemented in a WHERE clause to reference constants and relationships among columns and values. 
 
To get the best possible performance from programs containing SQL procedure code, an index and WHERE clause 
can be used together. Using a WHERE clause restricts processing in a table to a subset of selected rows. When an 
index exists, the SQL processor determines whether to take advantage of it during WHERE clause processing. 
Although the SQL processor determines whether using an index will ultimately benefit performance, when it does the 
result can be an improvement in processing speeds. 
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Conclusion 
Indexes can be used to allow rapid access to table rows. Rather than physically sorting a table, an index is designed 
to set up a logical arrangement for the data without the need to physically sort it. Not only does this have the 
advantage of reducing CPU and memory requirements, it also reduces data access time when using WHERE clause 
processing. As was presented, by adhering to a few important rules about creating indexes, SAS users can use an 
index and a WHERE clause together to improve a query’s performance and processing speeds. 
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