
 1

Paper 040-2008

Understanding WHERE-Clause Processing and Indexes
Kirk Paul Lafler, Software Intelligence Corporation, Spring Valley, California

Abstract
SAS® users can quickly access selected observations (rows) of data in SAS data sets using WHERE clause
processing and indexes. This presentation explores valuable techniques for achieving improved query performance
using indexes. Attendees learn what an index is, the purpose of an index, how an index is created, factors that
determine when an index is warranted, how WHERE clause processing can take advantage of an index, and
techniques for tuning indexes for better performance.

Introduction
Given the large number of books and articles on SQL, how strange it is not to find more material associated with
indexes and WHERE clause processing. Certainly, these topics deserve special attention to assist SQL users’ better
apply these powerful features in their programs, because good or bad usage can make all the difference in query
outcomes.

Indexes can be used to improve the access speed to desired table rows. Rather than physically sorting a table (as
performed by the ORDER BY clause or the BY statement in PROC SORT), an index is designed to set up a logical
data arrangement without the need to physically sort it. This has the advantage of reducing CPU and memory
requirements. It also reduces data access time when using WHERE clause processing. This paper presents
elements essential to achieving a better understanding of indexes and their effect on WHERE clause processing.

Tables Used in Examples
The data used in all the examples in this paper consists of a selection of movies that I’ve viewed over the years,
along with its actors. The Movies table consists of six columns: title, length, category, year, studio, and rating. Title,
category, studio, and rating are defined as character columns with length and year being defined as numeric
columns. The data stored in the Movies table is illustrated below.

MOVIES Table

The data stored in the ACTORS table consists of three columns: title, actor_leading, and actor_supporting, all of
which are defined as character columns. The data stored in the Actors table is illustrated below.

 2

ACTORS Table

Understanding Indexes
What exactly is an index? An index consists of one or more columns in a table to uniquely identify each row of data
within the table. Operating as a SAS object containing the values in one or more columns in a table, an index is
comprised of one or more columns and may be defined as numeric, character, or a combination of both. Although
there is no rule that says a table must have an index, when present, they are most frequently used to make
information retrieval using a WHERE clause more efficient.

To help determine when an index is necessary, it is important to look at existing data as well as the way the base
table(s) will be used. It is also critical to know what queries will be used and how they will access columns of data.
There are times when the column(s) making up an index are obvious and other times when they are not. When
determining whether an index provides any processing value, some very important rules should be kept in mind. An
index should permit the greatest flexibility so every column in a table can be accessed and displayed. Indexes should
also be assigned to discriminating column(s) only since query results will benefit greatest when this is the case.

When an index is specified on one or more tables, a join process may actually be boosted. The PROC SQL
processor may use an index, when certain conditions permit its use. Here are a few things to keep in mind before
creating an index:

- If the table is small, sequential processing may be just as fast, or faster, than processing with an index

- If the page count as displayed in the CONTENTS procedure is less than 3 pages, avoid creating an index

- Do not to create more indexes than you absolutely need

- If the data subset for the index is not small, sequential access may be more efficient than using the index

- If the percentage of matches is approximately 15% or less then an index should be used

- The costs associated with an index can outweigh its performance value – an index is updated each time the

rows in a table are added, deleted, or modified.

Sample code will be illustrated below on creating simple and composite indexes using the CREATE INDEX statement
in the SQL procedure.

Creating a Simple Index

A simple index is specifically defined for one column in a table and must be the same name as the column. Suppose you

had to create an index consisting of movie rating (RATING) in the MOVIES table. Once created, the index becomes a
separate object located in the SAS library.

SQL Code

PROC SQL;

 CREATE INDEX RATING ON MOVIES(RATING);

QUIT;

 3

SAS Log Results

PROC SQL;

 CREATE INDEX RATING ON MOVIES(RATING);

NOTE: Simple index RATING has been defined.

 QUIT;

Creating a Composite Index
A composite index is defined for two or more columns in a table and must have a unique name that is different than the

columns assigned to the index. Suppose you were to create an index consisting of movie rating (RATING) and movie
category (CATEGORY) in the MOVIES table. Once the composite index is created, the index consisting of the two table
columns become a separate object located in the SAS library.

SQL Code

PROC SQL;

 CREATE INDEX RATING_CAT ON MOVIES(RATING, CATEGORY);

QUIT;

SAS Log Results

PROC SQL;

 CREATE INDEX RATING_CAT ON MOVIES(RATING, CATEGORY);

NOTE: Composite index RATING_CAT has been defined.

 QUIT;

Index Limitations
Indexes can be very useful, but they do have limitations. As data in a table is inserted, modified, or deleted, an index
must also be updated to address any and all changes. This automatic feature requires additional CPU resources to
process any changes to a table. Also, as a separate structure, an index can consume considerable storage space.
Consequently, care should be exercised not to create too many indexes but assign indexes only when they are
needed and only for discriminating variables in a table.

Because of the aforementioned drawbacks, indexes should only be created on tables where query search time needs
to be optimized. Any unnecessary indexes may force the SAS System to expend resources needlessly updating and
reorganizing after insert, delete, and update operations are performed. And even worse, the PROC SQL optimizer
may accidentally use an index when it should not.

Optimizing WHERE Clause Processing with Indexes
A WHERE clause defines the logical conditions that control which rows a SELECT statement will select, a DELETE
statement will delete, or an UPDATE statement will update. This powerful, but optional, clause permits SAS users to
test and evaluate conditions as true or false. From a programming perspective, the evaluation of a condition
determines which of the alternate paths a program will follow. Conditional logic in PROC SQL is frequently
implemented in a WHERE clause to reference constants and relationships among columns and values.

To get the best possible performance from programs containing SQL procedure code, an index and WHERE clause
can be used together. Using a WHERE clause restricts processing in a table to a subset of selected rows. When an
index exists, the SQL processor determines whether to take advantage of it during WHERE clause processing.
Although the SQL processor determines whether using an index will ultimately benefit performance, when it does the
result can be an improvement in processing speeds.

 4

Conclusion
Indexes can be used to allow rapid access to table rows. Rather than physically sorting a table, an index is designed
to set up a logical arrangement for the data without the need to physically sort it. Not only does this have the
advantage of reducing CPU and memory requirements, it also reduces data access time when using WHERE clause
processing. As was presented, by adhering to a few important rules about creating indexes, SAS users can use an
index and a WHERE clause together to improve a query’s performance and processing speeds.

References
Lafler, Kirk Paul (2010), “Exploring Powerful Features in PROC SQL,” SAS Global Forum (SGF) Conference,

Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2009), “Exploring DICTIONARY Tables and SASHELP Views,” South Central SAS Users Group
(SCSUG) Conference (November 8

th
 – November 10

th
, 2009), Software Intelligence Corporation, Spring Valley,

CA, USA.

Lafler, Kirk Paul (2009), “Exploring DICTIONARY Tables and SASHELP Views,” Western Users of SAS Software
(WUSS) Conference (September 1

st
 – September 4

th
, 2009), Software Intelligence Corporation, Spring Valley, CA,

USA.

Lafler, Kirk Paul (2009), “Exploring DICTIONARY Tables and SASHELP Views,” PharmaSUG SAS Users Group
Conference (May 31

st
 – June 3

rd
, 2009), Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2006), “Understanding WHERE-Clause Processing and Indexes,” Proceedings of the 2006 South
Central SAS Users Group (SCSUG) Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2006), “A Hands-on Tour Inside the World of PROC SQL,” Proceedings of the 31
st
 Annual SAS

Users Group International Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2005), “Manipulating Data with PROC SQL,” Proceedings of the 30
th
 Annual SAS Users Group

International Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2004). PROC SQL: Beyond the Basics Using SAS, SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul (2003), “Undocumented and Hard-to-find PROC SQL Features,” Proceedings of the 2007 Western
Users of SAS Software (WUSS) Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (1992-2008). PROC SQL for Beginners; Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (1998-2008). Intermediate PROC SQL; Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2001-2008). Advanced PROC SQL; Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2002). PROC SQL Programming Tips; Software Intelligence Corporation, Spring Valley, CA, USA.

SAS
®
 Guide to the SQL Procedure: Usage and Reference, Version 6, First Edition (1990). SAS Institute, Cary, NC,

USA.

SAS
®
 SQL Procedure User’s Guide, Version 8 (2000). SAS Institute Inc., Cary, NC, USA.

Acknowledgments
I would like to thank Steve Popernack, Programming Beyond the Basics (Advanced Tutorials) Section Chair, for
accepting my abstract and paper. I’d also like to thank Dr. LeRoy Bessler, Alix Riley, and Craig Wildeman for a
terrific conference.

Trademark Citations
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies.

 5

About the Author
Kirk Paul Lafler is consultant and founder of Software Intelligence Corporation and has been using SAS since 1979.
Kirk provides IT consulting services and training to SAS users around the world. As a SAS Certified Professional, Kirk
has written four books including PROC SQL: Beyond the Basics Using SAS, and more than four hundred peer-
reviewed papers and articles. He has also been an Invited speaker and trainer at more than three hundred SAS
International, regional, local, and special-interest user group conferences and meetings throughout North America.
Kirk’s current interests include writing technical books and ebooks, conducting SAS training around the world, serving
on the sasCommunity.org Advisory Board; contributing SAS- and SQL-related topics; writing and supporting “Kirk’s
Korner of Quick and Simple Tips” for numerous SAS User Group newsletters and websites; and sharing his fun-filled
SASword Puzzles in SAScommunity.org.

Comments and suggestions can be sent to:

Kirk Paul Lafler
Software Intelligence Corporation

World Headquarters
P.O. Box 1390

Spring Valley, California 91979-1390
E-mail: KirkLafler@cs.com

