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Abstract  
The SAS DATA step has the reputation for being one of the best data manipulators in the IT world.  While the 
author of this paper agrees with this statement, it is possible to go beyond the capabilities of the DATA step by 
using SAS Macro functions.  It would be difficult to show the full power of these Macro Functions in an hour 
presentation, so, this paper will look at a few commonly used Macro Functions and compare and contrast them to 
DATA step functions. These functions can be used not only to manipulate data, but to manipulate entire programs 
as well.   

  

Introduction  

Macro functions are like DATA step functions except they operate only text strings and macro variables.  This paper 
covers several examples of using different categories of macro functions.   

 

 

Quoting Function Examples    
Since the SAS Macro facility stores all values as a text string, there may be times when you want to: 

• Store more than one statement a the value of a macro variable (see Try 1 below), 

• Store quotation marks as the value of a macro variable (see Try 2 and Try 3 below) 

• Maintain unresolved macro values in the output (see Try 4 below).   

 

Suppose we use the %LET statement to store many statements in a macro variable.  Then we will use a %PUT  

statement to see the results of the %LET.   

 

Try 1. 

 
      

 

Results of Try 1. 

 
 

What caused the error?  Notice the value of mtest1.  

 

 

Try 2.  

 
 
Results of Try 2. 
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Notice the value of mtest2.   This works fine if we want quotation marks to be a part of the value.  

 
Try 3.  

 
 
Results of Try 3. 

 
 
What is the difference between mtest2 and mtest3. 

 

Using the %STR function allows you to let semicolons be part of the value of value of a macro variable.    In other 

words, it removes meaning from most special characters (like semicolons) at compile time.   It does not, however, 

remove the meaning from ‘&’ and ‘%’  that are followed by non-blank ‘tokens’.    

 

What if you needed to hide the effects of these macro triggers?  What if you needed to remove the meaning  from 
these ‘&’ and ‘%’ symbols followed by non-blank tokens.   Look’s look at Try 4.  What if a macro trigger needs to be  

part of the value of a macro variable?  

 

Try 4. 

    

 

Try 4 results. 

 
 

 
Using the %NRSTR  (No Resolve String)  function tells the macro processor to NOT resolve what appears to be a  

macro trigger.   

 

Try 5. 

 
 

Try 5 results. 

 
 

 

 

     

Character Handling Function Examples   
These functions either change the value of text strings, or provide information about them.  Many of these text 
functions have a DATA step counterpart.  The only syntactical difference is they start with a ‘%’.  The program 

snippet below illustrates how %SUBSTR,  %LENGTH, %LENGTH, %UPCASE, and %SCAN work.  
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.     

 

Suppose these macro statements were submitted for execution:  

 

 

Program Segment 1. 

 

 

Examine the results in the log.  

 
SAS Log  1.  

 

 

Character Handling Function Application   
The Manager of the Dept. of Human Services needs to create a SAS Data set for very state represented in the 

CRIME data set.  This needs to be a dynamic program because not all states may be included in the CRIME data 
set.  

 

The tasks that need to be accomplished are: 

1.  Create a list  that has one unique value for every state represented in the CRIME data set.   

 

2.  Since not all state names are valid SAS names (some have embedded blanks),  create a second list that  

     converts blanks into ‘_’  to create valid SAS names.  

 

3.  Create Macro variables named STRING1 and STRING2 that hold the values of these 2 lists.  

 

4.  Create a macro program that allows you to scan the lists and create a series of conditional statements for  

     a subsequent DATA step.   The series of IF-THEN statements need to look something like this: 

 

            ex.   If STATEN = ‘New York’ then output New_York ;  

 

5.  Write a DATA step that creates a Data set for each state, and correctly outputs the observations to the correct 

      DATA set based on the values of the variable STATEN.  

 

 

Steps 1, 2 and 3 are accomplished in the following PROC SQL step.  

%let long_name = Validate_CM34 ;  

%let short_name  = %substr(&long_name,  10, 4);  %put short_name = &short_name; 

%let ln_length      = %length(&long_name) ;       %put  ln_length     = &ln_length; 

%let sn_length     = %length(&short_name) ;           %put  sn_length  = &sn_length; 

%let caps             = %upcase(&long_name) ;          %put  caps            = &caps ; 

%let first      = %scan(&long_name, 1, ‘_’ ) ;    %put  first             = &first ; 
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Program Segment  2. 

 

 

Examine the results in the log.  

 
SAS Log 2.  

 

Notice the following: 

1.  &String1 values are separated by a comma and state names contain embedded blanks.   

2.  &String2 values are separated by blanks and state names have ‘_’ instead of the blanks in &String1. 

     This makes the state names valid SAS names.  

 

We have now completed tasks 1 – 3.  

 
Task 4:  Create a Macro Program that allows you to scan the lists and create a series of conditional statements so 

               that each observation will be output to the correct Data set.  (This macro program will be embedded into a 

               future DATA step) .   

 

                       ex.   If staten = ‘New Mexico’ then output New_Mexico ;  
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Program Segment 3. 

  

  
Note :   1.  The use of the %SCAN functions.  This creates WORD1 and WORD2.  WORD1 and WORD2 will 
contain  

                  different spellings for the same state (One will have an embedded blank .   

             2.  The IF / THEN statement.   For example,  when ‘I’ is equal to 32 this  statement resolves to:  

 

   if staten = ‘New York’ then output New_York;   

 

           3. The %EVAL function evaluates integer arithmetic or logical expressions. %EVAL operates by converting  

                 its argument from a character value to a numeric or logical expression. Then, it performs the evaluation. 

                 Finally, %EVAL converts the result back to a character value and returns that value to the program.  

 

 
Task 5:  Write the DATA Step that uses the IF / THEN statement created by the macro WORDS.   

 
Program Segment 4. 

 

Note:   1.  Tthe MACRO call (%WORDS) in the DATA Step.    

            2.  The DATA Statement… it creates a SAS Data set for each state found originally in the CRIME data set.         

 

 

The %Sysfunc function 
Before we go any further, we need an introduction to the %SYSFUNC function.  This function brings some 
functionality to macros that was previously available only in the DATA step and the SCL area of the SAS system.    

The typical syntax is :  

 

 %SYSFUNC (  function( argument(s)  ) <  format > ) 

 

The %SYSFUNC function :   

• allows the user to execute functions that were previously unavailable in the macro facility ,   

• is especially useful in finding information about data sets . 

 

Write a macro program that contains logic to see if a dataset exists. 
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Note :   1.  The use of the %UPCASE, %LENGTH and %SYSFUNC functions in this macro program.          

             2.  There is a colon ‘:’  after  %fastexit  because it is a label in this program.  

 

 

Suppose you need to know the number of observations and variables in data set.  While you are at it, you might  

want to find out when the data set was last updated.   You can use the %SYSFUNC function along with the OPEN, 

CLOSE and ATTRN functions to do this.    

 

 

 

All the information is written to the log…  
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Notice the results of the %PUT statements at the bottom of the log.  Also notice the MODTE 
option returns the SAS Datetime value. 

 

Now, let’s rerun the macro and pass the name of a nonexistent dataset (SASHELP.GLASS). 

 

  

Notice the result of the SYSMSG function nested within the %SYSFUNC function.  

 

 

Conclusion 
Macro functions give the DATA step tremendous power in manipulating data as well as controlling the program 
flow.  

It is difficult to do the topic justice in a short ( one hour ) presentation and a fairly short proceedings paper.  
Hopefully,  you appetite for more SAS Macro knowledge whetted.  There are numerous books on this topic in  

the books by user section of most SAS User gatherings.  The Education division of SAS Institute has some  

very good courses on this topic as well.  
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