Paper 112 - 2010

Using SASe Macro Functions to Manipulate Data
Ben Cochran, The Bedford Group, Raleigh, NC

Abstract

The SAS DATA step has the reputation for being one of the best data manipulators in the IT world. While the
author of this paper agrees with this statement, it is possible to go beyond the capabilities of the DATA step by
using SAS Macro functions. It would be difficult to show the full power of these Macro Functions in an hour
presentation, so, this paper will look at a few commonly used Macro Functions and compare and contrast them to
DATA step functions. These functions can be used not only to manipulate data, but to manipulate entire programs
as well.

Introduction

Macro functions are like DATA step functions except they operate only text strings and macro variables. This paper
covers several examples of using different categories of macro functions.

Quoting Function Examples

Since the SAS Macro facility stores all values as a text string, there may be times when you want to:
e Store more than one statement a the value of a macro variable (see Try 1 below),
e Store quotation marks as the value of a macro variable (see Try 2 and Try 3 below)
e Maintain unresolved macro values in the output (see Try 4 below).

Suppose we use the %LET statement to store many statements in a macro variable. Then we will use a %PUT
statement to see the results of the %LET.

Try 1.
Yolet mtest1 = data test; x=1; run;
%oput &mtest1;

Results of Try 1.
17 “let mtestl = data test; =x=1;

180

ERROR 180-322: Statement is not valid or it is used out of proper order.

17 Fun;
18 Aput mtestl = &mtestl;
mtestl = data test

What caused the error? Notice the value of mtest1.

Try 2.
Yulet mtest2 = 'data test; x=1; run;";
Yoput &mtest2;
Results of Try 2.
mtestg = "data test; x=1; run;’
e

Notice the value of mtest2. This works fine if we want quotation marks to be a part of the value.

Try 3.
%let mtest3 = %str(data test; x=1; run;);
Yoput &mtest3
Results of Try 3.
mtest3 = data test; =x=1; run;
25

What is the difference between mtest2 and mtest3.

Using the %STR function allows you to let semicolons be part of the value of value of a macro variable. In other
words, it removes meaning from most special characters (like semicolons) at compile time. It does not, however,
remove the meaning from ‘& and ‘%’ that are followed by non-blank ‘tokens’.

What if you needed to hide the effects of these macro triggers? What if you needed to remove the meaning from
these ‘& and ‘%’ symbols followed by non-blank tokens. Look’s look at Try 4. What if a macro trigger needs to be
part of the value of a macro variable?

Try 4.

“Ylet company = AT&T;
“Yoput &company;

Try 4 results.

8 %“let company = ATET;

ARMING : Apparent symbolic reference T not resolwved.
a9 “put fcompany;

ABM ING : fApparent symbolic reference T not resolved.
TET

Using the %NRSTR (No Resolve String) function tells the macro processor to NOT resolve what appears to be a
macro trigger.

Try 5.

%let company = %nrstr(AT&T);
Yoput &company,

Try 5 results.

a2
83 Xlet company = Znrstr(ATET);

a4 #put fcompany;
TET

Character Handling Function Examples

These functions either change the value of text strings, or provide information about them. Many of these text
functions have a DATA step counterpart. The only syntactical difference is they start with a ‘%’. The program
snippet below illustrates how %SUBSTR, %LENGTH, %LENGTH, %UPCASE, and %SCAN work.

2

Suppose these macro statements were submitted for execution:

%let long_name = Validate_ CM34 ;

%let short_name = %substr(&long_name, 10, 4); %put short_name = &short_name;
Y%let In_length = %length(&long_name) ; %put In_length = &In_length;
%let sn_length = %length(&short_name) ; %put sn_length = &sn_length;
%let caps = %upcase(&long_name) ; %put caps = &caps ;

Ylet first = %scan(&long_name, 1, ') ; %put first = &first ;

Program Segment 1.

Examine the results in the log.

27

28 #Zlet long_name = Validate_CH34 ;

29

30 %let short_name = Z=substr(&long_name,10,4); ZXput short_name = &short_name;
short_name = CH34

31

32 Zlet In_length, = Zlength(&long_name); “put In_lenogth = &1n_lenagth;
In_length = 13 &——

33

34 Zlet sn_length = Xlength(&short_name); “put =n_lenaoth = &=sn_length;
=n_length = 4

35 ¢

36 %Zlet caps = Zupcase(&long_name) ; Zput caps = fcaps;
caps = VAL IDATE_CH34 ¢

37

a3 Zlet first = Zscan(&long_name,1,'_'); Zput first = &first;
first = Yalidate —

4l

SAS Log 1.

Character Handling Function Application

The Manager of the Dept. of Human Services needs to create a SAS Data set for very state represented in the
CRIME data set. This needs to be a dynamic program because not all states may be included in the CRIME data
set.

The tasks that need to be accomplished are:

1.

2.

Create a list that has one unique value for every state represented in the CRIME data set.

Since not all state names are valid SAS names (some have embedded blanks), create a second list that
converts blanks into *_’ to create valid SAS names.

Create Macro variables named STRING1 and STRING2 that hold the values of these 2 lists.

Create a macro program that allows you to scan the lists and create a series of conditional statements for
a subsequent DATA step. The series of IF-THEN statements need to look something like this:

ex. If STATEN = ‘New York’ then output New_York ;

Write a DATA step that creates a Data set for each state, and correctly outputs the observations to the correct
DATA set based on the values of the variable STATEN.

Steps 1, 2 and 3 are accomplished in the following PROC SQL step.

3

- proc sql noprint;
select distinct staten, translate(strip(staten), '
into :string1 separated by ", ",
'string2 separated by ' '
from workshop.crime;
quit;
%put &string1;

, ')as stat

%put; %put &string2;

Program Segment 2.

Examine the results in the log.

492 Zput &=stringl;

filabama, Alaska, fArizona, firkansas, California, Colorado, Connecticut, Delaware, Florida,
Georgia, Hawaii, ldaho, Illinois, Indiana, lowa, Kansas, Kentucky, Louisiana, Maine, Maryland,
Massachusetts, Michigan, Minnesota, Hississippi, Missouri, Montana, Hebraska, HMevada, New
Hampshire, New Jersey, New Mexico, New York, Morth Carolina, Horth Dakota, Ohio, Oklahoma,
Oregon, Pennsylvania, Bhode Island, South Carolina, South Dakota, Tennessee, Texas, Utah,
Vermont, VYirginia, Washington, Hest Virginia, Hisconsin, Hyoming

493 Zput &=string?;

filabama Alaska #Arizona Arkansas California Colorado Connecticut Delaware Florida
Georgia Hawaii Idaho Il1linois Indiana lowa Kansas Kentucky Louisiana Maine Maryland
Masszachusetts Michigan Minnesota MHississippi Missowri HMontana HNebraska MHevada

New Hampshire Hew_Jersey HNew Mexico MNew_York Morth_Carolina MNorth_Dakota Ohio Oklahoma
Oregon Pennsylvania Bhode_lsland South_Carolina South_Dakota Tennessee Texas Utah
Vermont Virginia MHWashington Hest_Virginia HWisconsin Hyoming

SAS Log 2.

Notice the following:

1. &String1 values are separated by a comma and state names contain embedded blanks.

2. &String2 values are separated by blanks and state names have ‘_’ instead of the blanks in &String1.
This makes the state names valid SAS names.

We have now completed tasks 1 — 3.

Task 4: Create a Macro Program that allows you to scan the lists and create a series of conditional statements so
that each observation will be output to the correct Data set. (This macro program will be embedded into a
future DATA step) .

ex. If staten = ‘New Mexico’ then output New_Mexico ;

Amacro words;
Zlet i=1;
Zlet wordl=%scan(Zguotel(&stringl), Zevall(&il,
%Zlet word2=%scan(Zquote(&string2), Zeval(&i), °
%Zdo Zuntil (&wordl eq J;
if staten="fword!” then output fZword?;
Zlet i=Revall(&i + 1);

Zlet wordl=%scan(Zguotel(&stringl), Zevall(&il), *,’);
Zlet word?=%scan(Xguote(&string2), Revall(&il), ' *J;
Zend ;
AZmend ;

Program Segment 3.

Note : 1. The use of the %SCAN functions. This creates WORD1 and WORD2. WORD1 and WORD2 will
contain
different spellings for the same state (One will have an embedded blank .
2. The IF / THEN statement. For example, when ‘I’ is equal to 32 this statement resolves to:

if staten = ‘New York’ then output New_York;
3. The %EVAL function evaluates integer arithmetic or logical expressions. %EVAL operates by converting

its argument from a character value to a numeric or logical expression. Then, it performs the evaluation.
Finally, %EVAL converts the result back to a character value and returns that value to the program.

Task 5: Write the DATA Step that uses the IF / THEN statement created by the macro WORDS.

data &=string?;
set sasuser.crime,
Zuwords ;

Fun;

Program Segment 4.

Note: 1. Tthe MACRO call (%WORDS) in the DATA Step.
2. The DATA Statement... it creates a SAS Data set for each state found originally in the CRIME data set.

The %Sysfunc function
Before we go any further, we need an introduction to the %SYSFUNC function. This function brings some
functionality to macros that was previously available only in the DATA step and the SCL area of the SAS system.

The typical syntax is :
%SYSFUNC (function(argument(s)) < format >)
The %SYSFUNC function :
e allows the user to execute functions that were previously unavailable in the macro facility ,

e s especially useful in finding information about data sets .

Write a macro program that contains logic to see if a dataset exists.

- %macro IsltThere (dsn, n);

%olet dsn=%upcase(&dsn);
%if %length(&dsn)=0 %then
Yodo;
Yoput Warning: No dataset name was given. ;
Ysgoto fastexit;
Yoend;
Yoif %osysfunc(exist(&dsn)) < 1 %then
Y%do;
Yoput Warning: The dataset &dsn does not exist. ;
Yogoto fastexit;
Y%end;
proc print data=&dsn(obs=&n);
title " A Quick Look at: &dsn";
run;

Yfastexit:
%mend IsltThere;

Note : 1. The use of the %UPCASE, %LENGTH and %SYSFUNC functions in this macro program.

[

2. Thereis a colon ' after %fastexit because it is a label in this program.

Suppose you need to know the number of observations and variables in data set. While you are at it, you might
want to find out when the data set was last updated. You can use the %SYSFUNC function along with the OPEN,
CLOSE and ATTRN functions to do this.

- %macro Dimensions (dsn);

Yolet dsn=%upcase(&dsn);

Ylet dsid = %sysfunc(open(&dsn)); *<— Opens the data set;

%if &dsid ne 0 %then %do;
%let no_obs = %sysfunc(attrn(&dsid, NOBS)); *<-- Gets # of Rows;
%let no_vars = %sysfunc(attrn(&dsid, NVARS)); *<-- Gets # of Columns;
%let L_upd = %sysfunc(attrn(&dsid, MODTE)); *<-- Gets the date;
%olet L_date = %sysfunc(int(&L_upd), datetime22.);
Yolet rc = %sysfunc(close(&dsid)); * <— Closes the data set;
Yoput &dsn has &no_obs observation(s) &no_vars variable(s). ;
Yoput &dsn was last updated: &L _upd ;
Yoput &l_date;

Yoend;

Yoelse %put Open for data set &dsn failed. ;

Yoput - Yesysfunc(sysmsg());
%mend Dimensions;

YoDimensions(sashelp.class);

All the information is written to the log...

179 Zmacro Dimensions (dsn);

185 %xlet no_wars
186 %xlet L_upd
187 %let L_date
188 Zlet rc

189 #put &d=n has
190 put fd=n was
191 put £&1_date;
192 %end ;

195 Zmend Dimensions;

197 ZDimensions(sashelp.class);
ASHELP .CLASS has 19 observation(
ASHELP .CLASS was la=st updated: 1
13APR2010:17:07:12

181 Zlet dsn=Rupcasel(&d=sn);

182 Zlet dsid = Zsysfunc(open(Zdsn)); #{-—- Opens the data =set;
183 xif &d=id ne 0 Xthen Xdo;

184 Zlet no_obs Zsysfunclattrn(&dsid, NOBS)),; *¥¢{== Gets #* of Rows;

Zsysfuncl(attrn(&dsid, NYARS)); *{-- Gets # of Columns;
Zsysfunclattrn(&dsid, MODTE)); #{-- Gets the date;
Raysfunc(int(&L_upd), datetime22.);

= Xsysfunc(closel(&dsid)); ¥ (== Closes the data

&no_obs observation(s) &no_vars variable(s). ;
last uwpdated: EL_upd ;

193 %elze Fput Open for data zet &d=n failed. ;
194 Zput - Esysfunc(sysmsgl));

s) 5 variable(s).
LB6TI97632.296

Notice the results of the %PUT statements at the bottom of the log. Also notice the MODTE
option returns the SAS Datetime value.

Now, let’s rerun the macro and pass the name of a nonexistent dataset (SASHELP.GLASS).

198 Zmacro Dimensions (dsn);

204 %Zlet no_vars
205 %Zlet L_upd

214 ZEmend Dimensions;

200 Zlet dsn=Rupcase(f&dsn);

201 Zlet dsid = Zsysfunclopen(&dsn)); %{== Opens the data
202 Zif &d=sid ne 0 Xthen Xdo;

203 Zlet no_obs Azysfuncl(attrn(&dsid, HOBS5)): *¥{-— Gets ¥ of Rows;

Aasysfuncl(attrn(&dsid, HVARS)); *{-- Gets ¥ of Columns;
Azvsfunc(attrn(&dsid, MODTE)); #*<{-- Gets the date;

206 Zlet L_date Azvsfunc(int(&L_upd), datetime2?.);

207 %Zlet rc = Zsysfunc(close(8d=sid])); ¥ (== Closes the
207! =et

208 Aput &dsn has &no_obs observation(=) &no_vars variable(s). ;

209 “put &d=n waz last uvpdated: &L _upd ;

210 #“put &1_date;

211 %end ;

212 Zelse Xput Open for data set &dsn failed. ;

213 Zput - Zsysfunc(sysmsgl));

216 ZDimensions(=sashelp.glass);
pen for data set SASHELP.GLASS failed.
- ERROR: File SASHELF.GLASS.DATA does not exist.

Notice the result of the SYSMSG function nested within the %SYSFUNC function.

Conclusion
Macro functions give the DATA step trem
flow.

endous power in manipulating data as well as controlling the program

It is difficult to do the topic justice in a short (one hour) presentation and a fairly short proceedings paper.
Hopefully, you appetite for more SAS Macro knowledge whetted. There are numerous books on this topic in
the books by user section of most SAS User gatherings. The Education division of SAS Institute has some

very good courses on this topic as well.

Acknowledgments

I would like to acknowledge and greatly thank the Technical Support Department at SAS Institute for their helpful
knowledge and expertise that they so freely gave. | would also like to thank Art Carpenter for his SAS Macro
knowledge. Whenever | have a macro question he always gives me a great answer.

Contact Information
Your comments and questions are valued and encouraged. Contact the author at:
Ben Cochran
The Bedford Group
Raleigh, NC 27607
Phone: 919.741.0370
Email: bedfordgroup@nc.rr.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

