
1

Paper D13-2009

Using the Data Step’s ATTRIB Statement to both

Manage and Document Variables in a SAS® Dataset (lightly)

Philip A. Wright, The University of Michigan, Ann Arbor, MI

ABSTRACT

There are several different ways in which to order variables in a SAS dataset. Some of them are quite similar, one is
dangerous, and each of them must be used prior to a set, merge, or update statement. One of these statements—
the attrib statement—can serve the roll of several other statements, is not dangerous, and can actually serve as light
documentation in data step code. Generating a complete attrib statement for a large data set, however, can be a
daunting task. The use of a macro that generates a complete attrib statement for a previously-generated data set
can be of great use to manage the data set while the data step is further developed. Using the macro to generate a
complete attrib statement and subsequently using the generated attrib statement to order/re-order and aid the
conversion of variable types will be demonstrated.

INTRODUCTION

Although not always necessary for SAS processing, the order of variables in a dataset can be quite important when
the variables or values in a dataset are reviewed by fellow programmers and supervisors. One standard for the
ordering of variables might be the importance of variables within the dataset with regard to the domain the data
represent—it might be more important to have some variables precede other variables. Another need to order
variables may be based on grouping similar variables, a series of variables, or dependent variables.

Variables become ‘ordered’ in a dataset as they are defined in the Program Data Vector (PDV) by the compilation of
data step code by the SAS compiler—the first variables initialized by the data step as parsed by the compiler are the
first variables in the PDV. There are several different data step statements that can be used to order variables in the
dataset(s) generated by the data step: attrib, array, format, informat, length, and retain (Source: SAS Knowledge
Base/Samples & SAS Notes). Using any of these statements prior to a set, merge, or update statement will initialize
the variables they specify in the PDV according to the order they are included in the statement.

In addition to ordering variables, other dataset management tasks include adding or changing variable labels, adding
or changing format and informat specifications, changing the allocation of memory for variables, and converting
variables of one type to the other.

Using a detailed and patterned version of the attrib statement at the beginning of data step code can order the
variables in the dataset and serve as light documentation. Generating this statement with an editor could well be
quite formidable, especially for large and complex datasets. The generation of the statement using several macros
at the end of initial and iterative data step development and the subsequent insertion of the statement at the
beginning of the data step is comparatively easy and can be quite useful for managing most datasets.

MANAGING VARIABLES IN A SAS DATASET

In addition to ordering variables, the data step programmer may well need to specify the labels, formats, informats,
lengths, and transcode values for each variable if the default values are not suitable. I consider both the ordering of
variables and the specification of variable attribute values as managing variables in a dataset.

Dependent upon the version of SAS you are using, there are five or six variable attributes whose values can be
easily specified by the programmer: name, type, length, format, informat, and, in version 9, transcode. Every
variable must have a name, a type specification (numeric or character) and a byte length specification (generally 1 to
32,767 bytes for character variables and 3 to 8 bytes for numeric variables). The SAS compiler assigns default
values to the latter two of these attributes when these values are not explicitly specified; specifying values for the
other variable attributes is not strictly necessary. Adding values for the label attribute, however, can add
immeasurably to the ease of comprehension of a dataset and is virtually required for larger, more complex datasets.
Assigning values to the attributes for each variable in the dataset using an attrib statement generated by macro code
after each iterative development of the data step can make the management of the variables in the dataset
comparatively light.

2

A second aspect of managing a dataset lightly is doing so with the fewest SAS resources as possible—not using a
second data step to reorder variables or using proc datasets to change the values of variable attributes. The
resources required for the processing of a secondary data step or procedure might be trivial for smaller datasets but
could be quite significant for larger datasets.

Sometimes, however, a secondary data step might be preferable or even necessary. This can be particularly true
where you must use a data step after a proc SQL join; there are some processing routines which are much easier to
code in the data step and some processing routines that simply cannot be done in a single proc SQL join.

THE ATTRIB STATEMENT VERSUS OTHER STATEMENTS

The attrib statement can perform the function of the format, informat, label, and length statements and can specify
the transcode value for each variable in the dataset (Source: SAS Knowledge Base/Samples & SAS Notes). Any
combination of these attributes for any variable may be specified using the attrib statement. One catch common with
using any of these statements to reorder variables is that they only reorder the variables that are included in the
statement; the named variables consequently precede all other variables in the dataset. If you are working with a
large dataset and want to reorder only the variables towards the end of the dataset then you must include all
preceding variables in the statement. Although you may not need to specify attribute values for all variables in the
dataset during early development of data step code, being able to readily change these values either individually, in
groups, or globally during subsequent iterations of code development is quite useful.

A patterned layout of these specifications allows for easy changes, especially with the use of regular expressions,
editing scripts, or an editor that supports the use of editing macros:

attrib
 date label = 'Order Date' length = 8
 sale label = 'Unit Sale' length = 8
 price label = 'Unit Price' length = 8
 discount label = 'Price Discount' length = 8
 cost label = 'Unit Cost' length = 8
 price1 label = 'Product 1 Unit Price' length = 8
 price2 label = 'Product 2 Unit Price' length = 8
 price3 label = 'Product 3 Unit Price' length = 8
 price4 label = 'Product 4 Unit Price' length = 8
 price5 label = 'Product 5 Unit Price' length = 8
 price6 label = 'Product 6 Unit Price' length = 8
 price7 label = 'Product 7 Unit Price' length = 8
 price8 label = 'Product 8 Unit Price' length = 8
 price9 label = 'Product 9 Unit Price' length = 8
 price10 label = 'Product 10 Unit Price' length = 8
 price11 label = 'Product 11 Unit Price' length = 8
 price12 label = 'Product 12 Unit Price' length = 8
 price13 label = 'Product 13 Unit Price' length = 8
 price14 label = 'Product 14 Unit Price' length = 8
 price15 label = 'Product 15 Unit Price' length = 8
 price16 label = 'Product 16 Unit Price' length = 8
 price17 label = 'Product 17 Unit Price' length = 8
 regionName label = 'Sales Region' length = $ 7
 productLine label = 'Name of product line' length = $ 5
 productName label = 'Product Name' length = $ 9
 region label = 'Region ID' length = 8 format = 6.
 line label = 'Product Line ID' length = 8 format = 6.
 product label = 'Product ID' length = 8 format = 6.
;

Many people use the retain statement for ordering variables because only the variable names are needed for the
statement—no other variable attribute specifications are required. Use of the retain statement, however, can be
dangerous in subsequent iterations of code development as the intended function of the statement is to save values
for the specified variables from one observation to the next. The danger arises when the values of any of the
variables get conditionally assigned by the data step code and are not overwritten by an input statement; the
conditional assignment may create a value that should not be retained for subsequent observations. Even if the
data step programmer is careful not to do this, this mistake could be made should less knowledgeable programmers
subsequently modify the code.

3

EXAMPLES

REORDERING VARIABLES WITH THE ATTRIB STATEMENT

1. The first step for using an attrib statement to reorder variables is to generate the statement itself by passing the
two level name of the existing dataset for which you want to reorder the variables in a call to the macro code:

 %list_attrib(ds_spec = work.pricedata) ;

(the macro code is available from sascommunity.org)

2. Once an attrib statement has been generated with macro code, it must be inserted using your code editor prior
to any set, merge, or update statements in the data step code that generated the version of the dataset passed
to the macro code:

BEFORE EDITING:

data work.pricedata ;
set sashelp.pricedata ;
run ;

AFTER EDITING:

data work.pricedata ;
attrib
 date label = 'Order Date' length = 8
 sale label = 'Unit Sale' length = 8
 price label = 'Unit Price' length = 8
 discount label = 'Price Discount' length = 8
 cost label = 'Unit Cost' length = 8
 price1 label = 'Product 1 Unit Price' length = 8
 price2 label = 'Product 2 Unit Price' length = 8
 price3 label = 'Product 3 Unit Price' length = 8
;
set sashelp.pricedata ;
run ;

3. Once pasted, the programmer is then able to reorder the records for each variable as desired with the editor:

BEFORE REORDERING: AFTER REORDERING:

The variables will now be ordered as desired once the dataset is regenerated by submitting the revised data step
code to the processor.

This is a rather trivial example. The real power of this technique becomes apparent when it is used with:

• Datasets comprising hundreds or thousands of variables.

 data work.pricedata ; data work.pricedata ;

attrib attrib

date label = 'Ord … date label = 'Ord …

sale label = 'Uni … sale label = 'Uni …

price label = 'Uni … price label = 'Uni …

discount label = 'Pri … price1 label = 'Pro …

cost label = 'Uni … price2 label = 'Pro …

price1 label = 'Pro … price3 label = 'Pro …

price2 label = 'Pro … discount label = 'Pri …

price3 label = 'Pro … cost label = 'Uni …

; ;

set sashelp.pricedata ; set sashelp.pricedata ;

run ; run ;

4

• Data step code that includes a set statement that specifies several datasets that comprise many different
variables.

• A merge statement when it is used with datasets comprising hundreds or thousands of variables.

When used with either the latter two examples the functionality of the attrib statement matches some functionality of
an ‘itemized’ select clause in a proc SQL join.

ADDING FORMAT SPECIFICATIONS

Once you have the variables in the desired order you are ready to move on to other aspects of managing the
dataset. One of the variable attributes that can make variable values much easier to comprehend when they are
rendered on screen or via reports is the variable’s format. SAS has an extensive array of formats for both numeric
and character variables, but there are quite a few more formats for numeric variables. In addition, SAS provides a
procedure (proc format) which makes the generation of custom formats a fairly straight-forward task.

A detailed discussion of SAS formats (and informats), is outside the scope of this paper. Detailed explanations and
quite a few papers from previous conferences which describe the use of formats are available from SAS’ support
web site. We can, however, demonstrate how formats are specified in the attrib statement.

From the first example attrib statement we see that there are 17 virtually identical variables in the sashelp.pricedata
dataset and the labels for these variables indicate the values they contain are prices:

 price1 label = 'Product 1 Unit Price' length = 8
 price2 label = 'Product 2 Unit Price' length = 8
 price3 label = 'Product 3 Unit Price' length = 8
 .

 .

 .

 price15 label = 'Product 15 Unit Price' length = 8
 price16 label = 'Product 16 Unit Price' length = 8
 price17 label = 'Product 17 Unit Price' length = 8

The dataset does not contain a format specification for any of these variables. Adding an appropriate format
specification for each of the 17 variables becomes quite easy with skilled use of the code editor:

 price1 label = 'Product 1 Unit Price' length = 8 format = DOLLAR10.2
 price2 label = 'Product 2 Unit Price' length = 8 format = DOLLAR10.2
 price3 label = 'Product 3 Unit Price' length = 8 format = DOLLAR10.2
 .

 .

 .

 price15 label = 'Product 15 Unit Price' length = 8 format = DOLLAR10.2
 price16 label = 'Product 16 Unit Price' length = 8 format = DOLLAR10.2
 price17 label = 'Product 17 Unit Price' length = 8 format = DOLLAR10.2

If variable labels are standardized for the entire dataset and the labels contain key phrases, using regular
expressions, editing scripts, or an editor that supports the use of editing macros could easily make this and similar
changes to thousands of variables, but only if they are included explicitly in the attrib statement. Using a variable list,
of course, is another method of accomplishing the same task:

 attrib
 price1-price17 format = DOLLAR10.2
 ;

This method, however, requires you to add any other variables and attribute changes as needed.

CHANGING VARIABLE LENGTH SPECIFICATIONS

One of the most important aspects of managing larger datasets is appropriate allocation of bytes for each variable.
In certain circumstances the default width of character variables is 200 bytes. In all circumstances the default width
of numeric variables is 8 bytes. Multiply these defaults by thousands of variables and your talking sizeable chunks of
memory.

In almost all instances you do not want to change the length of numeric variables if the variables contain non-

integer values. If you know for a fact that values in your dataset are, indeed, integers and you know the range in
values of these integers for each of your variables, then you may well be able to save significant amounts of
memory.

5

The following table, along with a very good explanation of how numeric variables utilize memory, is available from
SAS’ support web site:

Significant Digits and Largest Integer by Length for SAS Variables under Windows

Length in Bytes

Largest Integer

Represented Exactly Exponential Notation

Significant Digits

Retained

3 8,192 2
13
 3

4 2,097,152 2
21
 6

5 536,870,912 2
29
 8

6 137,438,953,472 2
37
 11

7 35,184,372,088,832 2
45
 13

8 9,007,199,254,740,992 2
53
 15

Source: http://support.sas.com/documentation/cdl/en/hostwin/61924/HTML/default/numvar.htm

A good primer for working with numeric variables in SAS can also be found at:

 http://support.sas.com/documentation/cdl/en/basess/58133/HTML/default/a001304311.htm

A variable’s maximum and minimum values are a couple of the default measures reported by proc means:

 proc means data = sashelp.pricedata ; var _NUMERIC_ ; run ;

SAMPLE OUTPUT:
 The MEANS Procedure

 Variable Label Mean Std Dev Minimum Maximum

 ƒƒƒ
 .

 .

 .

 region Region ID 2.1764706 0.7062286 1.0000000 3.0000000 < 8,192: 3

 line Product Line ID 2.8823529 1.2786011 1.0000000 5.0000000 < 8,192: 3

 product Product ID 9.0000000 4.9013827 1.0000000 17.0000000 < 8,192: 3
 .

 .

 .

Once you have generated and pasted the attrib statement in the same manner as the previous example, and you
know the magnitude of your variable values, you should then be able change the specification for your length
attributes fairly easily.

BEFORE EDITING:

attrib
.

.

.

region label = 'Region ID' length = 8 format = 6.
line label = 'Product Line ID' length = 8 format = 6.
product label = 'Product ID' length = 8 format = 6.
.

.

.

AFTER EDITING:

attrib
.

.

.

region label = 'Region ID' length = 3 format = 6.
line label = 'Product Line ID' length = 3 format = 6.
product label = 'Product ID' length = 3 format = 6.
.

.

.

Although we changed the length value for just three numeric variables we have saved over 37% of the memory
previously allocated by default for those three variables!

6

CONVERTING VARIABLES FROM ONE TYPE TO THE OTHER

Although variable type conversion cannot be accomplished using the attrib statement alone, using it with dataset
options for the datasets specified in both the data and set statements is very efficient.

More thought regarding the management of our sample dataset reveals that even though we have changed the
length of the region, line, and product variables, we should instead change the variable type to character:

performing mathematic calculations with these variables is not practical as their values are IDs, and we want to
make sure others do not try to do so. There are several steps to convert variables and specify correct values for the
attributes of the converted variables:

1. Add dataset options to the set statement that renames the variables whose types will be converted:

set
 sashelp.pricedata (
 rename = (
 region = region_num
 line = line_num
 product = product_num
)
)
;

(I usually simply append the current variable type to the variable name)

2. Change the attribute specifications appropriately for each of the converted variables:

 BEFORE EDITING:

attrib
.

.

.

region label = 'Region ID' length = 3 format = 6.
line label = 'Product Line ID' length = 3 format = 6.
product label = 'Product ID' length = 3 format = 6.
.

.

.

 AFTER EDITING:

attrib
.

.

.

region label = 'Region ID' length = $ 6 format = $6.

line label = 'Product Line ID' length = $ 6 format = $6.

product label = 'Product ID' length = $ 6 format = $6.

 (color utilized to highlight changes)

3. Add to the data step the assignment code necessary to make variable type conversions-making sure to
assign converted values to variables as they were originally named:

region = put(region_num, 6.0) ;
line = put(line_num, 6.0) ;
product = put(product_num, 6.0) ;

4. Add data set options to the data statement that drops the old, now renamed, variables:

data
 work.pricedata (
 drop = region_num line_num product_num
)
;

7

We should now have all the data step statements necessary to convert the variable types and preserve the original
order of the variables:

data
 work.pricedata (
 drop = region_num line_num product_num
)
;
attrib
 .
 .
 .

 region label = 'Region ID' length = $ 6 format = $6.
 line label = 'Product Line ID' length = $ 6 format = $6.
 product label = 'Product ID' length = $ 6 format = $6.
 .
 .
 .

;
set
 sashelp.pricedata (
 rename = (
 region = region_num
 line = line_num
 product = product_num
)
)
;
 .
 .
 .

region = put(region_num, 6.0) ;
line = put(line_num, 6.0) ;
product = put(product_num, 6.0) ;
 .
 .
 .

run ;

You will find using a full, highly detailed attrib statement will help generate notes, warnings, and errors which aid
debugging after submitting the next iteration of the data step code; the detailed attrib statement provides more
information about the intended attributes of the variables for checking by the compiler.

USING THE ATTRIB STATEMENT TO DOCUMENT A DATASET (LIGHTLY)

Hopefully it is now readily apparent the specification of values for most variable attributes for all of the variables in a
SAS dataset using an attrib statement is quite useful for several data management tasks. In addition to being useful,
a patterned layout of the statement can be easily comprehended (if the possible listing of thousands of variables do
not bother you) and actually serve as a light form of documentation for the dataset:

attrib
 date label = 'Order Date' length = 8 format = DATE10.
 sale label = 'Unit Sale' length = 8
 price label = 'Unit Price' length = 8
 price1 label = 'Product 1 Unit Price' length = 8 format = DOLLAR10.2
 price2 label = 'Product 2 Unit Price' length = 8 format = DOLLAR10.2

 .
 .
 .

 price16 label = 'Product 16 Unit Price' length = 8 format = DOLLAR10.2
 price17 label = 'Product 17 Unit Price' length = 8 format = DOLLAR10.2
 discount label = 'Price Discount' length = 8
 cost label = 'Unit Cost' length = 8
 regionName label = 'Sales Region' length = $ 7
 productLine label = 'Name of product line' length = $ 5
 productName label = 'Product Name' length = $ 9
 region label = 'Region ID' length = $ 6 format = $6.
 line label = 'Product Line ID' length = $ 6 format = $6.
 product label = 'Product ID' length = $ 6 format = $6.
;

8

CONCLUSION

Even though there is more coding necessary to use a detailed attrib statement for variable attributes, the statement
itself can be subsequently used to help with several dataset management tasks: the ordering of variables, adding or
changing variable labels, adding or changing format and informat specifications, changing the allocation of memory
for variables, and converting variables of one type to the other.

Using macro code to generate the attrib statement for a dataset generated by an early version of data step code and
then inserting the statement into the next version of the same data step code can be quite easy. Given this ease,
regenerating and replacing the attrib statement for each new iteration of the code can become routine and help
debug the data step code itself: The only subsequent editing of the statement required would be for any new
variables introduced by the latest iteration of the data step code.

REFERENCES

• First, Steven (2009), “Understanding the SAS DATA Step and the Program Data Vector,” Proceedings of SAS
Global Forum 2009
http://support.sas.com/resources/papers/proceedings09/136-2009.pdf

• Philp, Stephen (2006), “Programming with the KEEP, RENAME, and DROP Data Set Options,” Proceedings of
the Thirty-First Annual SAS Users Group International Conference
http://www2.sas.com/proceedings/sugi31/248-31.pdf

• Schreier, Howard (2005), “Let Your Data Power Your DATA Step: Making Effective Use of the SET, MERGE,
UPDATE and MODIFY Statements,” Proceedings of the Thirtieth Annual SAS Users Group International
Conference
http://www2.sas.com/proceedings/sugi30/251-30.pdf

• Whitlock, Ian (2006), “How to Think Through the SAS DATA Step,” Proceedings of the Thirty-First Annual SAS
Users Group International Conference
http://www2.sas.com/proceedings/sugi31/246-31.pdf

ACKNOWLEDGMENTS

I would like to thank the participants in the Michigan SAS Users group for their encouragement and suggestions.

ABOUT THE AUTHOR

Phil Wright graduated from the University of Michigan in 1986 with a Bachelors degree in Psychology. He first sat
down in front of a PC when his first research project purchased their first PC and asked him to learn their word
processing application (FinalWord) and then teach it to the rest of the staff. He has been in front of a PC ever since.
Phil has been using SAS for over 15 years; specializing in the conversion of legacy data files, data management,
reporting, proc SQL, ODS, and Macro programming.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Philip A. Wright
Enterprise: Inter-university Consortium for Political and Social Research (ICPSR),
 Institute for Social Research (ISR),
 University of Michigan
Address: P.O. Box 1248
City, State ZIP: Ann Arbor, Michigan 48106-1248
Work Phone: 734-615-7886
Fax: 734-647-8200
E-mail: pawright@umich.edu
Web: http://www.icpsr.umich.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

