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ABSTRACT 

PROC CORR is widely used to calculate the Cronbach’s α, and it has been described as a lower 
bound for test reliability. However, previous research has shown that when certain assumptions 
are violated coefficient α can overestimate or underestimate reliability. Raykov has shown that 
structural equation modeling can be used to estimate reliability. This research illustrates 
Raykov’s SEM method in PROC CALIS and shows that under certain violations of assumptions 
coefficient α estimates can show a substantial positive bias in the some extreme circumstances, 
and the magnitude of bias of coefficient α estimates are larger than that of structural equation 
modeling based reliability estimates. 
  

INTRODUCTION 

Precision of measurement is one of the major concerns in social and behavioral sciences. In 
classical test theory (CTT), reliability is defined as the ratio of the true score variance to 
observed score variance (e.g., Lord & Novick, 1968). In practice, however, this ratio cannot be 
directly calculated as true score variance is not directly estimable. Cronbach (1951) named 
coefficient α and recognized its generality in estimating test reliability. Cronbach’s coefficient α 
is one of the most frequently used estimators in social and behavioral sciences, and for more than 
50 years has been the subject of considerable study (e.g., Guttman, 1953; Novick & Lewis, 1967; 
Lord & Novick, 1968; Zimmerman, Zumbo, & Lalonde, 1993; Miller, 1995; Komaroff, 1997; 
Raykov, 1997a, 1997b, 2001). 
 
For a long time Cronbach’s α has been described as a lower bound of test reliability 
(Zimmerman et al., 1993). Novick & Lewis (1967) showed that essential τ-equivalence and 
linear experimental independence are necessary and sufficient conditions for coefficient α to be 
equal to the test reliability. Raykov (1997a) proposed a Structural Equation Modeling (SEM) 
method to estimate the composite reliability for the general congeneric tests. Further, Raykov 
(1997b, 2001) discussed the effect of violations of essential τ-equivalence and uncorrelated 
errors on Cronbach’s coefficient α, and analytically expressed the bias of α in terms of item 
parameters thereafter. Previous studies have shown that Cronbach’s coefficient α may either 
underestimate or overestimate the test reliability (e.g., Zimmerman et al., 1993; Komaroff, 1997). 
That is, the violation of essential τ-equivalence tends to deflate Cronbach’s coefficient α; while 
the violation of uncorrelated errors tends to inflate Cronbach’s coefficient α. However, the 
analytical expression of the bias of Cronbach’s coefficient α is complicated. It is quite 
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inconvenient to interpret the effect of each individual parameter on this bias. As pointed out by 
Raykov (1997b), “Due to the complex form of Equation 19 as a function of the above four types 
of parameters, specific statements about the magnitude of alpha’s population discrepancy and 
related conditions seem currently possible only based on a comprehensive simulation study 
going beyond the scope and concerns of this discussion." 
 
In this paper, we are going to illustrate the Raykov’s SEM model in SAS PROC CALIS, and 
compare the SEM method in estimating the test reliability with Cronbach’s coefficient α under 
violations of essential τ-equivalence and uncorrelated errors. Cronbach’s α is much easier to 
estimate that Raykov’s SEM reliability, thus it is important to determine under what 
circumstances the discrepancy between Cronbach’s α and Raykov’s SEM reliability is of 
practical significance. 
 

 BASIC EQUATIONS AND DEFINITIONS 

In classical test theory an observed item score is defined as the sum of the true score and error 
score for this item: = +i i iX T E .  Also by definition the expected value of error scores for every 
true score is 0: ( | ) 0ε τ= =i i iE T .  It is typically assumed that error scores are uncorrelated 
(linear experimental independence) with each other ( ( , ) 0ρ =i jE E ) and with true scores 
( ( , ) 0ρ =i jE T ).  However it should be noted that many tests have multiple blocks of items each 
related to a common stimulus material (for example items nested within reading passages) that 
might lead to correlated errors within each block. 
 
A test score, X, is defined as the sum of each item score. That is, 
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Test reliability is defined as 
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Cronbach’s coefficient α  is defined as 
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As discussed by Raykov (1997a): 

Assume that the components X1, X2, …, Xk are congeneric. Formally, this means 
that for any pair of measures Xi and Xj there exists a linear relationship between 
their true scores Ti and Tj; that is, for any pair Xi and Xj there exist values aij and bij, 
such that Ti= aij + bijTj (1 , ; e.g., Jöreskog, 1971). In particular, without 
generality, for j = 1 and any i > 1 there exist a pair of values a

i j k≤ ≤

i1 and bi1, such that 
Ti= ai1 + bi1Tj (the second subindexes of a and b can therefore be dropped). The 
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well-known model of parallel tests is a special case of this, if the following 
assumptions are satisfied: (1) a1 = … = ak = 0; (2) b1 = … = bk = 1; and (3) Var(E1) 
= … = Var(Ek). Similarly, τ-equivalent tests are obtained as another special case 
of congeneric tests when Assumption 3 is dropped; in this case error variances are 
permitted to differ. Also, essentially τ-equivalent measures result as a special case 
of congeneric tests when Assumption 1 and 3 are dropped; that is, when nonzero 
intercepts are allowed for τ-equivalent tests (e.g., Lord & Novick, 1968). 

 
Therefore, the reliability for a congeneric test is herein further defined as 
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Though Raykov (1997a, p. 175, equation 6) did not include correlated error scores in the 
derivation of the SEM method, it is easy to generalize his equation. 
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As Raykov (1997a) pointed out, if 1( ) 0≠Var T , the correlation of T1 and the composite score X is 
the concluding reliability index, and 1( , )ρ ∑ iT X  can be obtained as an “external parameter” of 
the model presented in the path diagram shown in Figure 1. 
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Source: Raykov (1997a) 
 
Figure 2 presents an alternative specification of the same path model and was used in this 
research.  In this structural equation model F1 is the common latent variable, and F2 is the 
phantom variable. 
 
Figure 2: Alternative SEM model to estimate reliability 

 
 

4 



METHODS 

Five factors have been shown to influence the estimated reliability of a test: common true score 
variance, constructing loadings on the common true score, error score variances, error score 
covariance, and test length (Raykov, 2001). To model the context of error covariance and non-
essential-τ-equivalence, this study simulates a 15 item test divided into three sets of five items 
each. These 15 items have correlated error within each set but not across each set. To avoid the 
confounding of error correlation and error variance, both are independently modeled in this study. 
Further, correlation is assumed equal for every pair of error scores, and error variances are also 
assumed equal. 
 

SIMULATED FACTORS 

For each simulated test the number of items violating the assumption of essential τ-equivalence 
is 6. This will be done evenly across the three blocks of items in each test. That is, there will be 2 
items violating this assumption within each block. Item scores are generated under the constraint 
that each item will have unit variance. Simulated factors are described below: 
 
First, the ratio of true score variance to error score variance is controlled on each item. There are 
3 levels in this condition: 1:9, 5:5, 9:1. That is, the true score variance can be 0.1, 0.5, or 0.9 
while the corresponding error score variance is 0.9, 0.5, and 0.1. 
 
Second, the degree to which the essential τ-equivalence is violated through the loading shrinkage 
from true score to observed score on each item. There are 3 levels in this condition: no shrinkage, 
small shrinkage, and big shrinkage. 
 
Third, the pairwise error correlation among regular items is controlled as well. The value of this 
correlation is 0.0, 0.2, and 0.4. When the correlation equals to 0.0, the uncorrelated error 
assumption is met.  
 
These steps create 27 (3×3×3) conditions. Each condition is replicated 2000 times. For each 
replication 1000 examinees are simulated. 
 

ANALYSIS 

If the error correlation is simulated to be zero, the SEM model is represented by the path diagram 
in Figure 3. If the error correlation is simulated to be nonzero, parameters that represent error 
correlation should be added into Raykov’s (1997a) SEM model. Instead of adding 
covariance/correlation between all pairwise true scores, we choose to use a method factor in each 
subset to capture the unwanted error correlation. The path diagram in Figure 4 represents the 
modified SEM model. 
 

Figure 3: SEM model with uncorrelated errors 
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Figure 4: SEM model when correlated errors 

 

 
All the work is done on a 64-bit cluster machine due to the extremely intensive computation 
required by this simulation. SAS (cluster version 9.2) PROC CORR is used to compute 
Cronbach’s α. PROC CALIS is used to fit Raykov’s SEM model. For certain trials, the 
optimization process required more iterations than the default setting. To this end the maximum 
number of iterations and maximum number of function calls were both set to 10000. The starting 
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value of 0.7 is provided to PROC CALIS for all parameter estimates. 
Example SAS program for Figure 3 is such: 

PROC CALIS COV data=observed PLATCOV maxiter=10000 maxfunc=10000 inest=start; 
LINEQS X1  =      F1    + E1, 
         X2  =      F2    + E2, 
         X3  =      F3    + E3, 
         X4  =      F4    + E4, 
         X5  =      F5    + E5, 
         X6  =      F6    + E6, 
         X7  =      F7    + E7, 
         X8  =      F8    + E8, 
         X9  =      F9    + E9, 
         X10 =      F10   + E10, 
         X11 =      F11   + E11, 
         X12 =      F12   + E12, 
         X13 =      F13   + E13, 
         X14 =      F14   + E14, 
         X15 =      F15   + E15, 
         F1  = BE1  F_COM + D1, 
         F2  = BE2  F_COM + D2, 
         F3  = BE3  F_COM + D3, 
         F4  = BE4  F_COM + D4, 
         F5  = BE5  F_COM + D5, 
         F6  = BE6  F_COM + D6, 
         F7  = BE7  F_COM + D7, 
         F8  = BE8  F_COM + D8, 
         F9  = BE9  F_COM + D9, 
         F10 = BE10 F_COM + D10, 
         F11 = BE11 F_COM + D11, 
         F12 = BE12 F_COM + D12, 
         F13 = BE13 F_COM + D13, 
         F14 = BE14 F_COM + D14, 
         F15 = BE15 F_COM + D15, 
      F_PHAN = F1  + F2  + F3  + F4  + F5 
             + F6  + F7  + F8  + F9  + F10 
             + F11 + F12 + F13 + F14 + F15; 
  STD D1-D15 = PSI1-PSI15, 
       F_COM = 1; 

RUN; 

 
Example SAS program for Figure 4 is such: 

PROC CALIS COV data=observed PLATCOV maxiter=10000 maxfunc=10000 inest=start; 
  LINEQS X1  =      F1    + E1, 
         X2  =      F2    + E2, 
         X3  =      F3    + E3, 
         X4  =      F4    + E4, 
         X5  =      F5    + E5, 
         X6  =      F6    + E6, 
         X7  =      F7    + E7, 
         X8  =      F8    + E8, 
         X9  =      F9    + E9, 
         X10 =      F10   + E10, 
         X11 =      F11   + E11, 
         X12 =      F12   + E12, 
         X13 =      F13   + E13, 
         X14 =      F14   + E14, 
         X15 =      F15   + E15, 
         F1  = BE1  F_COM + BE16 F_M1 + D1, 
         F2  = BE2  F_COM + BE17 F_M1 + D2, 
         F3  = BE3  F_COM + BE18 F_M1 + D3, 
         F4  = BE4  F_COM + BE19 F_M1 + D4, 
         F5  = BE5  F_COM + BE20 F_M1 + D5, 
         F6  = BE6  F_COM + BE21 F_M2 + D6, 
         F7  = BE7  F_COM + BE22 F_M2 + D7, 
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         F8  = BE8  F_COM + BE23 F_M2 + D8, 
         F9  = BE9  F_COM + BE24 F_M2 + D9, 
         F10 = BE10 F_COM + BE25 F_M2 + D10, 
         F11 = BE11 F_COM + BE26 F_M3 + D11, 
         F12 = BE12 F_COM + BE27 F_M3 + D12, 
         F13 = BE13 F_COM + BE28 F_M3 + D13, 
         F14 = BE14 F_COM + BE29 F_M3 + D14, 
         F15 = BE15 F_COM + BE30 F_M3 + D15, 
      F_PHAN = F1  + F2  + F3  + F4  + F5 
             + F6  + F7  + F8  + F9  + F10 
             + F11 + F12 + F13 + F14 + F15; 
  STD D1-D15 = PSI1-PSI15, 
       F_COM = 1, 
       F_M1-F_M3 = 3*1; 

RUN; 

 

RESULTS 

In order to compare the reliability estimates from Cronbach’s α and SEM, the estimates are 
averaged across replications in every combination of conditions. Then, the averaged values are 
compared to the true values in every combination of conditions, which is calculated according to 
Equation 5. 
 
Table 1 lists the bias of Cronbach’s α and SEM estimates. First, SEM estimates and Cronbach’s 
α give virtually identical results in conditions where both assumptions are met, which are 
consistent with the analytical proof. Second, SEM estimates and Cronbach’s α show similar 
magnitude of bias when and only when the ratio of true score variance to error score variance is 
9:1. Third, the mean of SEM estimates are all negatively biased, and it seems that only the ratio 
of true score variance to error score variance affects the bias of SEM estimates. Fourth, the bias 
of Cronbach’s α tends to increase when the error correlation increases and when the degree of 
violation on the essential τ-equivalence increases; while it tends to decrease when the ratio of the 
true to error variance increases. 
 
Table 1: 6 items violate the τ-equivalence 

Ratio of True to Error Variance 
 

1:9 5:5 9:1 

loading 
change 

Corr. 
among 
Errors 

alpha-ρ SEM-ρ alpha-ρ SEM-ρ alpha-ρ SEM-ρ 

0 0.00 0.00 0.00 0.00 0.00 0.00 
0.2 0.18 -0.06 0.03 -0.02 0.00 0.00 1.0 

0.4 0.31 -0.09 0.06 -0.04 0.01 -0.01 
0 0.00 0.00 0.00 0.00 0.00 0.00 

0.2 0.20 -0.06 0.04 -0.03 0.01 -0.01 0.7 

0.4 0.34 -0.09 0.07 -0.05 0.01 -0.01 
0 0.00 0.00 0.00 0.00 -0.01 0.00 

0.2 0.23 -0.06 0.05 -0.03 0.01 -0.01 0.3 

0.4 0.38 -0.08 0.10 -0.06 0.02 -0.02 
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DISCUSSION 

When the assumptions of classical test theory are met coefficient α provides a good estimate of 
true reliability. When the assumptions are violated, in particular when errors are correlated in the 
way modeled in this study or τ-equivalence of items is violated with some items having 
relatively low loadings on true score, coefficient α can significantly overestimate reliability. 
SEM based reliability estimates also face bias problems, but to a much lesser degree. However, it 
is difficult and time-consuming to build an appropriate SEM model for the real data, and large 
sample size is often required for the maximum likelihood estimation method. It is suggested that 
researchers should calculate the reliability using both methods (if possible) and interpret the 
results with caution. Conditions in this study are very limited, and a more comprehensive 
simulation study is warranted in future. 
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