
1

Paper B07-2009

Eliminating Redundant Custom Formats (or How to Really

Take Advantage of Proc SQL, Proc Catalog, and the Data Step)

Philip A. Wright, University of Michigan, Ann Arbor, MI

ABSTRACT

Custom formats are an invaluable asset to the SAS programmer. Their functionality provides for much more than
simply a mechanism for explicitly labeling values in a dataset. There can be, however, a major limitation—the data
step can only accommodate 4,096 formats at a time. It is unlikely that a SAS programmer would generate this many
formats in code, but this is not the only method that generates formats. Proc Import and other third party data
conversion programs may well generate a distinct custom format for every variable in a data set, and data sets with
more than 4,096 variables are not uncommon. Oftentimes, however, these formats can be quite redundant—the
same coding scheme was used for many similar variables. Eliminating redundant custom formats may well get you
below the 4,096 limit. Proc SQL, Proc Catalog, and the Data Step are the tools that can be used to eliminate the
redundant formats.

INTRODUCTION

SAS formats are much more than value labels for variables in a dataset. Formats can be used to recode
variable values, used in lieu of table lookups, and even used to customize code at run time. Their widest use,
however, is to render values of dataset variables in a manner much more descriptive than the values
themselves. The use of formats is usually not problematic for smaller datasets but can be problematic when
datasets comprise 4,096 variables or more: Automated production routines and third party data conversion
programs often generate a distinct format, usually named after the variable itself, for every variable in the
dataset and, as there is a limit of 4,096 formats (hereafter termed the limit) specified when data step code and
other procedures (such as proc datasets) are compiled, exceeding the limit with larger datasets is comparatively
easy.

It is also fairly easy to designate the use of more than the limit in a large dataset by non-automated methods;
designating the use of more than the limited number of formats can be done with proc datasets as long you do
not designate more than the limit in each distinct procedure invocation. You will, however, quickly find out when
you are using a dataset with more than the limit—specifying a dataset that exceeds the formats limit will
generate the following error:

ERROR 81ERROR 81ERROR 81ERROR 81----59: Limit of 4096 formats or informats in use in a single step has been exceeded.59: Limit of 4096 formats or informats in use in a single step has been exceeded.59: Limit of 4096 formats or informats in use in a single step has been exceeded.59: Limit of 4096 formats or informats in use in a single step has been exceeded.

This error (as with all errors) will stop the data step in its tracks. Whereas setting ’options nofmterr;’ will

get you around not having the designated formats loaded in a formats catalog in the current fmtsearch path, it
will not get you around this error. One thing you can do is clear the format designations from the descriptor
portion of the dataset using proc datasets:

 proc datasets library = libname nolist ; modify memname ; format _ALL_ ; quit ;

The procedure, however, does not address the real problem—simply too many different formats specified for
use with the variables in the dataset. Oftentimes, however, some of these formats actually generate the same
rendered strings as other formats and are, therefore, redundant. This is especially true when the formats were
generated by an automated process or third party program. Eliminating redundant custom formats using a
series of proc SQL, proc datasets, proc catalog, and data steps has the potential to get below the format limit.

GENERATING A DATASET COMPRISED OF CUSTOM FORMAT DETAILS

Using a dataset with more than the limit of formats—any standard use of the dataset will generate the error
message. The formats catalog itself, however, is not restricted to the limit. We also want to be careful not to modify
either the original dataset or formats catalog and will instead use copies. The original dataset and formats catalog
should be saved in a permanent library before we work with copies in the WORK library.

Appendix C is a processing flow diagram of the following steps. Readers may want to make a hard copy of the
diagram as an aide in understanding the steps and tables of the processing described below.

2

Specifying the formats metadata
dataset as the left table in a left
join limits the metadata to only
the variables associated with the
custom formats.

1. Initialize the folder/directory containing the dataset and formats catalog as the permanent library ‘USER’:

libname USER 'D:\My Documents\My SAS Files' ;

In general, I will use libname and memname to designate each of the two-part dataset names.

2. Use proc SQL and the dictionary tables to generate datasets comprised of metadata and avoid the
‘ERROR 8ERROR 8ERROR 8ERROR 81111----59: Limit of59: Limit of59: Limit of59: Limit of............’’’’ message generated by the data step and other SAS procedures:

proc sql ;

* GENERATE DATASET COMPRISED OF FORMATS METADATA ;
create table
 work._variable_formats (index=(varname /unique))
as select
 name as varname label = 'Variable Name' format = $32.,
 compress(format,'.') as format label = 'Variable Format' format = $49.
from
 dictionary.columns
where
 (libname EQ 'USER')
 and (memtype EQ 'DATA')
 and (memname EQ 'MEMNAME')
 and (format is not missing)
;

* GENERATE DATASET COMPRISED OF DATASET VARIABLE METADATA ;
create table
 work._contents
as select
 columns.name label = 'Variable Name',
 columns.type label = 'Variable Type',
 columns.length label = 'Variable Length',
 columns.varnum label = 'Variable Number',
 columns.label label = 'Variable Label',
 upcase(formats.format) as format label = 'Variable Format' length=49
from
 dictionary.columns
 left join work._variable_formats formats on
 (columns.name EQ formats.varname)
where
 (libname EQ 'USER')
 and (memtype EQ 'DATA')
 and (memname EQ 'MEMNAME')
order by
 varnum
;

quit ;

3. We need to make sure we will be working with the formats we need to work with, but we also need to make
sure we do not change anything in the original formats catalog:

* COPY FORMATS CATALOG FROM PERMANENT LIBRARY TO WORK LIBRARY ;
options nonotes ;
proc catalog
 catalog = user.formats
;
copy out = work.formats ;
quit ;
options notes ;

(I turn off note logging temporarily so I do not get a list of all
the formats that get copied. You may wish to do otherwise)

3

4. One of the greatest assets of proc format is that it is able to generate a data set comprised of the detailed
information SAS uses to render detailed versions of the dataset values:

* GENERATE DATASET FROM FORMATS CATALOG ;
proc format
 library = work
 cntlout = work._formats_info (index = (fmtname) replace = yes)
;
quit ;

Appendix A contains a listing of _formats_info contents.

5. We then proceed to generate a dataset comprised of select metadata for only those dataset variables that
utilize the custom formats by again using the fmtname from the _formats_info dataset we just generated as
the left member of a left join:

* GENERATE DATASET COMPRISED OF VARIABLES WITH CUSTOM FORMATS ;
proc sql ;
create table
 work._custom_formatted_variables
as select distinct
 contents.varnum,
 contents.name as varname,
 formats.fmtname,
 formats.length
from
 work._formats_info formats
left join work._contents contents on
 (formats.fmtname EQ contents.format)
where
 (varname is not null)
 and (fmtname is not null)
order by
 varnum
;
quit ;

6. Now that we have our three primary datasets generated we are ready to begin generating unique keys. As
our goal is to eliminate duplicated formats, the keys will comprise the key elements of our formats. These
key elements may well vary depending upon the complexity of your formats. In general, however, the
values for the start, end, and label fields should be enough to generate a key string for each format. The
key strings are generated by simply appending the values of these fields first to one-another, and then
concatenating all the strings for each format:

* GENERATE DATASET OF CUSTOM FORMAT KEYS ;
data
 work._custom_format_keys (
 keep = fmtname custom_format_key string_length
 where = (not missing(custom_format_key))
)
;
set
 work._formats_info
;
by
 fmtname
;
attrib
 custom_format_key length = $ &MAX_STRING_LEN format = $CHAR1024.
 string_length length = 8 format = COMMA12.0
;
retain
 custom_format_key (' ')
 string_count (0)
;

4

continuing the generation of unique format keys:

custom_format_key =
 strip(custom_format_key)
 || strip(start)
 || strip(end)
 || strip(label)
;
if (last.fmtname)
then do ;
 string_count ++ 1 ;
 string_length = length(trim(left(custom_format_key))) ;
 if (string_length ge %eval(&max_string_len - 1))
 then put 'warning: potential string length overun: ' string_count= ;
 output ;
 custom_format_key = ' ' ;
end ;

This code currently maintains the case of the value labels in the custom_format_key strings. Users might
find more redundant formats should the labels be cast entirely to upper or lower case so as to eliminate any
differences in capitalization from what might otherwise be identical labels. The wrapping of the current
strip() functions and their arguments with either the upcase() or lowcase() function would

accomplish this.

7. Memory limitations of subsequent joins utilizing custom_format_key necessitates the ordering of the dataset
due the default length of the variable; subsequent joins utilizing fmtname then necessitate the use of an
index for fmtname:

proc sort
 data = work._custom_format_keys
 out = work._custom_format_keys (
 index = (fmtname)
)
;
by
 custom_format_key
;
run ;

8. Once we have a dataset comprised of custom format keys we can merge the keys back with the original
_formats_info dataset:

* AUGMENT FORMATS INFO WITH CUSTOM FORMAT KEYS ;
data
 work._formats_info
;
merge
 work._formats_info
 work._custom_format_keys (
 keep = fmtname custom_format_key
)
;
by
 fmtname
;
run ;

9. Now that each key is paired with an original custom format we can determine the frequency of each key
and, subsequently, how many times the metadata for each format has been duplicated:

* GENERATE CUSTOM FORMAT KEY FREQUENCIES DATASET ;
proc freq
 data = work._custom_format_keys
 noprint
;

5

continuing the generation of the custom format string frequencies dataset:

tables
 custom_format_key
 / nocol nocum nopercent norow out = work._format_string_frequencies (
 drop = percent
)
;
proc sort
 data = work._format_string_frequencies
;
by
 custom_format_key
;
run ;

10. We can now begin to bring together the metadata we need for both generating unique formats and link the
unique formats to the appropriate variables in the dataset:

* AUGMENT CUSTOM FORMAT KEYS WITH VARIABLE INFO ;
proc sql ;
alter table
 work._custom_format_keys
add
 varname char(32) label='Variable Name' format=$32.,
 varnum num(8) label='Variable Number'
;
update
 work._custom_format_keys keys
set
 varname = (
 select distinct name
 from work._contents contents
 where contents.format EQ keys.fmtname
),
 varnum = (
 select distinct varnum
 from work._contents contents
 where contents.format EQ keys.fmtname
)
;
run ;

11. Once we have joined the variable name and variable numbers to each appropriate format key we can
generate a dataset comprised of unique format keys:

* GENERATE DATASET OF UNIQUE FORMAT RECORDS ;
proc sort
 data=work._custom_format_keys
 force
;
by
 custom_format_key
 varname
;
data
 work._unique_format_records
;
set
 work._custom_format_keys
;
by
 custom_format_key
;
if (first.custom_format_key) then output ;
run ;

6

12. Now that we have a dataset comprised of records with unique format keys we can join it with the information
required to generate formats:

* GENERATE DATASET COMPRISED OF UNIQUE FORMATS INFO ;
proc sql ;
create table
 work._unique_formats_info
as select
 unique.varnum,
 unique.fmtname,
 formats.start,
 formats.end,
 formats.label,
 formats.type,
 formats.eexcl,
 formats.sexcl
from
 work._unique_format_records unique
 left join work._formats_info formats on (
 unique.fmtname EQ formats.fmtname
)
order by
 varnum,
 fmtname,
 start,
 end
;
quit ;

13. Remembering that we only want to change the temporary formats catalog in the WORK library and that we
do not want to duplicate any formats, we delete the current entries:

* GENERATE FORMATS CATALOG COMPRISED OF UNIQUE FORMATS ;
options nonotes ;
proc catalog
 catalog = work.formats
 kill
;
quit ;
options notes ;

14. We should now be ready to populate the temporary formats catalog with unique formats. As well as
generating a dataset comprised of format metadata, proc format is also able to generate formats from a
dataset comprised of format metadata--his time using the cntlin= option:

proc format
 library = work
 cntlin = work._unique_formats_info (drop = varnum) ;
;
quit ;

You can also generate proc format statements using the _unique_formats_info dataset should you need or
prefer to go that route. Appendix B contains data step code that will generate the statements.

15. Almost there! We now have unique formats in our formats catalog, but the dataset metadata is still
referencing the previous set of duplicated formats. We again use proc SQL to join the information we need
for variable-format pairs with the _custom_format_keys dataset:

* GENERATE DATASET COMPRISED OF NEW VARIABLE-FORMAT DESIGNATIONS ;
options
 ibufsize=32767
; * optimizes processing ;
proc sql ;
alter table
 work._custom_format_keys
add
 new_format char(49) label = 'New Format' format=$49.,
 type char(4) label = 'Variable Type' format=$4.
;

7

continuing generation of new variable-format designations:

update
 work._custom_format_keys keys
set
 new_format = (
 select fmtname
 from work._unique_format_records records
 where records.custom_format_key EQ keys.custom_format_key
),
 type = (
 select type
 from work._contents contents
 where contents.name EQ keys .varname
)
;
proc sort
 data = work._custom_format_keys
;
by
 new_format
 varnum
;
run ;

proc sql ;
create table
 work._new_variable_format_pairs
as select distinct
 varnum,
 varname,
 type,
 new_format
from
 work._custom_format_keys
order by
 varnum
;
quit ;

16. We finally use some macro code to export strings comprised of the new variable-format pairs to indexed
macro variables, invoke proc datasets, and re-specify the variable formats specified in our copied,
temporary dataset:

%macro reset_format_specifications() ;

 %local _i ;

 * EXPORT VARIABLE-FORMAT PAIRS TO INDEXED MACRO VARIABLES ;
 data
 null
 ;
 set
 work._new_variable_format_pairs
 end = last_observation
 ;
 if (type EQ 'num') then new_format = strip(new_format) || '.' ;
 else new_format = '$' || strip(new_format) || '.' ;

 call symput('_varname_' || strip(put(_N_,4.0)), strip(varname)) ;
 call symput('_format_' || strip(put(_N_,4.0)), strip(new_format)) ;
 if (last_observation) then call symput('_pairs_n', strip(put(_N_,4.0))) ;
 run ;

8

continuing preparing for the generation of dataset with new variable-format designations:

 proc copy
 in = user
 out = work
 ;
 select
 memname
 ;
 run ;

* GENERATE DATASET WITH NEW VARIABLE-FORMAT DESIGNATIONS ;
 proc datasets
 library = work
 nolist
 ;
 modify
 memname
 ;
 format
 %do _i = 1 %to &_PAIRS_N ;
 &&_VARNAME_&_I &&_FORMAT_&_I
 %end ;
 ;
 run ;
 quit ;

%mend reset_format_specifications ;

%reset_format_specifications() ;

Macro coding is outside the scope of this paper but a plethora of examples and papers can be downloaded from
SAS’ support web site: http://support.sas.com

Technically, we are now done eliminating redundant formats and resetting the formats specified for the variables in
the dataset. Practically, however, we really should check our work.

1. We again use proc SQL to both avoid the error message and extract the names and formats from both the
original dataset in the USER library and the modified dataset in the WORK library:

* GENRATE VARIABLE-FORMAT PAIR DATASETS FOR SUBSEQUENT COMPARISON WITH PROC
SQL ;
proc sql ;

* GENERATE VARIABLE-FORMAT PAIR DATASET FROM USER LIBRARY DATASET ;
create table
 work._user_ds_contents
as select
 name,
 format
from
 dictionary.columns
where
 (libname = 'USER')
 and (memtype = 'DATA')
 and (memname = 'MEMNAME')
order by
 name
;
quit ;

This macro code issues

distinct variable-format

pairs to the SAS Processor

9

continuing generation of select dataset metadata for subsequent comparison:

* GENERATE VARIABLE-FORMAT PAIR DATASET FROM WORK LIBRARY DATASET ;
proc sql ;
create table
 work._work_ds_contents
as select
 name,
 format
from
 dictionary.columns
where
 (libname = 'WORK')
 and (memtype = 'DATA')
 and (memname = 'MEMNAME')
order by
 name
;
quit ;

2. Finally, we make a comparatively quick and painless call to proc compare:

* COMPARE VARIBLE-FORMAT PAIR DATASETS ;
options pageno = 1 ;
proc compare
 base = work._user_ds_contents
 comp = work._work_ds_contents
 maxprint = 32767
 note
;
id name ;
run ;

PROC COMPARE listing output:

 The COMPARE Procedure

 Comparison of WORK._USER_DS_CONTENTS with WORK._WORK_DS_CONTENTS

 (Method=EXACT)

 Data Set Summary

Dataset Created Modified NVar NObs

WORK._USER_DS_CONTENTS 12AUG09:08:58:08 12AUG09:08:58:08 2 4661

WORK._WORK_DS_CONTENTS 12AUG09:08:58:08 12AUG09:08:58:08 2 4661

 Variables Summary

 Number of Variables in Common: 2.

 Number of ID Variables: 1.

 Observation Summary

 Observation Base Compare ID

 First Obs 1 1 name=ABORT12

 First Unequal 1 1 name=ABORT12

 Last Unequal 4661 4661 name=Y_CHAN11

 Last Obs 4661 4661 name=Y_CHAN11

Everything looks good—nice and equal

The datasets
have only two
variables and one
of them is used
as an ID variable!

10

PROC COMPARE listing output (continued):

 Number of Observations in Common: 4661.

 Total Number of Observations Read from WORK._USER_DS_CONTENTS: 4661.

 Total Number of Observations Read from WORK._WORK_DS_CONTENTS: 4661.

 Number of Observations with Some Compared Variables Unequal: 4310.

 Number of Observations with All Compared Variables Equal: 351.

 Values Comparison Summary

 Number of Variables Compared with All Observations Equal: 0.

 Number of Variables Compared with Some Observations Unequal: 1.

 Total Number of Values which Compare Unequal: 4310.

 All Variables Compared have Unequal Values

 Variable Type Len Label Ndif MaxDif

 format CHAR 49 Column Format 4310

 Value Comparison Results for Variables

__

 || Column Format

 || Base Value Compare Value

 name || format format

 ____________________ || ___________________+ ___________________+

 ||

 ADADREMQ || ADADREMQ. ABORT12F.

 ADPTOT00 || ADPTOT0F. ABORT12F.

 ADPTOT01 || ADPTOT1F. ABORT12F.

 ADPTOT02 || ADPTOT2F. ABORT12F.

 ADPTOT03 || ADPTOT3F. ABORT12F.

.

.

.

If everything checks out, you should now be ready to finish by copying the revised dataset and formats catalog from
your WORK library to a library dedicated to the permanent storage of the revised SAS files:

libname REVISED 'D:\My Documents\My SAS Files\Revised' ;

proc copy
 in = work
 out = revised
;
select
 memname
 formats
;
run ;

again; nice and equal

just as they should be

reasonable counts

names of
redundant formats

names of
distinct formats

11

CONCLUSION

Even though there is a limit of 4,096 formats and it can be easy to exceed this limit with datasets comprising more
than this number of variables, it is also possible to eliminate redundant custom formats and re-associate the
variables with a collapsed set of custom formats. As with most things SAS, the preceding method is not necessarily
the only method of eliminating redundant custom formats. This method does, however, highlight the use of proc
SQL to gain access to the metadata of datasets whose use of more than the formats limit would generate an error
when used with the data step and other SAS procedures. In addition, standard SQL routines can be used to identify
and eliminate redundant formats when based on keys generated from select format metadata variables generated by
proc format. The data step and proc datasets, when used with the smaller metadata datasets, generate the
intermediate datasets utilized by proc SQL. Both proc catalog and proc datasets are used to manage the
processing.

There are a couple of steps the author would like to add should he ever find the time: The generation of a recursive
macro that will determine the least number of format metadata fields required to generate unique keys; the
generation of a macro that will generate versions of both the pre- and post-processed datasets (or sub-sampled
datasets) comprised of only formatted values for subsequent comparison; and the generation of a macro that will
recast labels to appropriate upper-lower case strings based on standard labeling conventions.

REFERENCES

• Bilenas, Jonas V (2008), “I Can Do That With PROC FORMAT,” Proceedings of SAS Global Forum 2008.
http://www2.sas.com/proceedings/forum2008/174-2008.pdf

• Carpenter, Arthur L. (2004), “Building and Using User Defined Formats,” Proceedings of the 29
th
 annual SAS

Users Group Conference.
http://www2.sas.com/proceedings/sugi29/236-29.pdf

• Karp, Andrew H. (2005) “My Friend the SAS Format,” Proceedings of the 30
th
 annual SAS Users Group

Conference.
http://www2.sas.com/proceedings/sugi30/253-30.pdf

• Lund, Pete (2001), “More than Just Value: A Look into the Depths of PROC FORMAT,” Proceedings of the 26
th

SAS Users Group Conference.
http://www2.sas.com/proceedings/sugi26/p018-26.pdf

• Patton, Nancy K. (1998) “In & Out of CNTL with PROC FORMAT,” Proceedings of the 23
rd
 annual SAS Users

Group Conference.
http://www2.sas.com/proceedings/sugi23/Coders/p68.pdf

• Shoemaker, Jack (2001) “Eight PROC FORMAT Gems,” Proceedings of the 26
th
 annual SAS Users Group

Conference.
http://www2.sas.com/proceedings/sugi26/p062-26.pdf

ACKNOWLEDGMENTS

I would like to thank Rick Langston for his encouragement of my production of this paper, the staff of ICPSR for their
support, and the participants in the Michigan SAS Users group for their encouragement and suggestions.

12

ABOUT THE AUTHOR

Phil Wright graduated from the University of Michigan in 1986 with a Bachelors degree in Psychology. He first sat
down in front of a PC when his first research project purchased their first PC and asked him to learn their word
processing application (FinalWord) and then teach it to the rest of the staff. He has been in front of a PC ever since.
Phil has been using SAS for over 15 years; specializing in the conversion of legacy data files, data management,
reporting, proc SQL, ODS, and Macro programming.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Philip A. Wright
Enterprise: Inter-university Consortium for Political and Social Research (ICPSR),
 The Institute for Social Research (ISR),
 University of Michigan
Address: P.O. Box 1248
City, State ZIP: Ann Arbor, Michigan 48106-1248
Work Phone: 734-615-7886
Fax: 734-647-8200
E-mail: pawright@umich.edu
Web: http://www.icpsr.umich.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

13

APPENDIX A:

Listing of Formats Dataset Metadata

Variables in Creation Order

Variable Type Len Label

1 FMTNAME Char 32 Format name

2 START Char 16 Starting value for format

3 END Char 16 Ending value for format

4 LABEL Char 64 Format value label

5 MIN Num 3 Minimum length

6 MAX Num 3 Maximum length

7 DEFAULT Num 3 Default length

8 LENGTH Num 3 Format length

9 FUZZ Num 8 Fuzz value

10 PREFIX Char 2 Prefix characters

11 MULT Num 8 Multiplier

12 FILL Char 1 Fill character

13 NOEDIT Num 3 Is picture string noedit?

14 TYPE Char 1 Type of format

15 SEXCL Char 1 Start exclusion

16 EEXCL Char 1 End exclusion

17 HLO Char 11 Additional information

18 DECSEP Char 1 Decimal separator

19 DIG3SEP Char 1 Three-digit separator

20 DATATYPE Char 8 Date/time/datetime?

21 LANGUAGE Char 8 Language for date strings

14

APPENDIX B:

Data step code that generates proc format statements

* GENERATE NEW PROC FORMAT STATEMENTS ;
data
 NULL
;
set
 work._unique_formats_info
 end = last_observation
;
by
 varnum
 fmtname
;
file
 'new_proc_format_statements.sas'
;
if (_N_ EQ 1) then put @1 'PROC FORMAT ;' ;
fmtname_len = length(strip(fmtname)) ;
start = strip(start) ;
start_len = length(strip(start)) ;
end = strip(end) ;
end_len = length(strip(end)) ;
label = tranwrd(tranwrd(label, "'", "''"), "'''", "''") ;
label_len = length(strip(label)) ;
select(type) ;
 when('N') do ;
 if (first.fmtname) then put @4 'value ' fmtname $VARYING. fmtname_len ;
 if (start EQ end) then put @7 start $VARYING. start_len " = '" label $VARYING.
label_len "'" ;
 else put @7 start $VARYING. start_len '-' end $VARYING. end_len " = '" label
$VARYING. label_len "'" ;
 if (last.fmtname) then put @4 ';' ;
 end ;
 when('C') do ;
 if (first.fmtname) then put @4 'value $ ' fmtname $VARYING. fmtname_len ;
 if (start EQ end) then put @7 "'" start $VARYING. start_len "' = '" label
$VARYING. label_len "'" ;
 else put @7 "'" start $VARYING. start_len "'-'" end $VARYING. end_len "' = '"
label $VARYING. label_len "'" ;
 if (last.fmtname) then put @4 ';' ;
 end ;
 otherwise error 'ERROR: NO FORMAT RECORD GENERATED' _N_= ;
end ; * select(type) ;
if (last_observation) then put @1 'QUIT ;' ;
run ;

* GENERATE NEW FORMAT ASSIGNMENT STATEMENTS ;
data
 NULL
;
set
 work._custom_format_keys
 end = last_observation
;
by
 new_format
;
file
 'new_format_assignments.sas'
;
if (_N_ EQ 1) then put @1 'FORMAT' ;

15

Data step code that generates proc format statements (appendix B continued)

varname_len = length(strip(varname)) ;
put @4 varname $VARYING. varname_len ;
if (last.new_format)
then do ;
 new_format_len = length(strip(new_format)) ;
 select(type) ;
 when ('num') put @7 new_format $VARYING. new_format_len '.' ;
 when ('char') put @7 '$' new_format $VARYING. new_format_len '.' ;
 otherwise error 'ERROR: NO FORMAT ASSIGNED' _N_= ;
 end ; * select(type) ;

end ;
if (last_observation) then put @1 ';' ;
run ;

16

APPENDIX C:

Elimination of Redundant Formats Processing Flow Diagram (page 1 of 3)

17

Elimination of Redundant Formats Processing Flow Diagram (continued – page 2 of 3)

18

Elimination of Redundant Formats Processing Flow Diagram (continued – page 3 of 3)

