
 1

Paper B03-2009

Handy Procedures to Expand Your Analytics Skill Set

Mary MacDougall, National City, now part of PNC, Cleveland, OH

ABSTRACT

A good handyman can accomplish a lot with a general-purpose tool like a hammer or screw driver, but for some
projects, it’s critical to have a special-purpose tool like a pipe wrench in your tool box. PROC REPORT is great for
everyday reporting tasks, but a senior analyst should also be familiar with procedures that are effective for specific
data preparation and analysis tasks. This paper gives an introduction to my favorite Base SAS and SAS/Stat
procedures: UNIVARIATE, RANK, TRANSPOSE, FORMAT, and SURVEYSELECT, with examples from the field of
direct marketing. So the next time you need to Decile, Flatten, Bin, Sample, or Check for Outliers, you will know
which Proc to start with.

INTRODUCTION

Sometimes changes in data sources or business requirements make it necessary to cobble together a temporary
solution. And when a new, urgent requirement comes up in the middle of a project, it is tempting to dive in and start
developing a custom program using a DATA step, a PROC SQL query or macro language. However, if you take a
minute to search the documentation, you often find that the good people at SAS have anticipated your needs and
built a function or procedure that can be adapted to solve the problem.

In fact, every general analyst should be familiar with some special-purpose procedures. You may not use these
analytic tools every day, but if you know their names and basic functionality, you will be glad you have them in your
toolbox when the need arises.

CASE STUDY

In the following scenarios, you are an analyst in the marketing department of a retailer that has recently acquired a
wholesale business. Some preliminary reports summarizing the acquired company’s historical sales data were
distributed to senior management yesterday. And today, your inbox is full of e-mails:

1. Sales manager: The average sales per customer metric seems too high. Why?

2. Campaign manager: For the acquired company’s last campaign, what was the response rate for the contact
group compared to the holdout group?

3. Marketing Research manager: Pull a random sample of customers for a focus group…

4. Call Center manager: We want to make welcome calls to our best customers. Pull the top two deciles by
dollar sales . . .

5. Regional manager: Run a report for my region showing unit sales metrics by percentile.

Before you open a new SAS session and start writing DATA step code to answer these business questions, let me
introduce you to a few of my favorite procedures.

PROC UNIVARIATE: CHECK FOR OUTLIERS

Sales manager: The average sales per customer seems too high. Why?

When a business partner asks for a specific metric, it is important to understand the business question that
prompted the request. For example, when someone asks for an average, they may not want the statistical mean of
a specific sample. They may really be asking, “What is a typical value in this case?” If some records contain
extreme values, these outliers may cause the mean to be much higher or lower than the median. In that case, it
might be more helpful to report the median value. Or you could choose to exclude outliers, or cap the extreme
values so they have less influence on the mean. Another approach would be to include the outliers in the analysis,
but make sure your audience is informed about the extreme value’s influence on the mean.

Before you can advise which approach to use, you need to understand how the values in your data are distributed.
This would be a good time to pull the UNIVARIATE procedure out of your SAS/Stat toolbox.

 2

Why is the average sales per customer metric higher than expected? To answer this question, you need to
understand the distribution of sales data. PROC UNIVARIATE can tell you if the distribution is symmetric, with an
equal number of observations having values above and below the mean. Or, as is common when dealing with
subject areas like transaction counts, sales volumes, or other behavioral data, your values may be skewed to the
right with long tails.

If you want to check for extreme values, PROC UNIVARIATE provides a quick snapshot of the highest and lowest
values. PROC UNIVARIATE produces many tables and statistics, but for this example we will start by using Output
Delivery System (ODS) to select only the ExtremeObs table of the UNIVARIATE output. A full listing of UNIVARIATE
Procedure ODS table names is available in the Base SAS Procedures Guide.

The variable we are interested in is Revenue from the CustSales data set. We use the NEXTROBS option to
request the top 10 and bottom 10 observations. In addition to the value of Revenue and the observation number for
each record, we want to see the fields CustID, Segment, and SalesRep.

ods select ExtremeObs;
proc univariate data = CustSales nextrobs = 10;
 var Revenue;
 id CustID Segment SalesRep;
run;

The output lists the customer records with the lowest and highest revenue.

The UNIVARIATE Procedure

Variable: Revenue

 Extreme Observations

-------------------------Lowest------------------------

 Sales

 Value CustID Segment Rep Obs

 0.0001 8632 RESIDENTIAL PATEL 367600

 0.0001 4434 RESIDENTIAL ANDREW 367593

 0.0001 9182 RESIDENTIAL PATEL 367556

 0.0001 8672 RESIDENTIAL PATEL 367469

 0.0001 5385 RESIDENTIAL PATEL 367452

 0.0001 6160 RESIDENTIAL PATEL 367383

 0.0001 5557 RESIDENTIAL PATEL 367282

 0.0001 6172 RESIDENTIAL PATEL 367177

 0.0001 5707 RESIDENTIAL PATEL 367155

 0.0001 2840 RESIDENTIAL ANDREW 367121

 Extreme Observations

-------------------------Highest------------------------

 Sales

 Value CustID Segment Rep Obs

 743777 6086 INDUSTRIAL DONALD 26971

 749540 1016 INDUSTRIAL DONALD 9784

 759564 2815 INDUSTRIAL DONALD 48096

 763003 0994 INDUSTRIAL DONALD 117003

 863751 6192 INDUSTRIAL DONALD 33274

 901870 9011 INDUSTRIAL DONALD 10175

 1207751 1004 INDUSTRIAL DONALD 132401

 1262649 4696 INDUSTRIAL DONALD 57407

 1558638 5705 INDUSTRIAL DONALD 40819

 1940855 0443 INDUSTRIAL DONALD 9726

A look at the extreme values suggests your data may have some outliers skewing the distribution to the right. You
also notice that customers with the highest sales amounts are in the “Industrial” segment, so you investigate further
by sorting the data and rerunning the procedure with a BY statement, requesting only the mean and median
statistics.

proc sort data=CustSales;
 by Segment;
run;

Figure 1. UNIVARIATE procedure: ExtremeObs output

 3

proc univariate data = CustSales noprint;
 by Segment;
 var Revenue;
 output out= Stats n=Customers mean=MeanRevenue median=MedianRevenue;
run;

The output data set shows that the Industrial segment has much higher average and median revenue than the
Residential segment.

Stats

 Mean Median

 Segment Customers Revenue Revenue

INDUSTRIAL 7641 10149.38 1406.95

RESIDENTIAL 360093 358.53 47.07

A picture is worth a thousand words, so why not look at a graphical comparison of the distributions? With a simple
change to your ODS SELECT statement and the addition of the PLOT option, you can request side-by-side box plots
for your BY groups:

ods select SSplots;
proc univariate data = CustSales plot;
 by Segment;
 var Revenue;
run;

The procedure creates this line printer graphic.

The UNIVARIATE Procedure

Variable: Revenue

Schematic Plots

 |

 2000000 + *

 |

 |

 |

 1500000 + *

 |

 | *

 |

 1000000 +

 | *

 | *

 | *

 500000 + *

 | * *

 | * *

 | * *

 0 + *--0--* *--0--*

 ------------+-----------+-----------

 Segment INDUSTRI RESIDENT

After seeing the side by side plots, the Sales manager agrees that, because of the recent acquisition of several large
Industrial customers, the average of the entire customer population is no longer a useful metric, and sales averages
for the Residential and Industrial customer segments should now be reported separately.

Figure 2. UNIVARIATE procedure: Selected Statistics with BY Group output

Figure 3. UNIVARIATE procedure: SSplot output

 4

PROC TRANSPOSE: FLATTEN IT

Campaign manager: For the acquired company’s last campaign, what was the response rate for the contact group
compared to the holdout group?

It is often necessary to prepare the source data to suit the analytic method you have chosen. To flatten a detail data
set, you can use PROC SUMMARY or PROC SQL with a GROUP BY clause to aggregate numeric values. But what
if you do not want values to be aggregated; you just want to transpose records and columns, turning a data set with
many records and a few fields into a set with fewer records and many fields? You could write complicated DATA
step logic to create new fields, but why not use PROC TRANSPOSE to produce the flattened data set structure you
need?

In this example, we are analyzing the results of a direct mail campaign. The response data is summarized by
Propensity, Month and Group. Propensity is the customer’s relative likelihood to respond, according to a propensity-
to-buy model. Group identifies whether the customer received direct mail contacts was assigned to the group that
was held out as a control. Month is number of months since the customer was first contacted.

Response

Propensity Month Group CustCount CumResp CummRespPct

HIGH 1 CONTACT 707 11 0.01556

HIGH 1 HOLDOUT 4038 23 0.00570

HIGH 2 CONTACT 707 17 0.02405

HIGH 2 HOLDOUT 4038 53 0.01313

HIGH 3 CONTACT 707 24 0.03395

HIGH 3 HOLDOUT 4038 85 0.02105

MED 1 CONTACT 1639 53 0.03234

MED 1 HOLDOUT 11486 143 0.01245

MED 2 CONTACT 1639 75 0.04576

MED 2 HOLDOUT 11486 357 0.03108

MED 3 CONTACT 1639 113 0.06894

MED 3 HOLDOUT 11486 651 0.05668

The Response data set contains the data we need, but to complete the analysis, we want to flatten the set see the
Contact and Holdout groups’ response metrics, side by side for each month.

In this example, we transpose CummRespPct, which contains the response metric. To group the transposed data by
Propensity and Month, we put those fields in the BY statement. Note that the source data set was already in the
correct order so no additional sorting was needed. The ID statement specifies that Group contains the values to use
to name the new fields when CummRespPct is transposed. The TRANSPOSE procedure automatically creates the
NAME field to show which field was transposed. In this simple example, we do not need that field, so we use a
data set option to drop it from the output data set.

proc transpose data = response out = bymonth (drop=_name_);
 by Propensity Month;
 id Group;
 var CummRespPct ;
run;

ByMonth

Propensity Month CONTACT HOLDOUT

HIGH 1 0.01556 0.00570

HIGH 2 0.02405 0.01313

HIGH 3 0.03395 0.02105

MED 1 0.03234 0.01245

MED 2 0.04576 0.03108

MED 3 0.06894 0.05668

The output dataset now has two new fields called Contact and Holdout that contain the cumulative response rates by
Propensity and Month.

Figure 4. Response data before TRANSPOSE procedure

Figure 5. Response data after TRANSPOSE procedure

 5

PROC SURVEYSELECT: SAMPLE IT

Marketing Research manager: Pull 12 online customers for a focus group.

If you need to select a random sample from a data set, you could build a DATA step solution using the RANUNI
random-number function. But there is no need to reinvent the statistical wheel. If you have SAS/Stat, the
SURVEYSELECT procedure provides an easy way to do simple random sampling and more complex sampling
tasks, like stratified sampling or weighted sampling.

In this example, the SalesHist data set contains a list of customers and data about their purchasing behavior. We
use a WHERE clause to select only those customers who have an account through the company’s online store. The
option METHOD=SRS requests a simple random sample. The request is for 12 names, so we set N=12.

proc surveyselect data=sales_hist (where=(online_cust = 1)) method=srs n=12
 out = Focus_list_simple;
run;

The output data set contains a list of twelve customers, selected randomly from the set of online customers.

Focus_list_simple

 Cust Total Website

Obs ID Segment Revenue Visits

 1 2440 RESIDENTIAL 9.06 5

 2 0176 RESIDENTIAL 15.37 3

 3 2535 RESIDENTIAL 2.49 6

 4 9364 RESIDENTIAL 1070.01 0

 5 5393 RESIDENTIAL 479.13 4

 6 4901 RESIDENTIAL 44.35 8

 7 7470 RESIDENTIAL 0.07 16

 8 1685 RESIDENTIAL 2.10 2

 9 8330 RESIDENTIAL 98.10 11

 10 2480 RESIDENTIAL 0.45 0

 11 6390 RESIDENTIAL 113.93 5

 12 4977 RESIDENTIAL 26.60 32

When you present the list, the Research manager thanks you for your quick response and asks if it would be
possible to, “Weight the sample so frequent website users are more likely to be selected.” With PROC
SURVEYSELECT, you can answer this new request with only a few code changes.

The option METHOD=PPS_SYS requests that units, in this case customers, are selected by systematic random
sampling with probability proportional to size, and the SIZE statement specifies that the probability will be weighted
by the value of WebsiteVisits. So, as requested, frequent website users will be more likely to be included in the
focus group.

proc surveyselect data=sales_hist (where=(online_cust = 1)) method=pps_sys n=12
 out = Focus_list_weighted;
 size WebsiteVisits;
run;

The result is a new sample of twelve customers. Since we used a sampling method with replacement, the output
includes ExpectedHits, which indicates the expected number of selections. SamplingWeight is the inverse of
ExpectedHits. The example output shows that customers with more website visits had a higher number of expected
hits.

Figure 6. SURVEYSELECT with METHOD=SRS output

 6

Focus_list_weighted

 Cust Website Number Expected Sampling

Obs ID Visits Hits Hits Weight

 1 8126 192 1 .000064847 15420.84

 2 3374 321 1 .000108417 9223.68

 3 9565 504 1 .000170224 5874.61

 4 7441 410 1 .000138476 7221.47

 5 5075 223 1 .000075317 13277.14

 6 2695 190 1 .000064172 15583.17

 7 2554 304 1 .000102675 9739.48

 8 8012 430 1 .000145231 6885.59

 9 1371 71 1 .000023980 41701.43

 10 4901 56 1 .000018914 52871.46

 11 5667 68 1 .000022967 43541.20

 12 1226 21 1 .000007093 140990.56

In addition to simple random sampling and sampling with proportional probability, PROC SURVEYSELECT offers
many other methods, including METHOD=SYS for stratified random samples.

PROC RANK: DECILE IT

Call Center manager: We want to make welcome calls to our best customers. Pull the top two deciles by dollar
sales . . .

To answer this request, you could build a custom solution that involves sorting and counting records in a DATA step.
But instead, when you need percentiles, think of using “PROC RANK with Groups = 100”. For deciles, think “PROC
RANK with Groups = 10”; for quartiles, think “PROC RANK with Groups = 4”, and so on.

The code to answer the campaign manager’s request for a list of customers in the top two deciles (20%) by sales
revenue would look like this:

proc rank data = CustSales groups = 10 out = deciles;
 var Revenue;
 ranks RevDecile;
run;

PROC RANK will output a data set called Deciles that will list all customers. The customers with the lowest Revenue
value will have RevDecile set to 0 and those with highest Revenue will have RevDecile = 9. If you prefer to have the
values ranked from largest to smallest, add the DESCENDING option to the RANK statement.

To select only the top two deciles, you could add a where clause to filter which records will be loaded to the output
data set.

proc rank data = CustSales groups = 10 out = deciles (where = (RevDecile >= 8));
 var Revenue;
 ranks RevDecile;
run;

Deciles

 Prod Cust Sales Rev

 Segment Revenue Period Line ID Rep Decile

INDUSTRIAL 12048.01 YTD200908 CUSTOM 8180 DONALD 8

INDUSTRIAL 29567.69 YTD200908 CUSTOM 4847 DONALD 9

INDUSTRIAL 12826.83 YTD200908 CUSTOM 3604 DONALD 8

INDUSTRIAL 74870.10 YTD200908 CUSTOM 9431 DONALD 9

INDUSTRIAL 570396.18 YTD200908 CUSTOM 7842 DONALD 9

INDUSTRIAL 12791.00 YTD200908 CUSTOM 6525 DONALD 8

INDUSTRIAL 13572.88 YTD200908 CUSTOM 8702 DONALD 8

 { { { { { { {

Figure 8. RANK procedure: Top 2 deciles output

Figure 7. SURVEYSELECT with METHOD=PPS_SYS output

 7

Regional manager: Run a report for my region showing total, average, minimum and maximum unit sales, for each
percentile grouping.

You can also use PROC RANK with PROC SUMMARY to produce the summary report requested by the Regional
manager. This time we need percentile ranks based on Unit sales, so we set GROUPS = 100, and the variable to be
ranked is Units.

proc rank data = CustSales groups = 100 out = Percentiles;
 where Region = ‘NORTH’;
 var Units;
 ranks UnitSalesPctl;
run;

The result of this procedure is a list of customers with the RANKS variable UnitSalesPctl having values from 0 to 99.
This RANKS variable will be the CLASS variable in the PROC SUMMARY step. In the OUTPUT statement, we ask
for the statistics Sum, Mean, Min and Max.

proc summary data=percentiles nway;
 where Region = ‘NORTH’;
 class UnitSalesPctl;
 var units;
 output out=Percentile_Summary (drop=_type_ rename=(_freq_=Customers))
 sum=Units mean=Average min=Minimum max=Maximum ;
run;

Percentile_Summary

Unit

Sales

Pctl Customers Units Average Minimum Maximum

 0 1325 16,545 12 1 22

 1 1325 42,713 32 22 43

 2 1326 73,760 56 43 69

 3 1325 113,351 86 70 100

 4 1326 154,835 117 100 135

 { { { { { {

 95 1326 453,584,591 342,070 318,814 368,951

 96 1325 531,482,477 401,119 368,954 438,036

 97 1326 642,524,233 484,558 438,095 534,203

 98 1325 838,202,232 632,605 534,532 759,970

 99 1325 1,592,194,657 1,201,656 760,355 12,521,934

The resulting data set contains the requested metrics for customers by percentile grouping.

PROC FORMAT: BIN IT

Soon after presenting the Percentile Summary report, you receive a follow-up request from the Regional manager:

“Provide a summary report showing the same metrics, but instead of percentiles, group customers according to our
new tier scheme ...”

To answer this request for custom groupings, you could write a DATA step with IF-THEN-ELSE statements to create
a new field, and then use that as the CLASS variable in your PROC SUMMARY. But you can save some time and
typing if you use a custom SAS format to group the data into categories or bins while summarizing the metrics.

The FORMAT procedure is commonly used to create custom SAS formats that improve the appearance of output,
and custom formats are also an efficient way to bin values. By using a FORMAT statement to associate a variable
with a custom format, you can group data in different ways without having to create a new data set.

This example uses the Percentiles data set created by PROC RANK in the preceding example. PROC FORMAT
creates a custom format called Tiers. that groups percentile values from 0 to 99 into the customer tiers requested by
the Regional manager.

Figure 9. SUMMARY procedure using percentile values as class variable

 8

proc format;
 value tiers
 0 - 1 = '1. Platinum'
 2 - 9 = '2. Gold '
 10 - 24 = '3. Silver '
 25 - 49 = '4. Bronze '
 50 - 99 = '5. Green ' ;
run;

proc summary data=percentiles nway order=formatted;
 class UnitSalesPctl;
 var units;
 output out=TierSummary (drop=_type_ rename=(_freq_=Customers))
 sum=Units mean=Average min=Minimum max=Maximum ;
 format UnitSalesPctl tiers.;
run;

With only a few changes to the PROC SUMMARY code from the previous example, we have a data set with metrics
summarized by tier. UnitSalesPctl is still the CLASS variable. The main change is that the FORMAT statement now
specifies that UnitSalesPctl will be formatted with the Tiers. format. We also added an ORDER=FORMATTED
option to the SUMMARY statement so the output will be sorted according to their formatted values of the CLASS
variable.

Tier_Summary

Unit Sales

Pctl Customers Units Average Minimum Maximum

1. Platinum 2650 59,257 22 1 43

2. Gold 10608 2,053,511 194 43 400

3. Silver 19876 24,124,049 1,214 400 2,437

4. Bronze 33136 232,711,321 7,023 2,438 14,432

5. Green 66270 9,049,256,924 136,551 14,433 12,521,934

Using a custom format has the advantage of being a modular approach that is easily documented and maintained. If
your company adopts this tier scheme as a standard way to categorize customers, the PROC FORMAT step could
be moved into a separate program that creates a permanent format in your company’s custom format library. Then if
the tier groupings are ever modified, for example to add a “Diamond” tier, the format can be updated without having
to modify the report code.

CONCLUSION

Someday computers will be able to provide answers to our most complex business questions at the click of a mouse.
Until then, it will be the analyst’s job to interpret the question, decide on an analytic approach and translate that
approach into steps a computer can process. While there are many ways to write custom solutions using SAS, an
experienced analyst should be familiar with special-purpose procedures that can reduce the need for custom coding,
testing and documentation. This paper introduced five procedures that are handy when you need to Flatten,
Sample, Decile, Bin, or Check for Outliers. Explore the online documentation and discussion forums to find more
examples, and continue to expand your own analytics skill set.

REFERENCES

Derby, Nathaniel. 2009. “A Little Stats Won’t Hurt You.” Proceedings of SAS Global Forum 2009. Cary, NC: SAS
Institute Inc.

SAS Institute. 2008. “Base SAS 9.1.3 Procedures Guide.” SAS OnlineDoc® 9.1.3, Cary, NC: SAS Institute Inc.
http://support.sas.com/onlinedoc/913/.

Svolba, Gerhard. 2006. Data Preparation for Analytics Using SAS

®
. Cary, NC: SAS Institute Inc.

ACKNOWLEDGMENTS

The author would like to thank her colleague Mary Kay Curtis, for introducing her to the technique of using custom
formats to bin values.

Figure 10. SUMMARY procedure using custom-formatted class variable

 9

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Mary MacDougall
National City, now part of PNC
32000 Mill Creek Blvd.
Highland Hills, OH 44122
216.488.7608
mary.macdougall@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

