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ABSTRACT 
Background: Life and death may be on the line for patients visiting an emergency department (ED). The 
time it takes a patient to see a doctor can be critical. This is made more difficult by the fact that waiting 
times have been increasing over the past ten years [2]. Objective: We would like to determine what 
factors impact the current waiting in emergency departments through the use of Enterprise Guide®. 
Methods: We are using survey data from the 2006 Ambulatory Health Care Data survey [1] conducted by 
the National Center for Health Statistics (NCHS) containing about 36,000 data records. We used linear 
regression to model our data with the help of the PROC GLM function. Results: We found that self 
reported pain levels did not correlate with waiting time, but that ED prioritization, time of day of visit, 
arrival by ambulance and previous waiting times from the same emergency department correlated with 
waiting time. 

INTRODUCTION 
A study by Nawar et al. [2] shows that from 1995-2005, emergency department visits have increase from 
an estimated 96.5 million in 1995 to 115.3 million. This represents a 31 percent increase in visits. In 
addition, the number of EDs has decreased during that same period of time from 4,176 to 3,795. Certainly 
this is going to have an adverse affect on the waiting time of a patient in the ED. Unfortunately, a 
comparison cannot be made between waiting times during this period. Waiting times in the survey used 
were capped through 2004, but are no longer capped. 
 
In this study, we seek to identify those factors that most impact modern day waiting times. Specifically, we 
attempt to predict a patient’s waiting time based on factors known at the time of their arrival. 

METHODS GIVE A REFERENCE TO THE NHAMCS 
In this study, we use data collected from 360 EDs in the National Hospital Ambulatory Medical Care 
Survey (NHAMCS) [1] for the year 2006. There are 35,849 patients recorded in this sample. Of those, 
only 28,391 had known waiting times. We used SAS Enterprise Guide to process and model the data.  
 
The original distribution of waiting times can be seen in Figure 1. From this figure, we can see that there 
are a large number of small waiting times and a few extreme waiting times. The longest waiting time was 
1430 minutes or 23 hours and 50 minutes, while there were 770 cases with waiting time of zero minutes. 
Rather than model the actual waiting times, we chose instead to work with the log of the wait time. A 
histogram of the log of the waiting time can be seen in Figure 2, where one was added to the waiting time 
to avoid taking the log of zero. The shape of the data is now more normal and will allow more reliable 
linear regression analysis.  
 
We originally computed a linear regression model on a random sample of 2,000 records, enabling the 
graphing of residuals and as a means to avoid inflated p-values merely based on a large sample size.  
 
For each patient record in the survey, there was an associated hospital ID (HOSPCODE). We would like 
to obtain a measure of past waiting times for each hospital. We did not have enough information to order 
records by date, and instead sampled randomly from each hospital  as an approximation to using an 
historical mean. We did this by sampling from each hospital using PROC SURVEYSELECT with STRATA 
set to HOSPCODE. We then used PROC SQL to combine the average log waiting from this sample while 
at the same time removing the sample from our data. The PROC SQL code can be seen in Figure 3.We 
computed the average log waiting time by hospital ID. We then compute the regression model on the 
67% of the records for each hospital not used to obtain the average log waiting time. The regression 
model itself will be shown in the following section. 



Figure 1: Histogram of known waiting times. 

 

Figure 2: Histogram of the log of known waiting times. 

 



 

Figure 3: PROC SQL obtaining an average waiting time from a random sample and removing that 
sample from the data. 
PROC SQL; 
 CREATE TABLE SASUSER.TRAIN_WITH_AVG AS 
 SELECT LOG_WAITTIME, WAITTIME, IMMED, IMMEDIACY, AMBULANCE, BLACK, TIME, TIME2, HOSP_AVG 
 FROM SASUSER.QED2006 Q 
 JOIN ( 
   SELECT HOSPCODE, AVG(LOG_WAITTIME) AS HOSP_AVG 
  FROM SASUSER.HOSP_TRAIN_SAMPLE 
  GROUP BY HOSPCODE 
 ) AS HOSP_AVG_T 
 ON Q.HOSPCODE=HOSP_AVG_T.HOSPCODE 
 WHERE NOT EXISTS ( 
  SELECT PATCODE 
  FROM SASUSER.HOSP_TRAIN_SAMPLE AS TRAIN 
  WHERE Q.PATCODE=TRAIN.PATCODE AND Q.HOSPCODE=TRAIN.HOSPCODE); 
QUIT; 
 

RESULTS 
Our computed regression model can be seen in Table 1 obtained through PROC GLM. All parameters 
can be seen to be significant. Additionally, the model achieved an R2 value of 0.307. This means that 
there is still a large percentage of variability that is not accounted for, but a linear correlation in the data 
exists. 

Table 1: Regression model for log waiting time. 

Parameter Estimate  
Standard 
Error t Value Pr > |t| 

Intercept -0.585317570 B 0.05467727 -10.70 <.0001 
AMBULANCE -0.447478461  0.02084333 -21.47 <.0001 
HOSP_AVG 0.873940524  0.01215321 71.91 <.0001 
TIME2 0.011577446  0.00124005 9.34 <.0001 
IMMEDIACY 1 - 14 min 0.579582632 B 0.03901214 14.86 <.0001 
IMMEDIACY 15 - 60 min 0.967296553 B 0.03519738 27.48 <.0001 
IMMEDIACY >1 hr - 2 hrs 1.139121110 B 0.03768034 30.23 <.0001 
IMMEDIACY >2 hrs- 24 hrs 1.120894437 B 0.04034898 27.78 <.0001 
IMMEDIACY Immediate 0.000000000 B . . . 



Figure 4: Residuals of model on sample of 2,000 data points. 

 
The residuals for this model could not be plotted directly in SAS. There were too many points to be kept in 
memory to display all residuals. Instead, we took a random sample of 2,000 points from this data set to 
compute a duplicate model. The residuals can be seen in Figure 4. For the most part, there is no obvious 
pattern in the residuals. We do see a couple of lines formed by the residuals on the lower left hand side of 
the plot. These come from the large number of patients with a waiting time of 0. The regression model for 
the sampled 2,000 points can be seen in Table 2. Again all p-values are significant and the coefficients 
for both the model based on 28,000 data points and the model based on 2,000 data points are very 
similar. 

 
Table 2: Regression model using a sample of 2,000 data points. 

Parameter Estimate  
Standard 
Error t Value Pr > |t| 

Intercept -0.822908953 B 0.16029293 -5.13 <.0001 
AMBULANCE -0.453747277  0.06590805 -6.88 <.0001 
HOSP_AVG 0.937947565  0.03509879 26.72 <.0001 
TIME2 0.016791701  0.00373242 4.50 <.0001 
IMMEDIACY 1 - 14 min 0.523127438 B 0.11768707 4.45 <.0001 
IMMEDIACY 15 - 60 min 0.913631641 B 0.10631610 8.59 <.0001 
IMMEDIACY >1 hr - 2 hrs 1.021281228 B 0.11508944 8.87 <.0001 
IMMEDIACY >2 hrs- 24 hrs 1.019208467 B 0.12212009 8.35 <.0001 
IMMEDIACY Immediate 0.000000000 B . . . 



Figure 5: Kernel density estimators for log waiting time by pain levels. 

 
 
One surprising find in this model is that pain did not correlate with waiting time. This can be seen from a 
kernel density estimator for the log waiting time separated by various self reported pain levels seen in 
Figure 5. From this figure, we can see that there are no major differences in the distribution of waiting 
times when comparing different pain levels. The only noticeable differences are the blue line, 
representing a blank pain level, does not peak at the same point as the rest of the distribution and the 
pink line, representing an unknown pain level, is highest at a log waiting time of zero. The differences in 
the blank pain level can be attributed to the fact that there were very few patients with a blank pain level, 
only 2.5% or 716 patients, which is far fewer than any other category. This would lead to a less smooth 
KDE. A reason that an unknown pain level has a higher density at zero may be that patients who are 
unconscious when entering the emergency department are recorded as an unknown pain level. The 
overall distribution of an unknown pain level is very similar in every other way to the rest of the 
distributions of log waiting times. This means that having an unknown pain level still does not provide 
much information about log waiting time. 
 
Figure 5 was produced using the PROC KDE function. This function uses kernel density estimators to 
approximate a the generalized probability density function for the given data. The code used to generate 
Figure 5 is given in Figure 6. 

Figure 6: SAS code used to produce Figure 5. 
PROC KDE DATA=TMPSORT_PAIN; 
UNIVAR LOG_WAITTIME / OUT=LOGWAITKDE_PAIN; 
BY PAIN; 
RUN; 



Figure 7: Kernel Density Estimator of log wait time by ambulance arrival. 

 
There were a number of variables that were found to correlate with waiting time. Of these, the first is an 
indicator variable called AMBULANCE, which indicates that the patient was known to have arrived by 
ambulance to the ED. In Figure 7, we show the distributions of wait time for the ambulance variable. This 
graph was produced using the same steps as Figure 5 using PROC KDE. This graph shows us two very 
similar distributions, but those that came by ambulance are shifted to the left and have a much higher 
density near the value zero. This means both that patients who arrived by ambulance on average have a 
shorter waiting time and that a higher percentage of patients who arrive by ambulance have a waiting 
time of zero. Additionally, the coefficent for the ambulance variable suggests a negative correlation 
between waiting time and arriving by ambulance. One would expect that people who need to be taken to 
the ED by ambulance oftentimes have more serious needs and should be seen before those who arrived 
under their own power or with the help of friends or family.  
 
The next variable we will discuss is TIME2. This variable was calculated by taking the hour of the arrival 
by military time and adding the minutes divided by 60 where the minutes of the current time become the 
decimal part of TIME2. The correlation of the time of arrival and the length of waiting time can be seen in 
a scatter plot of the two variables as is shown in Figure 8. This graph was created using Enterprise 
Guide’s scatter plot functionality. On this scatter plot, we are using the “Interpolations” option to add a 
quadratic regression line with corresponding 95% confidence interval. From this graph, we can see that 
there is a slightly increasing waiting time as the day wears on. In the early morning from about 1 AM to 8 
AM, there are very few people visiting the emergency department as few people are active during this 
time of day. With far fewer visits during the early morning hours, there are fewer people in the ED 
competing for the same staff. However, as the day goes on, there are an increasing number of visits to 
the ED, which increases the lines and waits of those patients to follow. Expect longer waits if you visit the 
ED later in the day. 



Figure 8: Scatter plot of time of arrival and log waiting time. 

 
We now turn our attention to the variable, IMMEDIACY. This variable refers to the prioritization system 
used in many hospitals today. This form of prioritization is referred to as triage. In our data, there were 5 
main groups that an incoming patient could be assigned to: “Immediate”, “1 – 14 min”, “15 – 60 min”, “>1 
hr – 2 hrs”, and “>2 hrs – 24 hrs”. These categories refer to how long a patient may be able to wait to be 
seen. Some patients require immediate attention due to a life threatening condition while others may visit 
the ED to take advantage of medical attention that does not require health insurance or for service during 
odd hours. For example, there were 361 patients of the 35,849 in the original data sample who were not 
charged for the medical service provided. Additionally, there was a slight increase in patients during the 
hours following normal doctor office hours. 
 
In Figure 9, we can see the distribution of waiting times according to the various priorities listed above. 
The figure shows that the distribution for the “Immediate” category has more density near the values 0 
and 1 (0 minutes and 2 minutes) than any other category. These patients are generally seen more quickly 
than any other group. The next group in priority, “1 – 14 min” peaks around the value 2.5, or around 10 
minutes. This peak is much sooner than the peaks of lower priority categories. The distributions generally 
show that higher priority results in a short waiting time, making this variable valuable for prediction. 
 
However, what is surprising is that there is large overlap among all of the groups. The “Immediate” group 
still includes patients who have long waits. For example, the longest known waiting time for patients put in 
the “Immediate” category in the data was 15 hrs. 25 min. There were 165 cases where patients who were 
put in the “Immediate” category were seen by a physician in an hour or more. On closer look, none of the 
patients who were put in the “Immediate” category and seen by a physician an hour or more later died. 
There were 62 cases in this data set of patients either dead on arrival (DOA) or dying in the ED. Of these 
62 cases, 48 had known waiting times, and of these 48 patients who died, only 2 of them had waiting 
times over 16 minutes. The waiting times were 2 hrs. 35 min. and 1 hr. 13 min. It appears that very rarely 
is a patient with a severe threat of death made to wait for an extended period of time in the ED. 
 
Before being used in the regression model, it was necessary to combine the categories “Unknown” and 
“No triage” with the most similar category in the data as an imputation technique. The group “15 – 60 min” 
was chosen, being the middle group with a distribution found to be most similar visually to each of these 
groups. 



Figure 9: Log waiting time according to priority. 

  
Figure 10: Kernel Density Estimator for log wait time after subtracting out the part of the model 

that uses all other variables. 

Error! Reference source not found.In 
Figure 10, we see a very different kernel density estimator graph from that pictured in Figure 9. In 
Figure 10, we took the log wait time for each patient and subtracted out our regression’s prediction except 
for the contribution in the model from triage. We did this using PROC SQL as shown in Figure 11. We 
then plotted the distribution of the resulting log wait time. The new distribution plot shows us that the 
model accounts for much of the variability shown in Figure 9. However, there is still a large difference in 
the log wait time for the “Immediate” group compared to the other groups. The averages for the other 
groups are all slightly different, with the exception of “>1 hr – 2 hrs” and “>2 hrs – 24 hrs” being even 
more similar than before. There appears to be very little difference in these two last groups. The model’s 
coefficients even put a slightly lower log wait time on “>2 hrs – 24 hrs” group than on “>1 hr – 2 hrs”. The 
lowest priority group has a coefficient of 1.121 versus 1.139. The difference is slight, but surprising since 
it rearranges the priorities in terms of actual wait time. 
 
 



Figure 11: PROC SQL code used to produce data behind Figure 10. 
PROC SQL; 
 CREATE TABLE SASUSER.TRAIN_PLUS_MODEL AS  
 SELECT LOG_WAITTIME-(-0.585317570 -0.447478461*AMBULANCE +0.873940524*HOSP_AVG 
+0.011577446*TIME2) AS WAIT_FOR_IMMEDIACY 
 FROM SASUSER.TRAIN_WITH_AVG; 
QUIT; 

Figure 12: Average sampled wait time per hospital versus wait time. 

 

Figure 13: Box plot demonstrating variation between hospital wait times with whiskers extending 
to minimum and maximum values. 

 
The most useful of the variables for predicting waiting time is previous waiting times for a given ED. There 
were 360 different hospital EDs in the data. Each patient record had a hospital ID associated with it. The 
patients’ log waiting times that are predicted were not used to calculate the sampled average for that 
hospital. One can see a scatter plot of log waiting times versus sampled average hospital log waiting time 
in Figure 12. Additionally, we have plotted a linear regression line only using hospital average waiting 



time with its corresponding 95% confidence interval. It is apparent from this graph that a linear 
relationship exists between hospitals’ previous performance and current performance, as would be 
expected.  
 
Figure 12 also indicates that there is a great deal of variation between hospitals. This is more clearly 
shown in the box plot in Figure 13 drawn using Enterprise Guide. Here, we have the top 5 and bottom 5 
hospitals based on their average waiting time. We can see that the top 5 hospitals in the survey had very 
little variance compared to that of the bottom 5. For example, the top hospital had 111 patients recorded 
in the data. The average wait time for the top hospital was 6.6 minutes with a maximum recorded waiting 
time of 93 minutes. Now compare this to the bottom ranked hospital, which had 87 patients recorded with 
known waiting times. Of these patients, the average waiting time was 9 hrs. 21 min., the minimum was 13 
min. and the maximum was 23 hrs. 50 min. The shortest recorded waiting time at the bottom ranked 
hospital was nearly twice what the average waiting time was at the best hospital. 

DISCUSSION 
In building a regression model in SAS, we learned that arriving by ambulance, time of arrival, previous 
waiting times in the ED and the immediacy given to a patient all are correlated with a patient’s actual 
waiting time. The variable most strongly correlated is the previous waiting times in a given ED. Clearly not 
all EDs are able to have short waiting times. Those EDs with the worst waiting times need a much closer 
analysis to determine the root causes of such long waits (23+ hrs. in the worst cases). It may help to 
revisit the reasons why some 381 EDs have been closed from 1995 to 2005. Additional analysis may also 
provide hints as to which geographical regions are most need of additional emergency departments. 
 
Another improvement that could be made would be to adjust when doctors are scheduled to be in EDs so 
that there are an increasing number of doctors throughout the day. This study does not provide clues on 
how to decrease the number of visits to EDs across the country, but we can see that waiting time 
increases gradually through each day. With improved scheduling, Figure 8 could potentially be flattened 
out to remove the correlation between time of day and waiting time. 
 
This survey suggests that current prioritization methods are effective for those patients closest to death. 
Patients who did die before arriving at an ED, in an ED or in the hospital after visiting an ED rarely had to 
wait very long. In terms of treating patients most at risk of dying quickly, the current emergency 
department protocols are meeting needs. However, given that there are individuals waiting nearly 24 
hours, there are major improvements that still need to be made in emergency care. 
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