Paper A02-2009

Using PROC OLAP to Build Cubes with NON-Additive Measures
Ben Cochran, The Bedford Group, Raleigh, NC

ABSTRACT

Most of the time, OLAP cubes are built from data that has additive measures, meaning that as you drilldown, the sum
of all the lower levels will add up to the value at the highest level of the hierarchy. This is not always the case.
Sometimes applications need drilldown capabilities on data where the measures are non-additive. And, sometimes
data is additive in one dimension, but not another. Take for example, a car leasing company that has 2,000 cars to
lease. They want to build a cube with two dimensions: Time and Geography. Across the Geography dimension, the
number of cars is additive. Let’s say that the levels in the Geography dimension are: Company, Region, State and
City. At the Company level, the number of cars is 2,000. When we drilldown to the Region level, the total at all the
regions adds up to 2,000. When we drill down to the next level (State), the total number of cars in all the states adds
up to 2,000. etc. This same measure (total number of cars) is NOT additive in the Time dimension. Let's say that
the levels of the Time dimension are: Year, Quarter and Month. If we take the number of cars that are leased each
Month, they could add up to more than 2,000. And likewise, if we add up all the cars leased each Quarter, they could
add up to more than 2,000. But, still this company wants to build a cube with this data. This paper looks at strategies
and methods to building a cube with non-additive data. Then, a step by step approach is taken to actually build the
cube.

INTRODUCTION

Scenario: a Car leasing company has 2000 cars to lease which are distributed amount 36 cities (in 9 states within 3
regions). They want to build a cube that will tell them how many cars are leased and how many are available as
they drilldown through time and geography. There are four measures that they want to follow: Available_Cars,
Leased_Cars, Amount_Billed, and Amount_Collected. Available_Cars and Leased_Cars are additive in the
Geographic hierarchy, but not in the Time hierarchy. For example, you can add up all the available cars in all the
states (geographic hierarchy) and that will give you 2,000. But, no matter what year you are examining (time
hierarchy), there are only 2,000 cars available in any given year AND only 2,000 cars available for all the years. (You
can't add up that number across the years. Amount_Billed and Amount_Collected are additive across both the Time
and the Geography dimension.

THE DATA
The data is stored in a SAS dataset named SASUSER.CUBE_DATA.

E_- VIEWTABLE: Sasuser.Cube_data [Z

year | month| Hegionl Stat | city | Amount_Billed | Amount_Collected | Available_Cars | Leased_Earsl
1 2008 1 East MY Albany 3500 271 54 5
2 2008 2 East MY Albany 3500 70 55 35
3 2005 3 East MY Albany 4300 4000 56 43
4 2008 4 East MY Albany 4300 3483 57 43
] 2008 5 East MY Albany 5300 4293 5a 53
g 2008 B East MY Albany 5300 360 g3 &3
7 2008 7 East MY Albany 5300 4293 = &3
g 2008 8 East MY Albany 5300 4293 E1 53
3 2005 3 East MY Albany 5300 4293 E2 &3
10 2008 10 East NY Albany E200 45933 E3 g2
11 2008 11 East WY Albany E200 G022 E4 g2
12 2008 12 East MY Albany E200 G022 E5 g2
12 2009 1 East MY Albany 5300 4293 54 &3
14 2009 2 East MY Albany 5400 4374 55 54
15 2003 3 East NY Albany 5400 5100 56 54

Figure 1. Source Data

There is one row per city / month. There are 36 cities with 24 months worth of data for each city for a total 864 rows.

DATA PREPARATION

The above data needs to be manipulated so that we can create two dimensions for the cube: Time and Geography.
For the Time dimension, the levels are YEAR and MONTH and for the Geography dimension, the levels are REGION,
STATE and CITY. The right four columns (AMOUNT_BILLED, AMOUNT_COLLECTED, AVAILABLE_CARS, and
LEASED_CARS) are all measures. Since AVAILABLE_CARS and LEASED_CARS are NON-ADDITIVE across the
TIME dimension, we need to summarize the data and create a SAS dataset for each level of the dimensions.

To do the necessary summarization, both PROC MEANS and the DATA step are used.

-proc means data=in_cube.cube_data noprint sum chartype;

var Amount_Billed Amount_Collected Available_Cars Leased_Cars;

class Year Month Region State City;

output out=in_cube.YM_11000(where=(_type_='11000"') drop= _F:)
sum(Amount_Billed)= sum(Amount_Collected)=
sum(Available_Cars)= sum(Leased_Cars)=;

output out=in_cube.YMR_11100(where=(_type_='11100") drop= _F:)
sum(Amount_Billed)= sum(Amount_Collected)=
sum(Available_Cars)= sum(Leased_Cars)=;

output out=in_cube.YMRS_11110(where=(_type_='11110") drop= _F:)
sum(Amount_Billed)= sum(Amount_Collected)=
sum(Available_Cars)= sum(Leased_Cars)=;

output out=in_cube.YMRSC_11111l(where=(_type_='11111") drop= _F:)
sum(Amount_Billed)= sum(Amount_Collected)=
max (Available_Cars)= max(Leased_Cars)=;

run;

Program 1. PROC MEANS

This one PROC MEANS step creates four different SAS datasets all at different levels of summarization. Notice the
naming convention of the datasets. The first dataset to be created is called YM_11000 and is summarized at the
YEAR and MONTH level. The key to the numeric pattern is the order of the variables on the CLASS statement.

LEVEL 1 Data

The first 13 rows of YM_11000 are shown below.

E VIEWTABLE: In_cube.¥Ym_11000 E]@ﬁ

year | motith | Reqion |State| ity |_TYF'E_| Amount_Billed | Amount_Collected .-'-‘wailable_Earsl Leazed Carz =
1 2008 1 11000 132000 110209 1604 1320
2 2008 2 11000 135200 109404 1640 1352
3 2008 3 11000 141300 110803 1676 1413
4 2008 4 11000 145400 119274 1712 1454
5 2008 5 11000 151000 119654 1748 1510
5 2008 B 11000 152600 119923 1784 1526
7 2008 7 11000 156100 126085 1820 1561
a 2008 a 11000 159300 124121 1856 1593
9 2008 9 11000 161900 130160 1852 1619
10 2008 10 11000 170300 142677 1928 1703
11 2008 1 11000 173100 136621 1964 173
12 2008 12 11000 176200 139863 2000 1762
13 2003 1 11000 151000 121773 1604 1510

Figure 2 : Level 1 Data

Notice the values for the twelfth observation. This row represents the total Amount_Billed and total
Amount_Collected for ALL of 2008. The other columns (Available_Cars and Leased_Cars) which are NON-Additive,
reveal the values at the END of the 2008. In other words, in 2008, we had 2000 cars to lease, and we leased 1,762
of them. So, this is the row we want to show when we are looking at data for the year of 2008.

In order to get these values when we drilldown, we need to run the following code.

/¥ Level 1 : 10000 +*/
-data in_cube.Y_10000 1in_cube.A17_00000;
drop AB AC AA LC YAB YAC YAA YLC;
set in_cube.ym_11000(rename=_Amount_B1il1Tled=AB Amount_cCollected=AC
Available_Cars=AA Leased_Cars=LC)) end=e;
by vyear;
if first.year then do;
Amount_Billed =0; Amount_cCollected=0;
Available_cars=0; Leased_cars=0;
end;
Amount_Billed + AB; Amount_cCollected+AC;
Available_Cars + AA; Leased_Cars + LC;
YAB + AB; YAC + AC; YAA + AA; YLC + LC;
if last.year then do;
TYPE = '10000';
Month=. ;
Leased_Cars=LC;
Available_Cars=aA;
output in_cube.Y_10000;
end;
if e;
Year=.; Month=.; _TYPE_='00000";
Amount_Billed = YAB; Amount_Collected = YAC;
Available_cars = AA; Leased_cars = LC;
output in_cube.A11_00000;
run;

Program 2.

Examine the two datasets created above.

Z VIEWTABLE: In_cube.All_00000 M=)
year | mianth | Heginn| State| city |_TYF'E_| Amount_Billed | Amount_Collected .-’-'-.vailatule_Ears| Leased Cars |
1 . . oonoo 3841500 3073797 2000 1820

Figure 3: ALL_00000 Dataset

The ALL_00000 data set contains maximum values for all four measures. In other words, the total Amount_Billed for
ALL transactions was $3,841,500. The total Amount_Collected for ALL transactions was $3,073,797. The total
number of Available_Cars (for both years) was 2000, and the total number of Leased_Cars (for both years) was
1,820.

Egk VIEWTABLE: In_cube.Y_10000 =JIOJEd
year | month | Hegionl State | city | _TWwPE_| Amount_Rilled | Amount_Collected | Asvailable_Cars Leazed Carz =
1 2008 . 10000 1854400 1487494 2000 1762
2 2009 . 10000 1987100 1886303 2000 1820

Figure 4: Y_10000 Dataset

The Y_10000 data set is summed for each value of YEAR. Here it may be a little more obvious that Available_Cars
and Leased_Cars are NON-Additive. There are only 2,000 cars to lease for BOTH years, not for EACH year.

For classification purposes, the above datasets are referred to as LEVEL 1 datasets.

LEVEL 2 Data
The following code creates the LEVEL 2 datasets. These are summarized for each YEAR and REGION.

/* Level 2: 10100 =*/

proc sort data=in_cube.ymr_11100;
by year region month;
run;

data test2m;
set ymr_11100;
by year region ;
if last.region;
run;

proc means data=ymr_11100 sum nway noprint;
class year region;
var Available_Cars Leased_Cars Amount_Billed Amount_Collected;
output out=test2y sum=;

run;

data in_cube.Y_R_10100(drop=_Fre:) ;
merge test2y(drop=Available_Cars Leased_Cars _type_)
testZzm(drop=Amount_Billed Amount_cCollected _type_);
by year region;
month=.;
Type="'10100";
run;

Program 3.

The first DATA step gets the last row for each REGION for each YEAR. The PROC MEANS step gets the SUM for
each REGION for each YEAR. The last DATA step merges the two datasets together so that each row has the
SUMS for AMOUNT_BILLED and AMOUNT_COLLECTED and the LAST ROW for AVAILABLE_CARS and
LEASED_CARS. The resulting dataset is shown below.

E:‘H'IEWT.ﬁBLE: In_cube.¥Y_r_10100 E] [
year | Reqion | Amount_Rilled | Amount_Collected | month |State| ity |Available_l2ars| Leazed Carz | _Tupe,_|

1 2008 Central 531100 422478 . 581 497 10100

2 2008 East 733500 RE80A . 829 715 10100

3 2008 ‘wWest 589800 476995 . 590 550 107100

4 2009 Central 572400 452903 . 581 531 10100

5 2009 East 817700 BE1473 . a29 F32 10100

E 2009 ‘wiest 537000 47131 . 5490 557 10100

Figure 5: Y_R_10100 Dataset.

The YMR_11100 created by the first PROC MEANS dataset is also a LEVEL 2 dataset.

LEVEL 3 Data
The following code creates the LEVEL 3 data. The data are summarized for each YEAR, REGION and STATE.

/% Level 3: 10110 */

- proc sort data=in_cube.ymrs_11110;
by year region state month;
run;
- data test3m;
set ymrs_11110;
by year region state ;
if last.state;
run;
= proc means data=ymrs_11110 sum nway noprint;
class year region state;
var Available_Cars Leased_Cars Amount_Billed Amount_Collected;
output out=test3y sum=;
run;

- data in_cube.Y_RS_10110(drop=_Fre:) ;
merge test3y(drop=Available_Cars Leased_Cars _type_)
test3m(drop=Amount_Billed Amount_cCollected _type_);
by year region state;
month=.;
Type='10110";
run;

Program 4.

The pattern for this program is the same as for program 3. The first DATA step gets the last row for each STATE /
REGION / YEAR. The PROC MEANS step gets the SUM for each STATE / REGION / YEAR. The last DATA step
merges the two datasets together so that each row has the SUMS for AMOUNT_BILLED and
AMOUNT_COLLECTED and the LAST ROW for AVAILABLE_CARS and LEASED_CARS.

The resulting dataset is shown in the PROC PRINT output below.

Amount_ fimount_ fivailable_ Leased_
wear month Region State city Billed Collected Cars Cars Tvpe_
2008 . Central KS 255,200 203,869 258 233 10110
2008 . Central Ml 103,100 83,386 114 107 10110
2008 . Central T 172,800 135,223 209 157 10110
2008 . East FL 276,700 219,327 274 244 10110
2008 . East HC 233,400 190,797 28489 231 10110
2008 . East NY 223,400 177,897 267 240 10110
2008 . Hest Ch 225,600 183,892 221 203 10110
2008 . Hest OR 214,300 171,909 214 198 10110
2008 . Hest HA 149,900 121,194 155 149 10110
2009 . Central KS 260,200 203,782 258 228 10110
2009 . Central Ml 102,400 79,140 114 107 10110
2009 . Central ™ 209,800 169,987 209 196 10110
2009 . Ea=st FL 283,100 226,362 274 254 10110
2009 . Ea=st HC 262,400 217,724 288 225 10110
2009 . East HY 272,200 217,387 267 253 10110
2009 . Hest Ch 228,200 187,436 221 209 10110
2009 . Hest (]3] 216,200 166,639 214 197 10110
2009 . Hest WA 152,600 117,846 155 151 10110
3,841,500 3,073,797 4,000 3.582

Figure 6: PROC PRINT Output.

By using the SUM statement in PROC PRINT, the 2 additive columns ‘add up’ to match the totals for the entire
dataset. But, when we add the NON-Additive columns (Available_Cars and Leased_Cars) do not match the totals for
the entire dataset.

LEVEL 4 Data

The following code creates the LEVEL 4 data. .The data are summarized for each YEAR, REGION, STATE and
MONTH.

/¥ Level 4: 10110 */

- proc sort data=in_cube.ymrsc_11111;
by year region state city month;
run;

- data testdm;
set in_cube.ymrsc_11111;|
by year regionh state city ;
if last.city;
run;

= proc means data=in_cube.ymrsc_11111 sum nway noprint;
class year region state city;
var Available_cCars Leased_Cars Amount_Billed Amount_Collected;
output out=test4y sum=;
run;

= data in_cube.Y_RSC_10111(drop=_Fre:) ;
merge test4y(drop=Available_cCars Leased_Cars _type_)
testdm({drop=Amount_Billed Amount_Collected _type_);
by year region state;
month=.;
Type="10111";
run;

.Program 5: Generating LEVEL 4 Data.

We now have the following datasets:

Dataset Name Level Rows

® ALL_00000 - Level 0 -1 row.

® Y 10000 - Level 1Y -2 rows —1 per Year.

® YM_11000 - Level 1M - 24 rows — 1 per Year per Month.

® Y R 10100 - Level 2Y -6 rows — 1 per Year per Region.

® YMR_11100 - Level 2M - 72 rows — 1 per Year / Month / Region.

® Y RS_10110 - Level 3Y - 18 rows — 1 per Year / Region / State.

® YMRS 11110 - Level 3M - 216 rows — 1 per Year / Month / Region / State.

® Y RSC 10111 - Level 4Y -72 rows — 1 per Year / Region / State / City.

® YMRSC 11111 - Level 4M - 864 rows — 1 per Year / Month / Region/State/City.

The next step is to ‘Register’ the data so that we can build a cube. The registration of the datasets is done in SAS
Management Console and will be illustrated in the presentation.

BUILDING THE CUBE
The first PROC OLAP step deletes the CUBE if it exists. The beginning of the second step is shown here.

Tibname in_cube 'c:\0lap_cube\Cars\Data ';

-proc olap delete_physical cube=Car_Lease;
METASVR host="1ocalhost" port=8561
protocol=bridge
userid="sasdemo" pw="sasbtc"
repository="Foundation"
olap_schema="sASMain - OLAP Schema";
run;

- PROC OLAP cube=Car_Lease
path="c:\0Tap_Cube\Cars"
description="Car Lease Cube" ;

METASVR host="localhost"” port=8561 protocol=bridge
userid="sasdemo" pw="sasbtc"
repository="Foundation"
olap_schema="SASMain - OLAP Schema";

Program 6. PROC OLAP step

The first DIMENSION statement is shown. The TIME DIMENSION contains the TIME HIERARCHY which has the
LEVELS Year and Month.

DIMENSION Time hierarchies=(Time)
CAPTION = 'Time Dimension'
SORT_ORDER = ASCENDING ;

HIERARCHY Time
levels=(Year Month)
CAPTION='Time Hierarchy' ;

LEVEL Year
CAPTION='Year'
SORT_ORDER=ASCENDING

LEVEL Month
CAPTION="Month'
SORT_ORDER=ASCENDING

Program 7. The DIMENSION Statement and the HIERARCY Statement for TIME.

The next DIMENSION statement is for the GEOGRAPHY dimension.

DIMENSION Geography hierarchies=(Geography)
CAPTION='Geography Dimension'
TYPE=GEOGRAPHY SORT_ORDER=ASCENDING ;

HIERARCHY Geography /* ALL_MEMBER='Al1l Geography' #*/
levels=(Region State City)
CAPTION='Geography Hierarchy' DEFAULT ;

LEVEL Region
CAPTION='Region'
SORT_ORDER=ASCENDING

LEVEL State
CAPTION='State '
SORT_ORDER=ASCENDING

LEVEL City
CAPTION="City'
SORT_ORDER=ASCENDING

Program 8. The DIMENSION Statement and the HIERARCY Statement for GEOGRAPHY

The four MEASURE statements come next.

MEASURE Amount_Billed_Sum
STAT=SUM
Aggr_COLUMN=Amount_Billed
CAPTION='Sum of Amount Billed'’
FORMAT=Dollar12.2
/*DEFAULT*/

)

MEASURE Amount_Collected_Sum
STAT=5UM
Aggr_COLUMN=Amount_Collected
CAPTION='Sum of Amount Collected’
FORMAT=Dollar12.2
/*DEFAULT*/

L)

MEASURE Available_cCars
STAT=S5UM
Aggr_COLUMN=Available_cCars
CAPTION='Available Cars'
FORMAT=commas&.
/*DEFAULT*/

L)

MEASURE Leased_Cars
STAT=SUM
Aggr_COLUMN=Leased_cCars
CAPTION='Leased Cars'
FORMAT=commas.
/*DEFAULT*/

Program 9. The MEASURE Statements.

Each MEASURE statement names the numeric variable that is the measure. It names the statistic as well as the
CAPTION which is basically a label.

Next in the program are the AGGREGATION statements. They specify the aggregation and name all the variables
that make up the granularity of that aggregation. Following the ‘/’ the table= option is specified that names the
dataset that will be used for a specific aggregation level. This is where the magic really occurs. In ‘traditional’
drilldown hierarchies, as you drill from one level to the next, you are going from one VARIABLE to another in the
SAME dataset. With NON — Additive measures, as you drilldown, you go from one DATASET to another. The
dataset for a specific aggregation level is named on the AGGREGATION statement.

10

AGGREGATION year month region state city
/ table=in_cube.YMRSC_11111 NAME='Level 4M'

AGGREGATION vear region state city
/ table=in_cube.Y_RSC_10111 NAME='Level 4Y'

AGGREGATION year month region state
/ table=in_cube.YMRS_11110 NAME='Level 3M'

AGGREGATION year region state
/ table=in_cube.Y_RS_10110 NAME='Level 3Y'

AGGREGATION year month region
/ table=in_cube.YMR_11100 NAME='Level 2M'

AGGREGATION year region
/ table=in_cube.Y_R_10100 NAME='Level 2Y'

AGGREGATION year month
/ table=in_cube.YM_11000 NAME='Level 1M'

AGGREGATION vyear
/ table=in_cube.Y_10000 NAME='Level 1Y'

Program10. The AGGREGATION Statements.

The only thing after the AGGREGATION statements is the RUN statement. When this above PROC OLAP step is
submitted, the CAR_LEASE ‘cube’ is built.

During the presentation of this paper, the cube will be surfaced in Enterprise Guide as well as Web Report Studio.

11

CONCLUSION

By knowing how to write PROC OLAP code, you can create ‘cubes’ that might not be creatable through OLAP Cube
Studio.

RECOMMENDED READING

There are a number of books and training courses available from SAS Institute, Inc. Some courses of interest might
be: Creating and Viewing OLAP Cubes; Overview of SAS Business Intelligence and Data Integration Applications;
What's New in SAS 9.2 Business Intelligence; Designing, Tuning and Maintaining OLAP Cubes; and SAS OLAP
Environment Administration.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Ben Cochran

Company: The Bedford Group
Address: 3224 Bedford Ave.

City, State ZIP: Raleigh, NC

Work Phone: (919) 741-0370

E-mail: bedfordgroup@nc.rr.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

12

