
SAS® Tips, Tricks and Techniques

Kirk Paul Lafler, Software Intelligence Corporation

Abstract
The base-SAS® System offers users the power of a comprehensive DATA step programming language, an
assortment of powerful PROCs, a macro language that extends the capabilities of the SAS System, and user-friendly
interfaces including the SAS Display Manager. This presentation highlights numerous SAS tips, tricks and techniques
using a collection of proven code examples related to effectively using the SAS Display Manager and its many
features; process DATA step statements to handle subroutines and code libraries; deliver output in a variety of
formats; construct reusable code; troubleshoot and debug code; and an assortment of other topics.

Introduction
This paper illustrates several tips, tricks and techniques related to the usage of the Base-SAS software. We will
examine a variety of topics including SAS System options, DATA step programming techniques, logic conditions,
output delivery and ODS, macro programming, and an assortment of other techniques.

Example Tables
The data used in all the examples in this paper consists of a selection of movies that I’ve viewed over the years. The
Movies table consists of six columns: title, length, category, year, studio, and rating. Title, category, studio, and rating
are defined as character columns with length and year being defined as numeric columns. The data stored in the
Movies table is depicted below.

MOVIES Table

The data stored in the ACTORS table consists of three columns: title, actor_leading, and actor_supporting, all of
which are defined as character columns. The data stored in the Actors table is illustrated below.

ACTORS Table

Base-SAS Tips, Tricks and Techniques
This section covers numerous base-SAS software tips, tricks and techniques. Whether you are a SAS expert who is
comfortable with the many features offered in the Base SAS product or someone just getting started, these tips will
make your programming experience a more rewarding one. By taking the time to learn the Base SAS fundamentals—
including terminology, library structures, programming concepts, user interface, SAS Explorer, and numerous other
aspects—you will get better results using this powerful product. You will learn about useful features step-by-step to
help you become a more knowledgeable SAS user.

Tip #1 – Writing SAS source files included with a %INCLUDE statement to the SAS Log
By default, SAS source statements included with a %INCLUDE statement are NOT automatically written to the SAS
Log. To print secondary SAS source statements included with a %INCLUDE statements, users will need to specify
the SOURCE2 system option. The default setting is NOSOURCE2. Either option can be specified in an OPTIONS
statement, in the OPTIONS window, at SAS invocation, or in the configuration file.

Tip #2 – Specifying the most recently created data set to use in a read operation
By default, the _LAST_= system option is set to use the most recently created data set. This automatic feature is

commonly found in procedure code when the DATA= option is omitted from a PROC. To override this built-in default,
the _LAST_= system option can be defined as any valid temporary or permanent SAS data set name (refer to data
set naming conventions). The _LAST_= option can be specified in an OPTIONS statement, in the OPTIONS window,
at SAS invocation, or in the configuration file.

Tip #3 – Preventing SAS data sets from accidentally being replaced
Users can specify the NOREPLACE system option to prevent a permanent SAS data set from being accidentally
replaced with another like-named data set. Conversely, by specifying the REPLACE system option like-named data

sets can be overwritten. The REPLACE | NOREPLACE option can be specified in an OPTIONS statement, in the
OPTIONS window, at SAS invocation, or in the configuration file.

Tip #4 – Executing Conditional Logic with IF-THEN / ELSE
The IF-THEN / ELSE construct enables a sequence of conditions to be constructed that when executed goes through
the IF-THEN conditions until it finds one that satisfies the expression. The example shows a variable Movie_Length
being assigned a character value of “Short”, “Medium”, or “Long” based on the mutually exclusive conditions specified
in the IF-THEN and ELSE conditions. Although not required, the ELSE condition is useful to prevent missing values
from being assigned to Movie_Length.

Code:

DATA ATTRIB_EXAMPLE;

 ATTRIB Movie_Length LENGTH=$7 LABEL=’Movie Length’;
 SET MOVIES;
 IF LENGTH < 120 THEN Movie_Length = ‘Short’;
 ELSE IF LENGTH > 160 THEN Movie_Length = ‘Long’;
 ELSE Movie_Length = ‘Medium’;
RUN;

Results

 The SAS System

Title Length Movie_Length
Brave Heart 177 Long
Casablanca 103 Short
Christmas Vacation 97 Short
Coming to America 116 Short
Dracula 130 Medium
Dressed to Kill 105 Short
Forrest Gump 142 Medium
Ghost 127 Medium
Jaws 125 Medium
Jurassic Park 127 Medium
Lethal Weapon 110 Short
Michael 106 Short
National Lampoon's Vacation 98 Short

Poltergeist 115 Short
Rocky 120 Medium
Scarface 170 Long
Silence of the Lambs 118 Short

Star Wars 124 Medium
The Hunt for Red October 135 Medium
The Terminator 108 Short
The Wizard of Oz 101 Short
Titanic 194 Long

Tip #5 – Executing Conditional Logic with a SELECT statement
As an alternative to a series of IF-THEN/ELSE statements, a SELECT statement with one or more WHEN conditions
can be specified. The SELECT-WHEN statement enables a sequence of conditions to be constructed, that when
executed goes through the WHEN conditions until it finds one that satisfies the expression. Typically a sequence of
WHEN conditions are specified for a long series of conditions. The example shows a variable Movie_Length being
assigned a character value of “Short”, “Medium”, or “Long” based on the mutually exclusive conditions specified in the
WHEN and OTHERWISE conditions. Although not required, the OTHERWISE condition is useful to prevent missing
values being assigned to Movie_Length.

Code:

DATA SELECT_EXAMPLE;

 SET MOVIES;

 LENGTH Movie_Length $6.;
 SELECT;
 WHEN (LENGTH < 120) Movie_Length = ‘Short’;
 WHEN (LENGTH > 160) Movie_Length = ‘Long’;
 OTHERWISE Movie_Length = ‘Medium’;
 END;
RUN;

Results

 The SAS System

Title Length Movie_Length
Brave Heart 177 Long

Casablanca 103 Short
Christmas Vacation 97 Short
Coming to America 116 Short
Dracula 130 Medium
Dressed to Kill 105 Short
Forrest Gump 142 Medium
Ghost 127 Medium
Jaws 125 Medium
Jurassic Park 127 Medium
Lethal Weapon 110 Short
Michael 106 Short
National Lampoon's Vacation 98 Short
Poltergeist 115 Short
Rocky 120 Medium
Scarface 170 Long
Silence of the Lambs 118 Short
Star Wars 124 Medium

The Hunt for Red October 135 Medium
The Terminator 108 Short
The Wizard of Oz 101 Short
Titanic 194 Long

Case Logic
In the SQL procedure, a case expression provides a way of conditionally selecting result values from each row in a
table (or view). Similar to an IF-THEN construct, a case expression uses a WHEN-THEN clause to conditionally
process some but not all the rows in a table. An optional ELSE expression can be specified to handle an alternative
action should none of the expression(s) identified in the WHEN condition(s) not be satisfied.

A case expression must be a valid SQL expression and conform to syntax rules similar to DATA step SELECT-
WHEN statements. Even though this topic is best explained by example, let’s take a quick look at the syntax.

CASE <column-name>
 WHEN when-condition THEN result-expression
 <WHEN when-condition THEN result-expression> 1
 <ELSE result-expression>
END

A column-name can optionally be specified as part of the CASE-expression. If present, it is automatically made
available to each when-condition. When it is not specified, the column-name must be coded in each when-condition.
Let’s examine how a case expression works.

If a when-condition is satisfied by a row in a table (or view), then it is considered “true” and the result-expression
following the THEN keyword is processed. The remaining WHEN conditions in the CASE expression are skipped. If a
when-condition is “false”, the next when-condition is evaluated. SQL evaluates each when-condition until a “true”
condition is found or in the event all when-conditions are “false”, it then executes the ELSE expression and assigns
its value to the CASE expression’s result. A missing value is assigned to a CASE expression when an ELSE
expression is not specified and each when-condition is “false”.

Tip #6 – Conditional Execution in SQL with a Case Expression
In the following example, we will examine how a case expression actually works. Suppose a value of “Short”,
“Medium”, or “Long” is desired for each of the movies. Using the movie’s length (LENGTH) column, a CASE
expression is constructed to assign one of the desired values in a unique column called Movie_Length. A value of
‘Short’ is assigned to the movies that are shorter than 120 minutes long, ‘Long’ for movies longer than 160 minutes
long, and ‘Medium’ for all other movies. A column heading of Movie_Length is assigned to the new derived output
column using the AS keyword.

SQL Code

PROC SQL;

 SELECT TITLE,

 LENGTH,

 CASE
 WHEN LENGTH < 120 THEN 'Short'
 WHEN LENGTH > 160 THEN 'Long'
 ELSE 'Medium'
 END AS Movie_Length
 FROM MOVIES;

QUIT;

Results

 The SAS System

Title Length Movie_Length
Brave Heart 177 Long
Casablanca 103 Short
Christmas Vacation 97 Short
Coming to America 116 Short
Dracula 130 Medium
Dressed to Kill 105 Short
Forrest Gump 142 Medium
Ghost 127 Medium
Jaws 125 Medium
Jurassic Park 127 Medium
Lethal Weapon 110 Short

Michael 106 Short
National Lampoon's Vacation 98 Short
Poltergeist 115 Short
Rocky 120 Medium
Scarface 170 Long
Silence of the Lambs 118 Short
Star Wars 124 Medium
The Hunt for Red October 135 Medium
The Terminator 108 Short
The Wizard of Oz 101 Short
Titanic 194 Long

Output Delivery Basics
The SAS® Output Delivery System (ODS) provides many ways to format output. It controls the way output is
accessed and formatted. Although ODS continues to support the creation of traditional SAS listing or monospace
output (i.e., Listing), it provides many new features and greater flexibility when working with output.

ODS in Versions earlier than Version 9 emerged as a way to address the inherent weaknesses found in traditional
SAS output. Its ability to produce “quality” looking output without first having to import it into a word processor, such
as MS-Word, represents a feature of improved productivity. In Version 9, many new output formatting features and
options are introduced for SAS users to take advantage of. Users have a powerful and easy way to create and
access formatted procedure and DATA step output.

Tip #7 – ODS and “Batch” Use
Many of the ODS features found in the interactive side of the SAS Display Manager System (DMS) can also be used
in batch processing. ODS has been designed to make exciting new formatting options available to users. In a
windowing environment, ODS can send output to the following destinations: the output window (DMS), the listing file,
HTML, SAS dataset, rich text format (RTF), postscript file, external output file (non-SAS file), or output device. The
only exception for batch processing is having output sent to the output window.

Tip #8 – What if I’m Still Not Using the latest Version of SAS Software
First introduced in Version 6.12, ODS offered users the capability to format output to destinations other than
traditional line printers. Version 6.12 introduced the ability to deploy output to the web, the creation of SAS datasets
and rich text format (RTF) files, and DATA step interaction. ODS was designed to address the inherent weaknesses
found in traditional SAS output. It enables the creation of “quality” looking output without having to import it into word
processors such as MS-Word. New output enhancements were introduced in Version 8 and then in Version 9,
including the ability to create postscript files and output customizations. To take full advantage of the power offered in
ODS, it is recommended that users upgrade to the latest Version as early as possible to take advantage of these
features.

Tip #9 – ODS and System Resources
A very important efficiency consideration is to remember that ODS currently supports the following destinations: 1)
Listing, 2) HTML, 3) rich text format (RTF), 4) postscript, and 5) Output. (Note: It also provides support in the DATA
step.) Each ODS destination can be open or closed at the same time. For each open destination, ODS sends output
object(s) to it. System resources are used when a destination is open. As a result, make sure any and all unwanted
open destinations are closed to conserve on resources.

Tip #10 – Closing Destinations before and after use
The Listing destination is open by default at SAS invocation, while the other destinations are closed. If nothing is
done to suppress output to the Listing destination, your SAS programs automatically produce Listing output, just as
they always have in the SAS System. If you needed to suppress printed output from being sent to the Listing
destination (or DMS Output window) before the execution of a procedure step, the following ODS statement would be
issued:

Code

ODS Listing Close;
 Proc univariate data=movies;

 Run;

ODS Listing;

By closing the Listing destination before the procedure code, the SAS System is actually suppressing output to that
destination until it is reopened. The preceding example shows that at the end of the procedure step, the Listing
destination is reopened by specifying ODS Listing; so output from subsequent steps can be sent to the Listing
destination.

Tip #11 – Deleting Output from the Results Window
The Results window identifies procedure output that has been produced, providing users with an improved way to
manage their output. It is customarily a good thing to remove unwanted output displayed in this window to conserve
on system resources. The Results window is opened by specifying the command ODSRESULTS on the DMS
command line or by selecting View Results from the pull-down menu. To delete procedure output, use the following
steps:

1. Select the procedure folder you want to remove.

2. Click the Delete button on the task bar.

3. Select “Yes” to confirm the deletion of the procedure output folder.

Tip #12 – Tracing Procedure Output
Output producing procedures often create multiple pieces or tables of information. In order to discriminate between
the various pieces of information, it is advantageous to know the names assigned to each piece of information. The
ability to display the names of individual pieces of information generated on output is referred to as tracing. The ODS
statement syntax ODS trace ON / Listing; causes the SAS System to turn the trace feature on and print results to the
SAS Listing destination.

Code

ODS Trace ON / Listing;
 Proc univariate data=movies;

 Run;
ODS Trace Off;

The trace record displays information about the data component, the table definition, and the output object. For
example, the trace record displays the following output objects to the SAS Listing destination: 1) Moments, 2)
BasicMeasures, 3) TestForLocation, 4) Quantiles, and 5) ExtremeObs. A sample trace record containing each output
object’s name, label, template, and path is displayed for the Univariate procedure. Note that for each output object,
the name, label, template, and path is displayed.

Output Added:

Name: Moments
Label: Moments
Template: base.univariate.Moments
Path: Univariate.age.Moments

Output Added:

Name: BasicMeasures
Label: Basic Measures of Location and Variability
Template: base.univariate.Measures
Path: Univariate.age.BasicMeasures

Output Added:

Name: TestsForLocation
Label: Tests For Location
Template: base.univariate.Location
Path: Univariate.age.TestsForLocation

Output Added:

Name: Quantiles
Label: Quantiles
Template: base.univariate.Quantiles
Path: Univariate.age.Quantiles

Output Added:

Name: ExtremeObs
Label: Extreme Observations
Template: base.univariate.ExtObs
Path: Univariate.age.ExtremeObs

Selecting Output with ODS
A selection or exclusion list exists for each open ODS destination. These lists determine which output objects to send
to ODS destinations. To accomplish this, ODS verifies whether an output object is included in a destination’s
selection or exclusion list. If it does not appear in this list, then the output object is not sent to the ODS destination. If
an output object is included in the list, ODS determines if the object is included in the overall list. If it does not appear
in this list, then the output object is not sent to the ODS destination. If an output object is included in the overall list
then ODS sends it to the selected destination.

Tip #13 – Selecting Desired Pieces of Information
Once you know the individual names of each output object (from the trace), you can then select the desired object for
reporting purposes. The syntax is:

 ODS select output-component-name;

where output-component-name is the name of the desired output object. To select just the output object Moments
from the Univariate procedure, the following syntax is specified:

Code

ODS Select Moments;
 Proc univariate data=movies;

 Run;

Creating Unique Output with ODS
Output Delivery System (ODS) can be used to create a variety of output formats. ODS statements are classified as
global statements and are processed immediately by the SAS System. ODS statement options control what format
engine(s) are turned on and in effect during the step or until another ODS statement is specified. ODS has built-in
format engines (e.g., Listing, Output, RTF, PDF, DATA Step, HTML, and XML). Specifying an ODS statement and
destination at a particular point in a program is important, because output-producing PROC and DATA steps will
respond by sending output to the open destination.

Tip #14 – Creating SAS Output Data Sets with ODS
Occasionally, output results are needed in a SAS data set rather than in printed form such as the Listing destination.
Re-directing SAS procedure output to a data set is relatively simple with ODS. The syntax is:

ODS Output output-table-name =
 user-defined-table-name;
 < SAS Code >

where output-table-name is the name of the desired output table (component) containing the information you want
written to a data set, such as Moments in the UNIVARIATE procedure. User-defined-table-name is the name you
supply for the newly created data set. It can be defined as either a temporary or permanent data set. Once an object
is selected, specify the object in the ODS OUTPUT statement. For example, the Moments from the Univariate
procedure is selected and output to a SAS data set in the following code.

Code

ODS Listing Close;
ODS Output Moments = Movie_Moments;
Proc univariate data=movies;

 Run;

ODS Listing;

When the OUTPUT destination is no longer needed, it can be closed with the following ODS statement:

 ODS OUTPUT CLOSE;

Tip #15 – Creating Rich Text Format (RTF) with ODS
Rich text format (RTF) is text consisting of formatting attributes codes, such as boldface, italics, underline, etc. It is
principally used to encapsulate text and formatting attributes during copy-and-paste operations. Because word-
processing programs use RTF rather than ASCII when handling data, the need to reformat is a thing of the past. The
syntax to create RTF output is:

ODS RTF FILE = ‘user-specified-file-name’;

where user-specified-file-name references a complete and fully-qualified output location for the creation and storage
of the RTF file, data, and codes. For example, the following code creates an RTF file using the Univariate procedure
output. (Note: The RTF extension is required).

Code

ODS Select Moments = moments;
ODS RTF FILE=’ods-rtf-univariate.rtf’;
 Proc univariate data=movies;
 Title1 ‘Delivering RTF Output’;

 Run;

ODS RTF Close;

The results of the RTF output are displayed below:

Delivering RTF Output
The UNIVARIATE Procedure

Variable: Year

 Moments

N 22 Sum Weights 22

Mean
1982.909

09
Sum
Observations

43624

Std
Deviation

15.21249
2

Variance
231.4199

13

Skewness
-

2.110647
3

Kurtosis
4.418072

09

Uncorrected
SS

86507286 Corrected SS
4859.818

18

Coeff
Variation

0.767180
51

Std Error
Mean

3.243314
2

Tip #16 – Creating PDF Output
To share output electronically, Adobe created a proprietary format called PDF. The objective of PDF is to enable the
printing of output exactly as it is seen. The significance of PDF output is that it is a great format for Web deployment
since it is completely independent of any printer destination. To create PDF output from the UNIVARIATE procedure,
the ODS PDF option can be specified as follows.

Code

ODS Listing Close;
ODS PDF FILE=‘ods-univariate.pdf’;
 proc univariate data=movies;

 title1 ‘Creating PDF Output with ODS’;
 run;

ODS PDF Close;
ODS Listing;

Output Delivery Goes Web
The Web offers incredible potential that impacts all corners of society. With its increasing popularity as a
communications medium, Web publishers have arguably established the Web as the greatest medium ever created.
Businesses, government agencies, professional associations, schools, libraries, research agencies, and a potpourri
of society’s true believers have endorsed the Web as an efficient means of conveying their messages to the world.
The 24/7 model permits information to be refreshed and updated continuously as new material becomes available.

Tip #17 – Pagesize / Linesize Settings
The Options PS= and LS= have no effect when used with the HTML destination (opposed to most other output-
producing steps that generate output to a print destination). If the PS= and/or LS= options are used with the HTML
destination, they are simply ignored. The SAS System creates a type of “streaming” or continuous output that can be
viewed with a web browser for easy navigation.

The SAS System does provide a way for users to paginate through output displayed in a body file. The HTML
destination provides a way to designate an optional description of each page of the body file. The PAGE= file (when
specified) recognizes each new page of output produced by ODS. What ODS does is create a section called Table of
Pages containing links to the body file for easy navigation through output.

Tip #18 – Creating HTML Destination Files with ODS
Four types of files can be created with the ODS HTML destination: 1) body, 2) contents, 3) page, and 4) frame. The
Body file contains the results from the procedure embedded in ODS-generated HTML code. Horizontal and vertical
scroll bars are automatically placed on the generated page, if necessary.

The Contents file consists of a link to each HTML table within the body file. It uses an anchor tag to link to each
table. By using your browser software, you can view the contents file directly or as part of the frame file.

The Page file consists of a link to each page of ODS created output. By using your browser, you can view the page

file directly or as part of the frame file.

The Frame file displays the body file and the contents file, the page file, or both. The next example shows the
creation of Web-ready Univariate procedure output using the HTML format engine.

Code

ODS Listing Close;
ODS HTML body=‘ods-body.htm’
 contents=‘ods-contents.htm’
 page=‘ods-page.htm’
 frame=‘ods-frame.htm’;
proc univariate data=movies;

 Title1 ‘Creating HTML Output with ODS’;

Run;

ODS HTML Close;
ODS Listing;

A snippet of the HTML output appears on the next page:

Macro Language Basics
The macro language provides an additional set of tools to assist in: 1) communicating between SAS steps, 2) constructing
executable and reusable code, 3) designing custom languages, 4) developing user-friendly routines, and 5) conditionally
execute DATA or PROC steps.

When a program is run, the SAS System first checks to see if a macro statement exists. If the program does not
contain any macro statements, then processing continues as normal with the DATA or PROC step processor. If the
program does contain one or more macro statements, then the macro processor must first execute them. The result
of this execution is the production of character information, macro variables, or SAS statements, which are then be
passed to the DATA or PROC step processor. The control flow of a macro process appears in Figure 1 below.

Tip #19 – Debugging a Macro with SAS System Options
The SAS System offers users a number of useful system options to help debug macro issues and problems. The
results associated with using macro options are automatically displayed on the SAS Log. Specific options related to
macro debugging appear in alphabetical order in the table below.

SAS Option Description
MACRO Specifies that the macro language SYMGET and SYMPUT functions be available.
MEMERR Controls Diagnostics.
MEMRPT Specifies that memory usage statistics be displayed on the SAS Log.
MERROR Presents Warning Messages when there are misspellings or when an undefined macro is called.
MLOGIC Macro execution is traced and displayed on the SAS Log for debugging purposes.
MPRINT SAS statements generated by macro execution are traced on the SAS Log for debugging

purposes.
SYMBOLGEN Displays text from expanding macro variables to the SAS Log.

Tip #20 – Streamlining Command-line DMS Commands with a Macro
The macro language is a wonderful tool for streamlining frequently entered SAS Display Manager System (DMS)
commands to reduce the number of keystrokes. By embedding a series of DMS commands inside a simple macro,
you’ll not only save by not having to enter them over and over again, but you’ll improve your productivity as well. The
following macro code illustrates a series of DMS commands being strung together in lieu of entering them individually
on a Display Manager command line. The commands display and expand the SAS Log to full size respectively, and
then position the cursor at the top of the log. Once the macro is defined, it can be called by entering %POSTSUBMIT
on any DMS command line to activate the commands.

Macro Code

%MACRO postsubmit;

 Log;

 Zoom;

 Top;

%MEND postsubmit;

Tip #21 – Assigning a Defined Macro to a Function Key
To further reduce keystrokes and enhance user productivity even further, a call to a defined macro can be saved to a
Function Key. The purpose for doing this would be to allow for one-button operation of any defined macro. To
illustrate the process of saving a macro call to a Function Key, the %POSTSUBMIT macro defined in the previous tip
is assigned to Function Key F12 in the KEYS window. The partial KEYS window is displayed to illustrate the process.

KEYS Window

Key Definition

F1 help
F2 reshow
F3 end;

... ...

F10 keys
F11 command focus
F12 %POSTSUBMIT

Building Macro Tools
The Macro Facility, combined with the capabilities of the SQL procedure, enables the creation of versatile macro tools
and general-purpose applications. A principle design goal when developing user-written macros should be that they
are useful and simple to use. A macro that violates this tenant of little applicability to user needs, or with complicated
and hard to remember macro variable names, are usually avoided.

As tools, macros should be designed to serve the needs of as many users as possible. They should contain no
ambiguities, consist of distinctive macro variable names, avoid the possibility of naming conflicts between macro
variables and data set variables, and not try to do too many things. This utilitarian approach to macro design helps
gain the widespread approval and acceptance by users.

Tip #22 – Defining a Macro with Positional Parameters
Macros are frequently designed to allow the passing of one or more parameters. This allows the creation of macro
variables so text strings can be passed into the macro. The order of macro variables as positional parameters is
specified when the macro is coded. The assignment of values for each positional parameter is supplied at the time
the macro is called.

To illustrate the definition of a two positional parameter macro, the following macro was created to display all table
names (data sets) that contain the variable TITLE in the user-assigned MYDATA libref as a cross-reference listing.
To retrieve the needed type of information, you could execute multiple PROC CONTENTS against selected tables. Or
in a more efficient method, you could retrieve the information directly from the read-only Dictionary table COLUMNS
with the selected columns LIBNAME, MEMNAME, NAME, TYPE and LENGTH, as shown. For more information
about Dictionary tables, readers may want to view the “free” SAS Press Webinar by Kirk Paul Lafler at
http://support.sas.com/publishing/bbu/webinar.html#lafler2 or the published paper by Kirk Paul Lafler, Exploring
Dictionary Tables and SASHELP Views.

Macro Code

%MACRO COLUMNS(LIB, COLNAME);
 PROC SQL;

 SELECT LIBNAME, MEMNAME, NAME, TYPE, LENGTH

 FROM DICTIONARY.COLUMNS

 WHERE UPCASE(LIBNAME)="&LIB" AND
 UPCASE(NAME)="&COLNAME" AND
 UPCASE(MEMTYPE)="DATA";

 QUIT;

%MEND COLUMNS;

%COLUMNS(MYDATA,TITLE);

After Macro Resolution

Output

Library Column Column
Name Member Name Column Name Type Length

MYDATA ACTORS Title char 30
MYDATA MOVIES Title char 30

MYDATA PG_MOVIES Title char 30

MYDATA PG_RATED_MOVIES Title char 30
MYDATA RENTAL_INFO Title char 30

PROC SQL;

 SELECT LIBNAME, MEMNAME, NAME, TYPE, LENGTH

 FROM DICTIONARY.COLUMNS

 WHERE UPCASE(LIBNAME)="MYDATA" AND

 UPCASE(NAME)="TITLE" AND

 UPCASE(MEMTYPE)="DATA";
QUIT;

Tip #23 – Defining another Macro with Positional Parameters
Now let’s examine another useful macro that is designed with a positional parameter. The following macro is
designed to accept one positional parameter called &LIB. When called, it accesses the read-only Dictionary table
TABLES to display each table name and the number of observations in the user-assigned MYDATA libref. This
macro provides a handy way to quickly determine the number of observations in one or all tables in a libref without
having to execute multiple PROC CONTENTS by using the stored information in the Dictionary table TABLES.

Macro Code

%MACRO NUMROWS(LIB);
 PROC SQL;

 SELECT LIBNAME, MEMNAME, NOBS

 FROM DICTIONARY.TABLES

 WHERE UPCASE(LIBNAME)="&LIB" AND
 UPCASE(MEMTYPE)="DATA";
 QUIT;

%MEND NUMROWS;

%NUMROWS(MYDATA);

After Macro Resolution

Output

Conclusion
The base-SAS® System offers users the power of a comprehensive DATA step programming language, an
assortment of powerful PROCs, a user-friendly interfaces including the SAS Display Manager, and a macro language
that extends the capabilities of the SAS System. This paper illustrates numerous SAS tips, tricks and techniques
using a collection of proven code examples related to effectively specifying SAS System options; process DATA step
statements to handle subroutines and code libraries; produce a variety of output formats; construct reusable code;
and troubleshoot and debug code.

References
Burlew, Michele M. (1998), SAS Macro Programming Made Easy, SAS Institute Inc., Cary, NC, USA.

Carpenter, Art (2004), Carpenter’s Complete Guide to the SAS Macro Language, Second Edition. SAS Institute Inc.,
Cary, NC, USA.

Lafler, Kirk Paul (2008), “Building Reusable SAS
®
 Macro Tools,” Michigan SAS Users Group 2008 Conference,

Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2007), “SAS Macro Programming Tips and Techniques,” Proceedings of the NorthEast SAS Users
Group (NESUG) 2007 Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

PROC SQL;

 SELECT LIBNAME, MEMNAME, NOBS

 FROM DICTIONARY.TABLES

 WHERE UPCASE(LIBNAME)="MYDATA" AND

 UPCASE(MEMTYPE)="DATA";
QUIT;

 Library Number of Physical

 Name Member Name Observations

 MYDATA ACTORS 13

 MYDATA CUSTOMERS 3

 MYDATA MOVIES 22
 MYDATA PG_RATED_MOVIES 13

Lafler, Kirk Paul (2007), SAS System Macro Language Course Notes, Fourth Edition. Software Intelligence
Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul, Advanced SAS
®
 Programming Tips and Techniques; Software Intelligence Corporation, Spring

Valley, CA, USA; 1987-2007.

Lafler, Kirk Paul (2007), “Undocumented and Hard-to-find PROC SQL Features,” Proceedings of the PharmaSUG
2007 Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul and Ben Cochran (2007), “A Hands-on Tour Inside the World of PROC SQL Features,” Proceedings
of the SAS Global Forum (SGF) 2007 Conference, Software Intelligence Corporation, Spring Valley, CA, and The
Bedford Group, USA.

Lafler, Kirk Paul (2007), SAS System Macro Language Course Notes, Fourth Edition. Software Intelligence
Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2006), Exploring DICTIONARY Tables and SASHELP Views, Software Intelligence Corporation,
Spring Valley, CA, USA.

Lafler, Kirk Paul (2006), “A Hands-on Tour Inside the World of PROC SQL,” Proceedings of the 31
st
 Annual SAS

Users Group International Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2005), “Manipulating Data with PROC SQL,” Proceedings of the 30
th
 Annual SAS Users Group

International Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2004). PROC SQL: Beyond the Basics Using SAS, SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul (2003), “Undocumented and Hard-to-find PROC SQL Features,” Proceedings of the Eleventh Annual
Western Users of SAS Software Conference.

Lafler, Kirk Paul, PROC SQL Programming for Beginners; Software Intelligence Corporation, Spring Valley, CA, USA;

1992-2007.

Lafler, Kirk Paul, Intermediate PROC SQL Programming; Software Intelligence Corporation, Spring Valley, CA, USA;

1998-2007.

Lafler, Kirk Paul, Advanced PROC SQL Programming; Software Intelligence Corporation, Spring Valley, CA, USA; 2001-

2007.

Lafler, Kirk Paul, PROC SQL Programming Tips; Software Intelligence Corporation, Spring Valley, CA, USA; 2002-2007.

SAS
®
 Guide to the SQL Procedure: Usage and Reference, Version 6, First Edition; SAS Institute, Cary, NC, USA; 1990.

SAS
®
 SQL Procedure User’s Guide, Version 8; SAS Institute Inc., Cary, NC, USA; 2000.

Trademark Citations
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. and other countries. ® indicates USA registration.

Acknowledgments
I would like to thank Cindy Lee and D.J. Penix, MWSUG 2008 Conference Chairs, for accepting this paper, as well as
the MWSUG Leadership for their support of a great Conference.

Author Information
Kirk Paul Lafler is consultant and founder of Software Intelligence Corporation and has been programming in SAS
since 1979. As a SAS Certified Professional and SAS Institute Alliance Member (1996 – 2002), Kirk provides IT
consulting services and training to SAS users around the world. As the author of four books including PROC SQL:
Beyond the Basics Using SAS (SAS Institute. 2004), Kirk has written more than two hundred peer-reviewed papers
and articles that have appeared in professional journals and SAS User Group proceedings. He has also been an
Invited speaker and trainer at more than two hundred SAS International, regional, local, and special-interest user
group conferences and meetings throughout North America. His popular SAS Tips column, “Kirk’s Korner of Quick
and Simple Tips”, appears regularly in several SAS User Group newsletters and Web sites, and his fun-filled
SASword Puzzles is featured in SAScommunity.org.

Comments and suggestions can be sent to:

Kirk Paul Lafler
Software Intelligence Corporation

World Headquarters
P.O. Box 1390

Spring Valley, California 91979-1390
E-mail: KirkLafler@cs.com

