
Paper #TU11

Avoiding Blind Dates with SAS®
Derek Morgan, Washington University School of Medicine

ABSTRACT
Everybody is familiar with the concept of blind dates. When the date is made, you have visions of what he
or she will look like, but the reality doesn’t always match that. You can have blind dates in the SAS System,
too. This paper will show you how to avoid some of the possible pitfalls with dates (and times and datetimes)
in your SAS code. We’ll show how SAS handles dates and times through these examples of what can go
wrong, and close with a discussion of Excel conversions.

WHAT’S THE FIRST THING I NEED TO KNOW?
The first thing is that SAS stores dates, times and datetimes as numbers. Dates are counted in days from a
zero point of January 1, 1960. Times are counted in seconds from a zero point of midnight of the current
day, and datetimes are counted in seconds since midnight, January 1, 1960. Each day that passes
increments the day counter by 1, and each second that passes increments the time and datetime counters
by 1. This makes it easy to calculate durations in days and seconds. Unfortunately, most references to
dates and times do not use the lowest common denominator of days and seconds, respectively, and they
certainly don’t use January 1, 1960 for the central reference for dates. That’s where the first problem comes
up: how to get SAS to speak about dates and times the way we do. How do you tell SAS that the date is
January 14, 1967?

date = “January 14, 1967”;

That won’t get you very far. Depending on the context, you’ll either get an error message telling you that
you tried to put characters into a numeric value, or you’ll get a character variable with the words, “January
14, 1967” stored in it. It may look OK, but if you try to do a calculation using that character variable, you’ll
get the SAS equivalent of a blind date.

DATA _NULL_;
date1 = "January 14, 1967";
date2 = "October 23, 2006";
days_in_between = date2 - date1;
PUT days_in_between = ;
RUN;
NOTE: Character values have been converted to numeric values at the places given
by: (Line):(Column). 19 4:27
NOTE: Invalid numeric data, date2='October 23, 2006' , at line 4 column 19.
NOTE: Invalid numeric data, date1='January 14, 1967' , at line 4 column 27.

days_in_between= .

In order to tell SAS about a specific date, you use a “date literal.” The date literals for the two dates above
are “14JAN1967”d and “23OCT2006”d. The letter “d” (bolded for emphasis only) at the end tells SAS that
this is a date and not just a string of characters. When we change the date strings in the above code to date
literals, we get our value for days_in_between:

DATA _NULL_;
date1 = "14jan1967"d;
date2 = "23oct2006"d;
days_in_between = date2 - date1;
PUT days_in_between = ;
RUN;

days_in_between=14527

The SAS equivalent of a blind date…

No part of the date literal is case-sensitive, that is, you can use all capital letters, all lower-case, or mixed
case for the date inside the quotes and the ‘d’ can be upper or lower-case. You may use single or double
quotes to enclose the literal string, but if you use double quotes, you're going to be subject to macro variable
resolution. Time literals have the form “05:00:00”t, with a “t” instead of the “d” at the end of the character
string, and datetime literals are expressed as “23oct2006:05:00:00”dt.

SAVING SPACE BY SHRINKING VARIABLE LENGTHS
While SAS has a default length for its numeric variables of 8, you can save space by defining smaller
lengths for dates, times, and datetimes. Dates can be stored in a length of 4. Times can be stored in a
length of 4, unless you need decimal fractions of seconds, then use 8 for maximum precision. Datetimes
can safely be stored in a length of 6, unless you need decimal fractions of seconds, in which case, you
would again use 8. For techies, if your operating system doesn’t handle half-words well, use 8 for
datetimes. Why can’t you go any lower? If today’s date is August 2, 2006, and we run the following code,
you’ll see.

DATA date_length;
LENGTH len3 3 len4 4 len5 5;
len3 = today() + 2;
len4 = len3;
len5 = len3;
FORMAT len3 len4 len5 mmddyy10.;
RUN;

Now let’s look at our data set:

While it isn’t the missing value dot, the value of len3 isn’t correct. When the numeric date value was written
to the dataset, some precision was lost. (if you want to check that this happens when the data are written,
place a PUT statement into the DATA step and you’ll see that the value is correct there.) This is a hit-or-
miss proposition; sometimes it happens and sometimes it doesn’t, depending on the binary representation of
the SAS value.

OLD DATES
SAS can go all the way back to January 1, 1582, so you’ll probably be able to work with your old dates.
However, old dates can produce blind dates in SAS. You may not get a missing value, but you won’t
necessarily get what you expect. Make sure that you check your century. The YEARCUTOFF option gives
you the capability to define a 100-year range for two-digit year values. The default value for the
YEARCUTOFF option is 1920, giving you a range of 1920-2019. Let’s demonstrate with date literals using
this program:

OPTIONS YEARCUTOFF=1920; /* SAS System default */
DATA yearcutoff1;
yearcutoff = "SAS System Default: 1920";
date1 = "08AUG06"d;
date2 = "15JUN48"d;
date3 = "04jan69"d;
date4 = "22oct95"d;
RUN;
OPTIONS YEARCUTOFF=1840;
DATA yearcutoff2;
yearcutoff = "1840";
date1 = "08AUG06"d;
date2 = "15JUN48"d;

date3 = "04jan69"d;

date4 = "22oct95"d;
RUN;

That gives us the following result::

OPTIONS
YEARCUTOFF value date1 date2 date3 date4
SAS System Default: 1920 08/08/2006 06/15/1948 01/04/1969 10/22/1995

1840 08/08/1906 06/15/1848 01/04/1869 10/22/1895

By changing the the start of the hundred year period with the YEARCUTOFF option, we’ve changed all of
the dates without changing the date literals themselves. Any two-digit year that the SAS System has to
translate, whether it’s from a date literal as in the example, an ASCII file being processed with the INPUT
statement and an informat, or even the INPUT() function and an informat will be affected by this option. The
lesson here is to check your dates before and after processing.

FORMATS AND THE BLIND DATE
Since SAS keeps track of dates and times (and datetimes) as numbers relative to some fixed point in time,
how do we get SAS to show us its dates in ways that we understand, and how can we communicate our
dates to SAS? Formats are the way that SAS can translate what it understands into something that we can
understand, while informats do the reverse. So how can this translation make blind dates?

First, you need to make sure that you are using the correct format or informat for your data, and the type of
data you are working with. Don’t try to use a date format to print out a datetime value, or use a time format
to print out a date. SAS stores dates, times, and datetimes as numbers, but it does not store any context
information with it. So if it isn’t clear what the value represents to you, SAS won’t be much help directly.
(You can make an educated guess based on the maximum values and ranges of the variables involved, but
it isn’t foolproof.) Here’s a little program to illustrate:

DATA _NULL_;
date = "08AUG2003"d;
time = "13:43"t;
datetime = "25JAN2005:15:52:07"dt;
PUT
 "MMDDYY10. representation of date=" date mmddyy10. /
 "MONYY7. representation of date=" date monyy7. /
 "TIMEAMPM9. representation of date=" date timeampm9. /
 "DTMONYY7. representation of date=" date dtmonyy. /
 "When value of date is used as a SAS *datetime* value, the date represented is:"
 date datetime20. /
 "DATETIME20. representation of time=" time datetime20. /
 "DTMONYY7. representation of time=" time dtmonyy7. /
 "TIMEAMPM9. representation of time=" time timeampm9. /
 "MONYY7. representation of time=" time monyy7. /
 "When value of time is used as a SAS *date* value, the date represented is:"
 time mmddyy10. /
 "DATETIME20. representation of datetime=" datetime datetime20. /
 "DTMONYY7. representation of datetime=" datetime dtmonyy7. /
 "TIMEAMPM9. representation of datetime=" date timeampm9. /
 "MONYY7. representation of datetime=" datetime monyy7. /
 "When value of datetime is used as a SAS *date* value, the date represented is:"
 datetime mmddyy10.;
RUN;

To make it a little easier to compare and contrast, here are the results in tabular form. Any DATA step and
PROC REPORT or PROC TABULATE manipulations necessary to produce this output are left as an
exercise for the reader.

 Date Formats Time Format Datetime Formats

Variable Value in
SAS

Using
MMDDYY10.

format

Using
MONYY.
format

Using
TIMEAMPM9.

format

Using
DTMONYY7.

format

Using
DATETIME20.

format

Date 15925 08/08/2003 AUG2003 4:25:25 AM JAN1960 01JAN1960:04:25:25

Time 49380 03/13/2095 MAR2095 1:43:00 PM JAN1960 01JAN1960:13:43:00

Datetime 1422287527 ********** ******* 3:52:07 PM JAN2005 25JAN2005:15:52:07

The first thing that you notice is that the datetime value gives you a bunch of asterisks when you try to
format it as a date. The date is so far in the future that it can’t be represented with a four-digit year, but that's
the only blatant indication that something’s not quite right. Why the discrepancy on the others? When you
try to translate a date value with a time format, you are translating days since 1/1/1960 with something that’s
supposed to translate seconds since midnight. 15,925 seconds after midnight is 4:25:25 in the morning. If
you translate 15,925 as seconds after midnight, 1/1/1960, which is the datetime convention, you get 4:25:25
AM on January 1, 1960. Similarly, if you translate 49,380 as days since 1/1/1960, you get March 13, 2095.
Finally, note the cell in italics. There’s absolutely nothing to indicate that something is wrong here. Why do
we get a normal-looking time? The TIMEAMPM format gives times from 12:00 AM to 11:59 PM, so any
value greater than 86400 (the number of seconds in a day) just cycles into the next day. Therefore, you are
getting the result of MOD(value,86400).

NEED A FORMAT FOR YOUR DATE?
Although there are many formats that are built into SAS, you may find yourself with a case where you can’t
find a format that displays your date, time, or datetime the way that you want. Don’t panic. You can use a
custom format. You can create a format to show off your dates. There are two ways to do this, and the first
is with the VALUE statement in PROC FORMAT. You define a range for the values using date, time, or
datetime constants, and you can tell SAS what to print out instead of the date. Here’s a sample program
that will create a format to display whether a contract is scheduled for arbitration or renegotiation based on
the expiration date of the contract:

PROC FORMAT LIBRARY=library;
VALUE contrct
LOW-‘31dec2005’d="INVALID"
‘01JAN2006’D-’31JUL2006’d= "ARBITRATION"
‘01AUG2006’d - ‘31DEC2006’d = "RENEGOTIATION"
‘01JAN2007’d - high=[MONYY7.]; /* INSTRUCTS SAS TO USE THE
 MONYY7. FORMAT FOR VALUES BEYOND 2006*/
RUN;

PROC PRINT DATA= contracts;
ID contract_num;
VAR exp_date exp_date_raw;
FORMAT exp_date contrct. exp_date_raw MMDDYY10.;
RUN;

Here's some of the output – instead of the date, our format classifies the date values and translates them
into categorical text.

contract_num exp_date exp_date_raw
5829014 INVALID 12/06/2005

9330471 RENEGOTIATION 09/21/2006

6051271 APR2007 04/11/2007

2301911 ARBITRATION 01/23/2006

6894300 RENEGOTIATION 08/21/2006

So where can you go wrong here? Lot's of places, actually. Let's examine the code for our format:
1 PROC FORMAT LIBRARY=LIBRARY;
2 VALUE CONTRCT
3 LOW-‘31dec2005’d="INVALID"
4 ‘01JAN2006’D-’31JUL2006’d= "ARBITRATION"
5 ‘01AUG2006’d - ‘31DEC2006’d = "RENEGOTIATION"
6 ‘01JAN2007’d - HIGH=[monyy7.]; /* Instructs SAS to use the

 MONYY7. format for values beyond 2006*/
7 RUN;

First, if you forget the "D" to indicate that the value is a date constant, you're going to get an error from lines
3-6. Notice that line 3 uses the special value "LOW". Without it, any date before January 1, 2006 will display
as the actual SAS numeric value. Similarly, line 6 accounts for values in the future by using the special
value "HIGH". However, instead of setting it to print categorical text, we've told SAS to use one of its own
date formats if the date is after December 31, 2006. That's why there's a format name enclosed in brackets
after the equals sign. Without the format name, there's no formatting associated with the SAS date value.

PRETTY AS A PICTURE
The second way to create your own format for your date, time, or datetime is with a picture format. Picture
formats allow you to create a representation of your data by describing what you want it to look like. There
are special formatting directives to allow you to represent dates, times and datetime values. These
directives are case-sensitive. You will also need to use the DATATYPE= option in your PICTURE
statement. DATATYPE is DATE, TIME, or DATETIME, and it indicates the type of value you are formatting.

Here are the directives:

%a Locale’s abbreviated weekday name.

%A Locale’s full weekday name.

%b Locale’s abbreviated month name.

%B Locale’s full month name.

%d Day of the month as a decimal
number (1-31), with no leading zero.
Put a zero between the percent sign
and the “d” to have a leading zero in
the display.

%H Hour (24-hour clock) as a decimal
number (0-23), with no leading zero.
Put a zero between the percent sign
and the “H” to have a leading zero in
the display.

%I Hour (12-hour clock) as a decimal
number (1-12), with no leading zero.
Put a zero between the percent sign
and the “I” to have a leading zero in
the display.

%j Day of the year as a decimal number
(1-366), with no leading zero. Put a
zero between the percent sign and the
“j” to have a leading zero in the
display.

%m Month as a decimal number (1-12),
with no leading zero. Put a zero
between the percent sign and the “m”
to have a leading zero in the display.

%M Minute as a decimal number (0-59),
with no leading zero. Put a zero
between the percent sign and the “M”
to have a leading zero in the display.

%p Either AM or PM.

%S Second as a decimal number (0-59),
with no leading zero. Put a zero
between the percent sign and the “S”
to have a leading zero in the display.

%U Week number of the year (Sunday as
the first day of the week) as a decimal
number (0-53), with no leading zero.
Put a zero between the percent sign
and the “U” to have a leading zero in
the display.

%w Weekday as a decimal number, where
1 is Sunday, and Saturday is 7.

%y Year without century as a decimal
number (0-99), with no leading zero.
Put a zero between the percent sign
and the “y” to have a leading zero in
the display.

%Y Year with century as a decimal
number (four-digit year).

%% The percent character (%).

Here's a simple example of using the date directives to create an enhanced date display with the day of the year.
PROC FORMAT;
PICTURE xdate
. - .z = "No Date Given"
LOW - HIGH = ‘%B %d, %Y is day %j of %Y’ (DATATYPE=DATE);
RUN;
PROC PRINT DATA=pictest;
VAR date;
FORMAT date xdate40.;
RUN;

Let's look at the output for several pseudo-random dates:

date
No Date Given

August 3, 2005 is day 215 of 2005

November 27, 2005 is day 331 of 2005

January 14, 2008 is day 14 of 2008

October 6, 2007 is day 279 of 2007

February 13, 2006 is day 44 of 2006

May 18, 2007 is day 138 of 2007

August 12, 2007 is day 224 of 2007

October 2, 2005 is day 275 of 2005

March 22, 2007 is day 81 of 2007

What can lead you to a blind date with this? First, make sure that you have defined the correct DATATYPE.
Otherwise, you're not going to get a correct representation, just like you would by using the wrong type of format
with the built-in SAS formats. Second, you need to make sure that you use a format length that is long enough to
show all of your text. The default length of a picture format is the number of characters between the quotes in the
picture. However, there may be more characters in your output. That's why the format length in the PROC PRINT
statement above is set to 40 ("xdate40."). If we were to allow the PROC PRINT to use the format with its default
length, this would be the output: we would get.

date
.

August 3, 2005 is day 215

November 27, 2005 is day

January 14, 2008 is day 1

October 6, 2007 is day 27

February 13, 2006 is day

May 18, 2007 is day 138 o

August 12, 2007 is day 22

October 2, 2005 is day 27

March 22, 2007 is day 81

Oops. This happens because the default length of the format is 25, which won't accommodate all of the text in the
formatted value. Since each of the format directives are only two characters long, the values they display can be
longer than that. For example, the “%B” format directive represents the full month name, which is always going to

be longer than two characters. This is why you must give a format length when you use your custom picture
formats with dates, times, and datetimes.

READING DATES AND TIMES AND DATETIMES
So far, our examples have all used date constants, but you can’t put a date constant everywhere you need a date,
such as in data. If you are converting data from a flat file, then you will need to use informats to read the data. To
read date, time, or datetime data from a flat file, you will need both the formatted INPUT statement and an
informat. Here’s an example of a flat file with dates:

10/26/2000
09/03/1998
05/14/1967
08/25/1989
07/01/2004
03/16/2001
03/16/1971
04/03/1968
09/25/1965

To read this file, you would use this DATA step:
DATA read_dates;
INFILE “c:\book\examples\a_few_dates.txt”;
INPUT @1 sample_date MMDDYY10.;
RUN;

And here’s a log of a program to display what is stored.
DATA _NULL_;

SET read_dates;

PUT "Sample date without formatting " sample_date /
 "Sample date with WORDDAT format " sample_date WORDDATE.;
RUN;

Sample date without formatting 14909
Sample date with WORDDATE. format October 26, 2000
Sample date without formatting 14125
Sample date with WORDDATE. format September 3, 1998
Sample date without formatting 2690
Sample date with WORDDATE. format May 14, 1967
Sample date without formatting 10829
Sample date with WORDDATE. format August 25, 1989
Sample date without formatting 16253
Sample date with WORDDATE. format July 1, 2004
Sample date without formatting 15050
Sample date with WORDDATE. format March 16, 2001
Sample date without formatting 4092
Sample date with WORDDATE. format March 16, 1971
Sample date without formatting 3015
Sample date with WORDDATE. format April 3, 1968
Sample date without formatting 2094
Sample date with WORDDATE. format September 25, 1965

Since we looked at the file first, we knew that all of the data looked like “mm/dd/yyyy”, and we simply told the
INPUT statement that was what it would see when it read the field. By specifying that informat, we told SAS how
to translate what seems to be a character string (“/” is not a number) into a SAS date value. Blind dates are easy
to come by here: if you use the wrong informat for your data, things will definitely go wrong. In most cases, using
the wrong informat will give you an error, but you need to be careful with some of the informats that differ only in

the order of month, day, and/or year. The MMDDYY. informat will not give you the same result as the DDMMYY.
informat, and it wouldn’t give you any message that anything was abnormal until the middle two digits in the data
field were greater than twelve.

READING DATES AND TIMES AND DATETIMES THE EASY WAY
Version 9 addressed one problem with reading dates from flat files into SAS: you had to know what your date and
time data looked like before you could process it from a flat file into SAS. The ANYDTDTE., ANYDTDTM., and
ANYDTTME. informats will translate dates, times, and datetime values respectively, into their corresponding SAS
System values without having to know the representation of these dates, datetime, and time values in advance.
Pretty nifty. Of course, there are a couple of warnings: if you are going to leave it to SAS to figure out what the
data look like, it will add some overhead to the processing of your flat file. How much extra overhead is involved?
Let’s read 10,000 date records with SAS for Windows XP on a PC and find out. Here’s a partial log:

241 DATA test;
242 INFILE "examples/datefile.txt" PAD MISSOVER;
243 INPUT @1 date mmddyy10.;
244 RUN;

NOTE: 10000 records were read from the infile "examples/datefile.txt".
 The minimum record length was 10.
 The maximum record length was 10.
NOTE: The data set WORK.TEST has 10000 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 0.03 seconds
 cpu time 0.01 seconds

246 DATA test2;
247 INFILE "examples/datefile.txt" PAD MISSOVER;
248 INPUT @1 date anydtdte10.;
249 RUN;

NOTE: 10000 records were read from the infile "examples/datefile.txt".
 The minimum record length was 10.
 The maximum record length was 10.
NOTE: The data set WORK.TEST2 has 10000 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 0.07 seconds
 cpu time 0.04 seconds

Using the ANYDTDTE. format takes four times as long in CPU time to read this relatively small flat file than using
the MMDDYY. format does. So what if it takes more time? Doesn’t it seem to solve all of your problems? Where
can you get blind dates from this? Well, what if you have a date such as 06/11/2005, or worse, 06/11/05? Is it
June 11, 2005, November 6, 2005, or November 5, 2006? There’s an option that will allow you to tell SAS what it
should be. The DATESTYLE option comes in seven flavors:

MDY
Sets the default order as month, day,
year. 06-11-05” would be translated
as June 11, 2006

YDM
Sets the default order as year, day,
month. “06-11-05” would be translated
as May 11, 2006

MYD
Sets the default order as month,
year, day. “06-11-05 would be
translated as June 5, 2011

DMY
Sets the default order as day, month,
year. “06-11-05” would be translated
as November 6, 2005

YMD
Sets the default order as year,
month, day. “06-11-05” would be
translated as November 5, 2006

DYM
Sets the default order as day, year,
month. “06-11-05” would be translated
as May 6, 2011

LOCALE
(default)

Sets the default value according to the LOCALE= system option. When the default value
for the LOCALE= system option is “English_US”, this sets DATESTYLE to MDY.
Therefore, by default, “06-11-05” would be translated as June 11, 2005

Although it may seem just that easy to resolve ambiguous dates, it’s not foolproof.

AM I READING ENOUGH?
One more issue with reading dates and times from a flat file is making sure that you are reading the correct
number of characters in the field. All of the informats have a length specification, which is how many characters
are to be processed using the informat. For example, the MMDDYY10. informat reads ten characters, and will
attempt to translate it as mm-dd-yyyy, although the exact separator between month, day, and year may vary. If
you forget the length specification, each informat has its own default length. This default may not match your data.
The bottom line is that when you are reading in date values from a flat file, it’s best to look at the data that you’ve
produced from the flat file before you actually use it.

CREATING DATES, TIMES AND DATETIMES FROM NUMBERS
There is a whole group of functions in SAS that are dedicated to creating the date, time, and datetime values from
the individual elements such as month, year, hour, and minute. The MDY() function takes individual values for
month, day and year, and converts them to a SAS date value. Similarly, the HMS() function creates SAS time
values from hours, minutes, and seconds. Finally, the DHMS() function yields SAS datetime values from dates,
hours, minutes, and seconds. Each of the functions needs all of its component arguments, e.g., the DHMS()
function needs non-missing values for date, hour, minute, and second. If you are missing any one of these
components, you will get a missing value as the result.

MAKING DATES
Many methods are available for filling in missing values for month and day before conversion, but the “best guess”
method is one that we often use.

IF year LT 0 THEN
 date = .E;
ELSE DO;
 IF month LT 1 AND day LT 1 THEN DO;
 month = 6;
 day = 30;
 END;
 ELSE DO;
 IF day LT 1 THEN DO;
 SELECT(month);
 WHEN(2) day=14;
 OTHERWISE day = 15;
 END;
 END:
 END;
 date = MDY(month,day,year);
END;

The net effect of this code is that any missing dates due to missing year values will stick out like a sore thumb,
while if we have a year, but no date, the date is set to approximately mid-year (June 30). If only the day is missing,
we approximate the middle of the month (14 for February, 15 for all other months).

EXTRACTING MONTH, DAY, YEAR, ETC. FROM YOUR NON-BLIND DATE
There are also functions that will pull the individual component values from SAS date, time and datetime values.
The main thing you need to be careful of is that you use the appropriate function for the type of value you are
using. Don’t try to use the DAY() function to extract a day from your datetime value. It won’t work right, as the
next example shows.

DATA _NULL_;
datetime = "27JAN1960:12:35:00"dt;
time = "12:35:00"t;
date = "27JAN1960"d;
day_datim = DAY(datetime);
day_tm = DAY(time);
day_date = DAY(date);
PUT datetime= +3 time= +3 date= ;
PUT day_datim= +3 day_tm= +3 day_date=;
RUN;
datetime=2291700 time=45300 date=26
day_datim=20 day_tm=10 day_date=27

The first line of output shows the actual values that SAS is operating on. In the above example, I purposely used
an early datetime value (2,291,700 seconds relative to midnight, January 1, 1960,) because it gives me a non-
missing value, albeit incorrect, for the day. If you use a datetime sometime in March of 1960, SAS will give you an
error message. However, it doesn’t give an error message because it knows that it’s a datetime value; it’s trying to
figure out a day for a value that’s too large for the function to work. In that vein, here’s a trickier one:

DATA _NULL_;
datetime = "27MAR1998:12:15:00"dt;
time = "12:15:00"t;
date = "27MAR1998"d;
minit_datim = MINUTE(datetime);
minit_tm = MINUTE(time);
minit_date = MINUTE(date);

PUT datetime= +3 time= +3 date= ;

PUT minit_datim= +3 minit_tm= +3 minit_date=;
RUN;
datetime=1206620100 time=44100 date=13965
minit_datim=15 minit_tm=15 minit_date=52

What happened here? It worked just fine for the datetime value, didn’t it? Not exactly. Remember that both times
and datetimes are stored in seconds since midnight, and that times cycle every 86,400 seconds. Any value
greater than 86400 (the number of seconds in a day) just cycles into the next day. Therefore, you are getting the
result of MOD(value,86400). So, while the time extraction functions seem to work with datetimes, it’s a bad habit
to get into. You can also clearly see that trying to get the minute out of the date value gives you a truly blind date.

One last example of a date function that can give you blind dates is the JULDATE() function. It will convert a date
value into a numeric representation of a Julian date. The output it yields is affected by the YEARCUTOFF option.
It will return a four- or five-digit value if the year portion of the date falls within the 100-year span defined by the
YEARCUTOFF= option, regardless of whether you’re using an argument with a two- or four- digit year, or a SAS
date value. Since it returns a numeric value, leading zeroes are not significant, and are dropped. If that “200”, or
that “19” are going to be important to you, use the Y2Kcompliant JULDATE7() function, which will always return a
seven-digit number.

DATA _NULL_;
juldate1 = JULDATE("27JAN1990"d);
juldate2 = JULDATE("27JAN1890"d);
juldate7_1 = JULDATE7("27JAN1990"d);
juldate7_2 = JULDATE7("27JAN1890"d);
RUN;

Here’s the result in a table:

Date
Using

JULDATE()
Using

JULDATE7() What happened?

January 27, 1990 90027 1990027 They’re different due to the YEARCUTOFF processing
of the argument.

January 27, 1890 1890027 1890027 Same result, because the date argument to the
function is outside of the YEARCUTOFF range
(19202019)

INTERVALS
Intervals are prone to giving people blind dates. They are very powerful, but frequently misunderstood, especially
when they are used in association with the two interval calculation functions INTCK() and INTNX(). The INTCK()
function counts the number of intervals between two given dates, times, or datetimes, while the INTNX() function
takes a given date, time or datetime and increments it by a given number of intervals. SAS has several standard
intervals already defined. These intervals represent periods of time such as days, weeks, months, and quarters, to
name a few. A complete list of the SAS intervals, along with the default starting points for each type of interval is
on the following page.

Interval Name Definition

Default
Starting
Point

DAY Daily intervals Each day

WEEK Weekly intervals of seven days Each Sunday

WEEKDAYdaysW

Daily intervals with Friday-Saturday-Sunday counted as the same day (five-day
work week with a Saturday-Sunday weekend). days identifies the individual
numbers of the weekend day(s) by number (1=Sunday ... 7=Saturday). By
default, days=“17”, so the default interval is WEEKDAY17W.

Each day

TENDAY Ten-day intervals (a U.S. automobile industry convention)
1st, 11th, and
21st of each
month

SEMIMONTH Half-month intervals
First and
sixteenth of
each month

MONTH Monthly intervals First of each
month

QTR Quarterly (three-month) intervals
1-Jan 1-Apr
1-Jul 1-Oct

SEMIYEAR Semi-annual (six-month) intervals 1- Jan 1 Jul

YEAR Yearly intervals 1-Jan

DTDAY Daily intervals used with datetime values Each day

DTWEEK Weekly intervals of seven days used with datetime values Each Sunday

DTWEEKDAYdaysW

Daily intervals with Friday-Saturday-Sunday counted as the same day (five-day
work week with a Saturday-Sunday weekend). days identifies the individual
weekend days by number (1=Sunday ... 7=Saturday). By default, days=“17”, so
the default interval is DTWEEKDAY17W. This interval is only used with
datetime values.

Each day

DTTENDAY Ten-day intervals (a U.S. automobile industry convention) used with datetime
values

1st, 11th, and
21st of each
month

DTSEMIMONTH Half-month intervals used with datetime values
First and
sixteenth of
each month

DTMONTH Monthly intervals used with datetime values First of each
month

DTQTR Quarterly (three-month) intervals used with datetime values
1-Jan 1-Apr
1-Jul 1-Oct

DTSEMIYEAR Semiannual (six-month) intervals used with datetime values 1- Jan 1 Jul

DTYEAR Yearly intervals used with datetime values 1-Jan

DTSECOND Second intervals used with datetime values Seconds

DTMINUTE Minute intervals used with datetime values Minutes

DTHOUR Hour intervals used with datetime values Hours

SECOND Second intervals used with datetime values Seconds

MINUTE Minute intervals used with datetime values Minutes

HOUR Hourly intervals used with datetime values Hours

These may seem quite self-explanatory, but if you just jump right in and use these intervals without reading about
them, you will end up with many blind dates.

WHEN IS A YEAR NOT A YEAR?
The syntax for the INTCK() function is: INTCK(interval,start-of-period,end-of-period); To illustrate the blind date
potential, consider the following program:

DATA _NULL_;
v1 = INTCK(‘YEAR’,’01jan2005’d,’01jan2006’d);
v2 = INTCK(‘YEAR’,’31dec2005’d,’01jan2006’d);

PUT v1= +3 v2= +3;

RUN;
v1=1 v2=1

Now wait a minute. I know that a year from December 31, 2005 isn't January 1, 2006. What happened? SAS
intervals aren't a shortcut to doing the math. The INTCK() function counts the number of times that the period
interval begins between start-of-period and end-of-period. It does not count the number of complete intervals
between start-of-period and end-of-period. Therefore, for any date in 2005, the first year period starts on January
1, 2006, which means that for any date in 2005, the number of YEAR intervals INTCK will return is 1 for any given
date in 2006. There's big potential for blind dates here if you misunderstand how INTCK() goes about its business.

The big thing to remember about intervals is that they are based on the beginning point of the interval, and not the
beginning date given to the function.

BUT I DON'T WANT MY YEAR TO START ON JANUARY 1
Since the default starting point of an interval is at the beginning of the interval, it would seem that SAS has a blind
spot when it comes to figuring out intervals that do not coincide with that. There is a way to shift the starting point
of any given interval by creating your own interval definition. For example, what if you wanted to know the number
of YEAR intervals between two dates, but instead of calculating calendar years, you wanted to calculate your
company's fiscal year, which starts on February 1? You tell SAS how many periods to shift. Each interval has a
shift unit. For years, the shift unit is months, so you will tell SAS to shift the starting point of the year in terms of
months. A shifted interval is the interval name, followed by a period, and the number of periods to shift. To shift
the start of the YEAR interval to February 1, you would use the interval "YEAR.2".

Here's where the blind date comes in: when you count the number of periods to shift, you need to include the
beginning of the period. We are not shifting the start of the year interval by one month to move to February; we're
moving the start of the year to the second month. If you don't account for this, you'll be off by one unit. Another
handy way to think of it is that the YEAR.1 interval is the same as the YEAR interval.

EXCEL
Let's not overlook the potential for blind dates whenever you convert from Microsoft Excel into SAS or vice versa.
The worst offender? Old dates. Microsoft Excel uses a zero point of January 1, 1900. It cannot count backwards
from zero. Therefore, any date prior to 1900 is represented as text, not as an Excel date value. What do you if
you have dates before January 1, 1900 to convert? Going to Excel, you will have to store them as character
strings, and you won’t be able to use any of the Excel math functions on them. On the other hand, if you are going
from Excel to SAS, then you can use an INPUT statement and a DATA step to process a CSV file. The IMPORT
wizard and/or procedure? They'll give you the dreaded dot.

SUMMARY
The way that SAS handles dates, times, and datetimes allows for a great deal of flexibility in the display,
manipulation, and computation of these important pieces of data. However, that flexibility can also make it easy to
do things wrong. A solid basic understanding of dates and times in SAS is necessary to use this powerful tool
correctly. Dates, times, and datetimes are stored as numbers in the SAS system. Dates are counted in days from
a zero point of January 1, 1960. Times are counted in seconds from a zero point of midnight of the current day,
and datetimes are counted in seconds since midnight, January 1, 1960. Each day that passes increments the day
counter by 1, and each second that passes increments the time and datetime counters by 1.

The display of SAS dates and times are accomplished by using formats. There are many built-in formats in SAS.
Each of these displays a date, time, or a datetime value as something we can recognize. Date formats are specific
to date values, time formats are specific to time values, and datetime formats are specific to datetime values. If
you use the wrong type of format, your display will be incorrect. If none of the built-in formats meet your needs,
you can create your own, either by defining the display to correlate with certain values, or by defining the display
with a pictorial template using symbolic directives.

In order to translate dates and times as we know them into the values recognized by SAS, we use informats. As
with formats, there are many built-in informats, designed to translate standard alphanumeric or numeric
representations of dates into SAS date, time, or datetime values. You need to specify the number of characters to
be processed by the informat, and you should use the correct informat for the alphanumeric characters you are
processing. If you don't know, you can use the ANYDATE sereis of informats, but be prepared for a performance
hit.

You may extract the individual components of a SAS date, time, or datetime value, such as month number, day, or
hour as examples. However, you need to make sure that you do not try to extract a month from a time, or an hour
from a date. You may also create a SAS date, time, or datetime value from individual components. Whenever you
do this, remember that all of the arguments to the MDY(), HMS(), and DHMS() functions must be present for them
to work.

It is frequently useful to refer to periods of time by familiar reference, such as year or quarter. SAS handles this
with intervals. There are several such standard periods defined in SAS, and two functions that use them, INTCK()
and INTNX(). The most important thing to remember is that these functions use SAS intervals by measuring the
intervals from the start point of the interval, not the dates supplied to the functions as arguments.

There are many more uses of dates, many more functions relating to dates and times and datetimes, and more
capabilities of intervals than have been shown in this brief paper. However, the flexibility of SAS and the tools it
provides for manipulation of dates, times, and datetimes should allow you to accomplish whatever you need to.

REFERENCES
1. Morgan, Derek P. 2006. The Essential Guide to SAS

®

 Dates and Times. Cary, NC: SAS Institute Inc.

CONTACT INFORMATION:
Further inquiries are welcome to:
Derek Morgan
Division of Statistical Genomics
Washington University Medical School
Box 8506, 4444 Forest Park Blvd.
St. Louis, MO 63108
Phone: (314) 362-3685 FAX: (314) 362-4227
E-mail: derek@wustl.edu

