
For 2006 MWSUG Meeting, CC03

Data Transposition with Proc Report

Lingqun Liu
The University of Michigan, Ann Arbor

Abstract

Transposition is a very common data
manipulation task. With SAS, data
transposition can be carried out in more
than one way. Data Step and Proc
Transpose are the two most common
methods. Besides these two, this paper
also introduces a third way, PROC
REPORT, which SAS users can use to
transpose data, in some circumstances,
more efficiently than the other two
methods. In appendix 2, I use Proc
Report to solve some data transposition
problems posted on SAS_L website.

Keywords

Data Transposition, Data Step, Proc
Transpose, Proc Report, SAS_L

Introduction

This paper includes the following parts:
(1) Data transposition; (2) Data Step and
data transposition; (3) Proc Transpose;
(4) Proc Report and data transposition.
There also are two appendixes.

I. Data Transposition

Data transposition is the process of
restructuring values of a SAS data set by
turning selected variables into
observations. They are commonly
needed to support certain analyses that
require particular data structures.

Basically there are two types of data
arrangement: longitudinal structure and
latitudinal structure. (See Figure 1.1 and

1.2) In the former arrangement, values
of all measures on each object are stored
in the same variable. There will be
multiple rows for each object. The key
will be object and measure. In the latter,
values of each measure are stored in a
separate variable. There is only one
observation for each object. Variable
Object is the key itself. Most data
transpositions switch data between these
two structures.

Figure 1.1: Longitudinal Structure

object measure value
A ma 12
A mb 32
A mc 12
B ma 11
B mb 33
B mc 14
… …

Figure 1.2: Latitudinal Structure

object ma mb mc
A 12 32 12
B 11 33 14
… …

II. Data Step and Data transposition

Lots of SAS users frequently write Data
Step code to transpose their data sets.
That might be because they are more
comfortable with Data Step
programming, or they like to perform
extra data manipulation tasks within the
same code, or they think they would be
able to have a “better” control of the
process.

 1

For 2006 MWSUG Meeting, CC03

Here is an example from work by the
University of Michigan Kidney
Epidemiology and Cost Center (UM-
KECC). UM-KECC creates Dialysis
Facility Reports (DFRs) annually for all
dialysis service providers in the United
States. Research data about the
providers are identified and linked by
their Medicare Provider Numbers in
various data sources. Because a facility
may change its provider number due to
ownership changing or other reasons, a
facility may have more than one
provider number associated with it
during a 4 year DFR period. In order to
create a facility level data file we need to
map all related provider numbers to their
main provider numbers. Figure 2.1
shows a simplified facility data set. In
this data set, variable provnum contains
the main numbers and altprovnum
contains all the related numbers. To have
one observation for each main provider
requires a data transposition process.
Let’s see how a Data Step can help here.

Figure 2.1 PROVNUM_LONG

First, the input data has to be sorted or
indexed appropriately (or grouped). If
it’s not sorted and not indexed, the
NOTSORTED option is required in the BY
statement. This is always true whenever
a BY statement is present in your SAS

code. Second, ARRAY and RETAIN
statements are used to store and process
data values. Third, the BY statement and
the SAS automatic variables
FIRST.variable and LAST.variable are
used to control the process.

Here is the Data Step code:

CODE 2.1

data provnum_lat;
set provnum_long;
by provnum notsorted;
retain prov1-prov3;
array prov{3} $;
if first.provnum then do;
 c = 1;
 do i = 1 to 3;
 prov{i}=' ';
 end;
end;
else c+1;
if c le 3 then
prov{c} = altprovnum;
if last.provnum then do;
 multi = (c gt 1);
 output;
end;
dro
run;

p altprovnum c i;

The output of code 2.1 is shown in
Figure 2.2 below.

Figure 2.2 PROVNUM_LAT

Transposing PROVNUM_LAT backward to
PROVNUM_LONG with a Data Step is a
straightforward task (and not shown here).

You may have noticed that
PROVNUM_LONG has a slightly different
structure than that of Figure 1.1. There

 2

For 2006 MWSUG Meeting, CC03

are repeated measurements for a
provider and altprovnum is the only
measure. If there are multiple variables
(measures) with repeated measurements,
we just need a little revision to the Data
Step code listed above. (See APPENDIX 1)

III. PROC TRANSPOSE

As SAS Documentation says, “The
TRANSPOSE procedure can often
eliminate the need to write a lengthy
Data Step to achieve the same result.” In
deed, to reshape PROVNUM_LONG to
PROVIDER_LAT with Proc Transpose,
you just need the following lines.

CODE 3.1

proc transpose data=provnum_long
 out=provnum_lat
 (where=(prov1 ne '') drop=_:)
 prefix = prov;
by provnum notsorted;
var altprovnum;
cop
run;

y state;

However, you may still need an extra
Data Step to process extra variables.

data provider_lat;
set provider_lat;
if prov2 ne '' then multi = 1;
else multi = 0;
run;

We can also transpose data set
PROVIDER_LAT to data set PROVIDER_LONG
with Proc Transpose.

CODE 3.2 (reverse)

proc transpose data=provider_lat
 out=provider_long
(drop=_: where=(altprovnum ne
'') rename=(col1=altprovnum));

The PREFIX= option specifies a prefix to
name newly created variables in the
output data set. It can work together with
a ID variable. If the ID statement, which
specifies a variable to name the
transposed variables, is present, then the
combinations of the value of PREFIX=
and values of the ID variable will be the
names of transposed variables in the

by provnum state;
var prov1-prov3;
run;

When using the Data Step to transpose a
data set, you have to know the maximum
value of numbers of observations in by
groups. In other words, you have to
know how many variables will be
created in the output dataset (for
example, 3 variables in code 2.1)
However, in code 3.1, Proc Transpose
will take care of this.

To take full advantage of Proc
Transpose, we have to understand its
statements and options and how they
work.

The Proc Transpose syntax is

PROC TRANSPOSE
<DATA=input-data-set>
<OUT=output-data-set>
<PREFIX=prefix>
<NAME=name> <LABEL=label> <LET>;

B DESCENDING> variable-1 Y <
<...<DESCENDING> variable-n>
<NOTSORTED>;

COPY variable(s);
ID variable;
IDLABEL variable;
VAR variable(s);

The PROC TRANSPOSE statement
specifies the input and output data sets
and lets you provide optional values for
naming and labeling the output data set.
(Although input and output data set
names are optional, it’s a good
programming practice to specify them.)

 3

For 2006 MWSUG Meeting, CC03

output data set. If the ID variable has
duplicated values, the LET option will
keep the last occurrence of each ID
value within the data set (or BY group).
Values of the IDLABEL variable will
label transposed variables in the output
data set. The NAME= and LABEL= options
let you rename the _NAME_ and _LABEL_
variables which contain, respectively,
names and their labels of variables listed
in the VAR statement.

The VAR statement lists variables to
transpose. If no VAR statement is
present, by default, all numeric variables
except the ones listed in the BY, COPY
and ID statements are variables to
transpose.

The BY statement lists variables that will
be used to form BY groups. Proc
Transpose doesn’t transpose data by
groups. It produces one observation for
each BY group for each variable to be
transposed. If the notsorted option is
used, the index on the BY variables will
be ignored.

CODE 3.3 (BY)

proc transpose data=provider
 out=provider_tran
 (drop=_:)
 prefix = prov;
by provnum state notsorted;
var
run;

 altprovnum;

We can revise CODE 3.1 because state
can be used as a group variable. The
revised code (see CODE 3.3) eliminates
the usage of the COPY statement and the
WHERE= data set option which was
used to remove the extra observations
created due to the use of COPY
statement. Without the WHERE=
option, the output of CODE 3.1 would
look like the one shown in Figure 3.1.

If a variable is not listed in any of these
statements: BY, VAR, ID, IDLABEL, it
will be dropped from the output data set.
Using the COPY statement lets users
save these variables in the output data
set for further processing. However the
way in which Proc Transpose “copies”
variables can be puzzling.

Figure 3.1 Without WHERE= option

SAS Documentation says the COPY
statement “copies variables directly from
the input data set to the output data set
without transposing them.” To better
understand how it works, CODE 3.4 tries
to simulate the COPY process.

CODE 3.4 (COPY Simulation)
data
provider_long(index=(provnum));
input
provnum $ state $ altprovnum $;
cards;
 262319 MO 260020
 262319 MO 262319
 262320 MO 262320
 262325 MO 262325
 262325 MO 262339
 262326 MO 262326
 262326 MO 263302
 262337 MO 260040
 262337 MO 262337
 162500 IA 162500
 162501 IA 162501
 262320 MO 263300
 26
run;

2325 MO 260137

proc transpose
data=provider_long

 4

For 2006 MWSUG Meeting, CC03

 out=provnum_lat
 prefix = prov;
by provnum ;
var altprovnum;
cop
run;

y state;

*1 subset TOCOPY;
data tocopy;
set provider_long;
by provnum;
kee
run;

p provnum state;

*2 NOCOPY: transpose without
;COPY

proc transpose
data=provider_long
 out=nocopy
 prefix = prov;
by provnum ;
var altprovnum;
/*c
run;

opy state; */

* 3. Pad observations into
NOCOPY for each group;
data pad_missing;
set tocopy;
by provnum;
keep provnum;
if not first.provnum then
output;
run;
data nocopy_paded;
set nocopy pad_missing;
by provnum;
run;
* 4. One-to-one merge;
option mergenoby=warn;
data final;
merge tocopy nocopy_paded;
run;
* Check;
proc compare
 data=final

run;

compare=provnum_lat ;

First, a subset of the input data set is
created in which only variables listed in
the BY and COPY statements are kept.
Let’s name it TOCOPY. Second, Proc
Transpose carries out the same
transposition without the COPY
statement, which creates the output data
set NOCOPY. Third, if TOCOPY and

NOCOPY have the same number of
observations for each BY group, then a
one-to-one merge is performed to
produce the final output data set. If not,
fill the one that has fewer observations
with observations containing only
missing values to make sure there are the
same number of observations for each
BY group in these two data sets before
the one-to-one merge is performed to
create the final output file.

In this simulation code, because the data
set NOCOPY has fewer rows than the
data set TOCOPY, the data set
PAD_MISSING is created to make sure
the data set NOCOPY_PADDED has the
same number of observations as the data
set TOCOPY. Then a one-to-one merge
is performed on them to mimic the result
of Code 3.1 (See Figure 3.1).

Proc Transpose is an interesting
procedure. It is a powerful data
transposition tool. It has a simple syntax
with just a few options. However, the
structure of the output data set is
determined by the characteristics of the
input data set, the combinations of the
Proc Transpose statements and options
users used, and the way in which Proc
Transpose works them together to
construct the output data set. Some
complex data transpositions involve
multitasks of Proc Transpose and the
syntax is sort of puzzling to some users.
Proc Transpose requires quite a bit of
practice to produce the users’ expected
results. That may encourage lots of users
to carry out their data transposition jobs
with other approaches instead of Proc
Transpose. For some data transposition
jobs, Proc Report can be a much easier
alternative.

 5

For 2006 MWSUG Meeting, CC03

IV. Data Transposition with Proc
Report (and more)

Proc Report is designed to generate data
reports. It allows users to include
statistics and to compute new variables.
Proc Report provides an ACROSS
column type that could be used (along
with the OUT= option) to transpose
numeric variables. For example, the
following code will transpose the data
set shown in Figure 1.1 to the data set
in Figure 1.2. (My solutions with Proc
Report to some data transposision
problems posted on SAS_L website can
be found in APPENDIX 2)

proc report data=long
 out=lat(drop=_break_) nowd;
column object measure, value;
define object/group noprint;
define measure/across noprint;
define value/mean noprint;
quit;

To transpose data with Proc Report, the
group variables don’t have to be sorted
or indexed in the input data set. The
structure of the output data set is
straightforwardly under the user’s
control via the COLUMN and DEFINE
statements. Keep in mind there are some
limitations to using Proc Report to
transpose data. First, it can only
transpose data from the LONG structure
to the LAT structure. Second, all
variables to be transposed must be
numeric variables. That’s because all
variables under the ACROSS variable
have to be defined as analysis variables,
and only numeric variables can be
defined as analysis variables. Also, there
should be only one row for each
combination of GROUP variables and
ACROSS variables. That will let us
safely use the MEAN or SUM
operations on variables to be transposed.
If not, Proc Report will not complain,

but the result will be different. Proc
Report also lets users create new
variables with the column option
COMPUTED and the COMPUTE block.

Here is another example. As mentioned
above, UM-KECC links various ESRD
data sources such as Medicare claims,
medical evidence, patient events and
death notification files with Medicare
provider numbers to create yearly DFRs.
During the process, we need to count the
usage of each provider number in these
data sets each year. Figure 4.1 is a
simplified provider number usage file.
For facility level analyses, we need to
transpose it into a facility level data set.
The output data set has one row for each
facility and contains variables: provnum,
clm_2002-clm_2005, me_2002-me2005,
evt_2002-evt2005, dn_2002-dn2005.

Figure 4.1

data provnum_usage
 (index=(py=(provnum year)));
input
provnum $ year clm me evt dn;
cards;
112222 2003 1233 103 303 2
111111 2002 1232 102 302 3
112222 2002 1232 102 302 4
111111 2004 1234 104 304 4
112222 2005 1235 105 305 5
111111 2003 1233 103 303 3
113333 2002 1232 102 302 2
113333 2004 1234 104 304 5
113333 2003 1233 103 303 1
113333 2005 1235 105 305 1
111111 2005 1235 105 305 0
run;

In order to illustrate and compare the
different methods of data transposition
with SAS, we list more than one way to
transpose this to a facility level data set.
Code 4.1, 4.2, 4.3 and 4.4 exercise
Data Step or/and Proc Transpose
techniques. Code 4.5 brings into play

 6

For 2006 MWSUG Meeting, CC03

Proc Report as an unconventional data
transposition approach.

Code 4.1 also illustrates when multiple
Proc Transpose steps, one for each
variable, are needed to accomplish
complicated data transposition.

CODE 4.1 (Proc Transpose only)

* us Proc Trae nspose only;
proc transpose
 data=provnum_usage
 out=provnum_usage1(drop=_:)
 prefix=clm_;
by provnum;
id year;
var clm;
copy year me evt dn;
proc transpose
 data=provnum_usage1
 out =provnum_usage2(drop=_:)
 prefix=me_;
by provnum;
id year;
var me ;
copy year clm: evt dn;
proc transpose
 data=provnum_usage2
 out =provnum_usage3(drop=_:)
 prefix=evt_;
by provnum;
id year;
var evt ;
copy year clm: me: dn;

proc transpose
 data=provnum_usage3
 out =provnum_usage4(drop=_:)
 prefix=dn_;
by provnum;
id year;
var dn;
copy clm: me: evt:;
run;

CODE 4.2 (lengthy Data Step)

This code uses a lengthy Data Step, with
similar techniques to CODE 2.1, to carry
out the same job.

%macro assign(year);

 clm_&year = clm;
 me_&year = me;
 evt_&year = evt;
 dn_&year = dn;
%mend;

data all;
set provnum_usage;
by provnum year;

array outvars[*]
 clm_2002-clm_2005
 me_2002 -me_2005
 evt_2002-evt_2005
 dn_2002 -dn_2005;
retain
 clm_: me_:
 evt_: dn_:;
if first.pr num hen do; ov t
 do i=1 to 16 ;
 outvars[i]=.;
 end;
end;
if year=2002 then do;
 %assign(2002); end;
else if year=2003 then do;
 %assign(2003); end;
else if year=2004 then do;
 %assign(2004); end;
else if year=2005 then do;
 %assign(2005); end;
if last.provnum then output;
drop clm me evt dn i year;
run;

CODE 4.3 (simple Data Step)

To get the exact same result data set, this
code uses a much simpler Data Step with
different techniques than Code 4.2
based on the characteristics of this
transposition. A macro is also utilized to
set data set options for input data sets.

* use data step;
%macro subset(year);
provnum_usage (Where =
(year=&year)
rename= (clm=clm_&year
 me=me_&year
 evt=evt_&year
 dn=dn_&year))
%mend;

 7

For 2006 MWSUG Meeting, CC03

data all;
merge
 %subset(2002)
 %subset(2003)
 %subset(2004)
 %subset(2005);
by provnum;
drop year;
run;

CODE 4.4 (Data Step & Proc Tran)

*Dat Step anda Proc Tranpose;
proc transpose
 data=provnum_usage
 out =provnum_usage_t;
by provnum year;
run;

data provnum_usage_d;
set provnum_usage_t;
id=compress(_name_||'_'||year);
run;

proc transpose
 data=provnum_usage_d
 out =provnum_usage_lat3
 (drop=_:);
by provnum;
id id;
var col1;
run;

CODE 4.5 (Proc Report)

* use proc report;
%macro ren(vars,ids);
%let
v_ct=%eval(%sysfunc(countc("&var
s", ' '))+1);
%let
i_ct=%eval(%sysfunc(countc("&ids
", ' '))+1);
%put &v_ct &i_ct;
%do i=1 %to &i_ct;
%let id=%scan(&ids,&i);
%do v=1 %to &v_ct;
%let c=%eval((&i-1)*&v_ct+&v+1);
%let var=%scan(&vars,&v);
c&c. = &var._&id
%end; %end;
%mend;
proc report data=provnum_usage
nowindows out=all_rpt
 (drop=_break_ rename=(

%ren(clm me evt dn,2002 2003
2004 2005)));
column provnum year,(clm me evt
dn) ;
define provnum/group noprint;
define year/across noprint;
define clm/sum noprint;
define me/sum noprint;
define evt/sum noprint;
define dn/sum noprint;
quit;

Conclusion

The Data Step has an unlimited
capability for data manipulation; it can
handle all kinds of data transpositions,
simple or complex. That potential
originates in the powerful SAS data step
language which is a well-designed data
processing tool. Proc Transpose is
designed to perform typical jobs of data
transformation. Like all other SAS
procedures, it might not cover all
situations users may encounter in the
real world. (See examples in the
appendixes) Proc Report is intended to
generate various data reports with
selected statistics. It can be an
alternative to transposing some data sets,
although its use can be limited. Users
can always choose appropriate methods
to get the job done according to the
formats of their input and output data
sets and their acquaintance with each
technique. As illustrated in code 4.4,
using both Data Step and Proc Transpose
together may sometimes be the best
choice. But as shown in code 4.5, using
Proc Report has proved a good solution
for users who are familiar with Proc
Report. (See attachment for more data
transposition examples from SAS_L
website).

 8

For 2006 MWSUG Meeting, CC03

APPENDIX 1

Multiple Rows on Multiple Measures
• Data Step
* A1
data long;

D1: long to lat;

input object$ measure$ value;
cards;
A ma 12
A ma 13
A mb 32
A mb 32
A mc 12
B ma 11
B mb 33
B mc 14
run;

data lat;
set long;
by object measure;
retain ma1 ma2 mb1 mb2 mc1 mc2;
* store repeated values;
array ma{2} ;
array mb{2} ;
array mc{2} ;
if first.object then do;
* initialization ;

ma1=.;ma2=.;
mb1=.;mb2=.;
mc1=.;mc2=.;

end;
if first.measure then ct=1;
else ct+1;
if ct<3 then do;

if measure='ma' then
 ma[ct]=value;

 else if measure='mb' then
 mb[ct]=value;
 else if measure='mc' then
 mc[ct]=value;
end;
if last.object then output;
drop measure value ct;
run;

A1D1 output:

object ma1 ma2 mb1 mb2 mc1 mc2
A 12 13 32 32 12 .
B 11 . 33 . 14 .

* A1D2: lat to long;
data long2;
set lat;

array values{*} ma1 ma2 mb1 mb2
mc1 mc2;
do i=1 to 6;
 if values[i] then do;
 if i <3 then
 measure='ma';
 else if i <5 then
 measure='mb';
 else measure='mc';
 vaule=values[i];
 output;
 end;
end;
dro
run;

p i ma1 ma2 mb1 mb2 mc1 mc2;

• Proc Transpose

1. Can’t transpose data LONG directly

to data LAT.
2. Can transpose LONG to a similar

structure with multiple steps.

A1T1 output:

object ma mb mc
 A 12 32 12
 A 13 32 .
 B 11 33 14
 B . . .

* A1 1: long t
proc transpose data=long
out=lat_t1 (drop=_:);

T o lat;

by
run;

object measure;

proc transpose data=lat_t
out=lat_t2 (drop=_:);
by object ;
id measure;
run;

APPENDIX 2

Data Transposition problems on SAS_L

POST 1: (February 14, 2005)

http://listserv.uga.edu/cgi-bin/wa?A2=ind0502B&L=sas-
l&P=R38365

Sent: Monday, February 14, 2005 3:05 PM
To: SAS-L@LISTSERV.UGA.EDU
Subject: Data Transpose question

Hello everybody,

 9

http://listserv.uga.edu/cgi-bin/wa?A2=ind0502B&L=sas-l&P=R38365
http://listserv.uga.edu/cgi-bin/wa?A2=ind0502B&L=sas-l&P=R38365

For 2006 MWSUG Meeting, CC03

I have a data set that looks like this, and has values of
missing or greater than zero for weeklysales 1-7, Key2 has
values from 1-8, Key1 has values from 1-5:

Key1 Key2 WeeklySales1............ WeeklySales7
 1 1
 1 2
 2 7

I would like the final dataset to look like below, with 5 rows
representing 5 values for Key1:

Key1 Weeklysales1Key2=1..... Weeklysales7Key2=1
WeeklySales1Key2=2....

where the column names would be a combination of
WeeklySales1-7 and Key2 (ranges from 1-8).
Thanks for your help.
Regards,
Shukla

CODE A2.1 (Solution with Proc Report)

data sale;
input key1 key2 sale1- sale7;
cards;
1 1 1 2 3 4 5 6 7
2 2 1 2 3 4 5 6 7
3 3 1 2 3 4 5 6 7
4 4 1 2 3 4 5 6 7
5 5 1 2 3 4 5 6 7
5 6 1 2 3 4 5 6 7
5 7 1 2 3 4 5 6 7
5 8 1 2 3 4 5 6 7
run;

proc report data=sale out=sale_r
(rename=(%ren(sale1 sale2 sale3
sale4 sale5 sale6 sale7, 1 2 3 4
5 6 7 8))) nowd ;
column key1 key2,(sale1-sale7);
define key1/group noprint;
define key2/across noprint;
define sale1/sum noprint;
define sale2/sum noprint;
define sale3/sum noprint;
define sale4/sum noprint;
define sale5/sum noprint;
define sale7/sum noprint;
define sale7/sum noprint;
quit;

POST 2: (15 Mar 2005)

http://listserv.uga.edu/cgi-bin/wa?A2=ind0503C&L=sas-l&P=R2050

Actually, I have several variables for each question, so the
original data like below:
 data sample;
 input id ques $ answ1 answ2;

 cards;
 1 q1 3 12
 1 q2 4 13
 1 q3 3 15
 2 q1 4 11
 2 q2 4 14
 2 q3 3 13
 3 q1 3 15
 3 q2 2 16
 3 q3 4 17
 ;

 Then I want the final data format like:
id answ1_q1 answ1_q2 answ1_q3 answ2_q1 answ2_q2
answ2_q3
 1 3 4 3 12 13 15
 2 4 4 3 11 14 13
 3 3 2 4 15 16 17
 ;

Can SAS recode the data to above format? I did try adding
'answ1' and 'answ2' after the statement 'var', but all data only
use q1, q2, q3 as the top variable name so each id repeated
twice for answ1 and answ2, like:
 id q1 q2 q3
 1 3 4 3
 1 12 13 15
 2 4 4 3
 2 11 14 13
 ;
 Thanks for the help.
 Jane

CODE A2.2R (with Proc Report)

data sample;
 input id ques $ answ1 answ2;
 cards;
 1 q1 3 12
 1 q2 4 13
 1 q3 3 15
 2 q1 4 11
 2 q2 4 14
 2 q3 3 13
 3 q1 3 15
 3 q2 2 16
 3 q3 4 17
;

proc report data=sample
out=sample_r(rename=(%ren(answ1
answ2,q1 q2 q3))) nowd;
column id ques,(answ1-answ2);
define id/group noprint;
define ques/across noprint;
define answ1/sum noprint;
define answ2/sum noprint;
quit;

CODE A2.2TT (with Proc Transpose)

proc transpose data=sample
out=tran1(drop=_name_)

 10

http://listserv.uga.edu/cgi-bin/wa?A2=ind0503C&L=sas-l&P=R2050

For 2006 MWSUG Meeting, CC03

 prefix=answ1_;
 by id;
 id ques;
 var answ1 ;
 copy answ2;
run;
proc transpose data=tran1
out=sample_t(drop=_name_)
prefix=answ2_q;
 by id;
 var answ2 ;
 copy answ1_:;
run;

POST 3: (9 Jul 2006)
http://listserv.uga.edu/cgi-bin/wa?A2=ind0607D&L=sas-
l&P=R30418

Hi everyone - I really hope someone can help me with the
following problem. I have a list of teams playing each other
and I want to convert the table I have - which is in the form
of a Team1 identifier, Team2 identifier followed by the
number of times that Team1 have beaten Team2(T1Win), the
number of times Team2 has beaten Team1 (T2Win) and
finally the number of times that the games have finished in a
tie/draw (Tie12). I show an example here:
data initial;
input Team1 $ Team2 $ T1Win T2Win Tie12;
datalines;
A B 5 6 2
A C 4 7 3
B C 3 7 2
E A 4 3 1
E D 7 6 4
;
In my real dataset I have over 100 teams rather than just the 5
shown here (A-E). What I am trying to do is to transpose the
data somehow so that what I have is a decomposition of the
data into individual lines, 3 lines per one line in the above
data, where all of the team dentifiers become variables,
team1 winning is signified with a 1, a losing team by -1 and
if it is a tie we put a 0.5 in each of those teams columns, a
final column then shows how many times that result has
occurred. Much easier to show what I am hoping to
transform the above into (I just show the decomposition of
the first 3 of the lines from data set initial to save space):
 data required;
 input A B C D E Counter;
 datalines;
 1 -1 0 0 0 5
 -1 1 0 0 0 6
 0.5 0.5 0 0 0 2
 1 0 -1 0 0 4
 -1 0 1 0 0 7
 0.5 0 0.5 0 0 3
 0 1 -1 0 0 3
 0 -1 1 0 0 7
 0 0.5 0.5 0 0 2
 ;
run;

Just to highlight again - my actual dataset has over 100
teams, otherwise given the time I have been trying to do this I
would have done it manually!
Hope someone can help me achieve what I am trying to do!
Andrew

CODE A2.3TD (method 1)
* THIS ONE IS A LITTLE BIT
COMPLEX. We will do it with both
DATA STEP and PROC TRAN.;
data team;
input team1 $ team2$ t1win t2win
tie12;
cards;
A B 5 6 2
A C 4 7 3
B C 3 7 2
E A 4 3 1
E D 7 6 4
;
run;

* ea y to undes rstand;
proc transpose data=team
out=tran1(rename=(col1=counter))
;
by team1 team2 ;
run;

data step1;
set tran1;
group=ceil(_n_/3);
if _name_= 't1win' then do;
v1=1;v2=-1;end;
else if _name_= 't2win' then do;
v1=-1;v2=1; d; en
else do;v1=.5;v2=.5;end;
rename=compbl('V1='||team1||'
'||'V2='||team2);
if mod(_n_,3) = 0 then
call ymput(compress('r'||group),
rename);
drop _name_ rename team1 team2 ;
run;

* rename variables and
concatenate them group by group;
%macro ren(group);
data final;
set
%do i=1 %to &group;
step1 (where=(group=&i)
rename=(&&r&i))
%end;
drop group; run;
%mend;

CODE A2.3TTDT (method 2)

proc transpose data=team
out=tran1 name=pair
prefx=counter;
by group;

 11

http://listserv.uga.edu/cgi-bin/wa?A2=ind0607D&L=sas-l&P=R30418
http://listserv.uga.edu/cgi-bin/wa?A2=ind0607D&L=sas-l&P=R30418

For 2006 MWSUG Meeting, CC03

copy team: v:;
run;

proc transpose data=tran1
out=tran2(drop=id2 id3
index=(pair))
name=tm prefix=id;
by group;
var team1 team2;
copy pair counter1 v:;
run;

data score ;
pair='t1win'; v1=1; v2=-1;v3=.5;
output;
pair='t2win'; v1=-1; v2=1;v3=.5;
output;
run;

data tm_score ;
merge tran_2 score;
by pair;
run;

proc transpose data=tm_score
out=final ;
by group;
var v:;
id id1;
copy counter1;
run;

REFERENCE

SAS Institute Inc., Base SAS(R) 9.1.3
Procedures Guide, 2004, Cary, NC,
USA.

ACKNOLWGEMENT

I’d like to thank Sandy Callard, Richard
Eikstadt, Jeffrey Pearson and Randy
Webb for their valuable comments,
suggestions and support.

CONTACT

Questions and comments are welcomed.
Please feel free to contact the author:

Lingqun Liu
Kidney Epidemiology and Cost Center
University of Michigan
315 W. Huron, Suite 240
Ann Arbor, MI 48103
Phone: (734) 998-6609
Fax: (734) 998-6620
Email:lqliu@umich.eud

 12

mailto:lqliu@umich.eud

