
Paper AD10

Leveraging SAS® Portal:
Developing an Executive Dashboard with Customizable Data Source

Elibeth R. Carpenter, Comsys, Kalamazoo MI

ABSTRACT

Data is one of the biggest assets of corporations, and the ability to analyze it drives corporate goals,
strategies and results. One of the latest trends in business intelligence is the use of Key Performance
Indicators (KPI) to measure corporate performance, in an easy to read GUI. SAS provides a great deal of
tools to generate this kind of interface; the question is how to create a flexible, attractive and meaningful
Dashboard integrated into the SAS Portal.

This paper will step through the implementation of an Executive Dashboard as a Portlet Template (or
Editable Portlet) that summarizes data and represents it with SAS Critical Success Factor graphs, using the
SAS Java Connection Factory and the SAS Rangeview applet. Additionally, this Portlet illustrates the key
benefit of SAS Editable Portlets by allowing the users to choose the data they want to diagram. They will be
able to run stored processes and generate or modify the source data, all at the tips of their fingertips.

INTRODUCTION

SAS is widely known for providing useful libraries that greatly assist the programmer or developer in the
generation of data representation with graphs and tables. At the same time, we have the SAS Portal that is a
great leveraging tool in corporate business processes. Consider this: Wouldn’t it be a great idea to combine
these two resources and create an attractive Executive Dashboard integrated into the SAS Portal?

Dashboards seem to be under the spotlight in the area of Business Intelligence and Data Visualization.
Designing a Dashboard for executives that accomplishes the mission of presenting a great deal of
information in a limited amount of space and that at the same time is easy to read can be quite a challenge.
It comes down to choosing the right layout, colors, but most importantly, the right graphs and diagrams. SAS
comes to our rescue providing us an extensive amount of graphic tools to generate this kind of interfaces;
one of them is the attractive SAS Critical Success Factor diagram that is generated by the DS2CSF macro.
In this paper we will explore this diagram in particular.

Once we have nailed down a good design for our Executive Dashboard, a second challenge arises when we
talk about integrating it with the SAS Portal. Something we know about SAS Portlets is that they require JSP
and HTML fragments rather than complete pages, but the DS2CSF macro embeds the graphs into complete
HTML pages. Now the question is: how can we integrate a Dashboard using SAS CSF diagram into the SAS
Portal? Read on for the answer to this question.

For purposes of the example presented in this paper, you will first find an overview of the Executive
Dashboard Portlet and the mechanics of it, and then will go through the implementation in four logical layers:

Layer 1 - Data Source: Summarize the data source into a SAS dataset that can be represented using a
CSF diagram.
Layer 2 - Backend Connectivity: Establish a connection to the SAS Metadata Server to get a workspace
connection to the SAS server.
Layer 3 - Middleware Architecture: Build the Editable Portlet which is comprised by a set of Java action
servlets and utility java classes.
Layer 4 - Graphical User Interface: Present the data in a summary table as a list of performance indicators
with actuals and goals, and represent each of one of them using the CSF diagram.

This paper does not intend to give an exhaustive presentation on the Java implementation of the Portlet, but
rather to explain the elements necessary to use Critical Success Factors diagrams in the Portlet, and
execute stored processes from an Editable Portlet.

EXECUTIVE DASHBOARD PORTLET OVERVIEW

Initially, the Executive Dashboard Portlet Template loads using the default information provided through a
resource bundle file. This file provides the name of the initial source dataset, server connectivity information,
and the repository or directory in the server where the stored processes to use will be stored. In the
example used for illustration, Figure 1 shows the Portlet’s appearance after loading the default data. The
source data is created according to the guidelines previously discussed, and is represented using SAS CSF
as a Rangeview applet. Given an indicator and a budget or target for the former, the diagram provides a
simple means of displaying the percentage achieved for each indicator, based on the range 0 - 1.

Figure 1 - Default data initially loaded

 The “Refresh Data” button depicted in Figure 2 serves to load the data directly from the data source, and re-
runs the stored process used for it, if any. In this particular example, there was no stored process run to
generate the source dataset.

This Portlet has been developed as a Portlet Template. Hence, the data source which is used to represent
the KPI’s can be modified. Figure 2 shows the options that are given to the user in the edit page.

Figure 2 - Portlet editor page

As noticed in Figure 2, the user is given the capability to run a stored process, in which case he will need to
indicate the file name containing it. The purpose of running a stored process is to be able to create or modify

programmatically the source dataset to use directly from the GUI. This file should be saved in the directory
indicated by the resource bundle file when the Portlet is deployed. This will be explained more in details in
the next section.

As illustrated in Figure 3, the user can add parameters passing name and its value, if the stored process
requires them.

Figure 3 - Passing parameters to the stored process

In our example, we indicate the stored process contained in the file “CreateIndicators.sas”, and pass three
different parameters to it: year, quarter and table name. The latter is the name of the final dataset that will be
created with the indicators. These parameters are particular to the stored process used in this example, so
the number and names of parameters will depend on each stored process’ requirements. CreateIndicators
summarizes data and creates a final dataset which will then be used to represent in the Portlet. The last
parameter “tablename” stands for the name of the final dataset to create. This name will be the same name
provided in the “Dataset Name” field. In this field the user indicates the name of the dataset that contains the
indicators to diagram. Figure 4 shows how the user would run the stored process specified in Appendix A,
and assign the generated dataset as the Portlet data source.

Figure 4 - Running the "CreateIndicators" stored process and assigning the resulting dataset as the Portlet's
data source.

Once this information is fed into the Portlet, it runs the stored process with the indicated parameters,
generates the indicators dataset, and loads the new data and updates the CSF diagrams, as shown in
Figure 5.

Figure 5 - Automotive Sales Dashboard (after editing the Portlet's instance)

This design allows the sales executive’s data needs to change without requiring a deployment of a new
Portlet or changing the implementation of the existing one. A SAS programmer that knows how to find the
data that the sales executive is requesting can write a SAS stored process to summarize it in the right
format, dump the source file in the Portlet default directory and give instructions to the executive on how to
edit his Portlet’s instance. Everything is done without too much hassle: neither on the programmer’s nor on
the executive’s side.

LAYER 1 – DATA SOURCE: Getting the Indicators Dataset Ready

There is always a price to pay for flexibility, and the Portlet implementation presented in this paper is no
exception to the rule. In order to make the Portlet able to feed off any data source, we need to create some
guidelines in how this data is to be formatted. In this way, data in any kind of format and distributed in any
number of datasets can be always merged into one single uniform dataset. This is one of the most powerful
advantages of creating the Executive Dashboard as an Editable Portlet since virtually any data can be fed
into the Dashboard as long as there is a stored process that will summarize it in the right format. Therefore,
the final dataset that will be used as source for our diagrams has to have the variables “Indicator”, “Actual”,
and “Goal”. Each of the mentioned variables is explained in this section.

The first step is to identify the variable “Indicator”, which stands for the Key Performance Indicators (KPI)
that we want to represent in the dashboard. Examples of these are profit, revenue, total orders, new
customers, etc. These indicators are particular to each business nature and needs, and are meant to reflect
the performance of the corporation over a period of time, in our case, quarterly. Our example is based on an
automotive company that has chosen as Key Performance Indicators the following:

• Revenue
• Profit
• Market Share (%)
• Average Customer Satisfaction

And study the sales performance of their vehicle types:
• Compact
• Sedan
• Luxury
• Midsize
• Standard
• Minivan

The second step is to generate the variables “Actual” and “Goal” (or “Budget”), which represent for each
indicator the actual number or sales achieved and the estimated goal that had been set for the quarter,
respectively. Therefore, we need to pinpoint the SAS datasets that are going to be used to generate this
kind of information. Generally, a dataset that reflects sales and dates is a good start to generate currency
based indicators such as revenue and profit. Other datasets will be needed to produce actuals and budgets
for numeric based indicators such as new customers, total orders, market share, etc.

After the indicators and the datasets needed to generate the information have been identified, a third step is
to create a stored process that will create the final indicators dataset that summarizes and calculates actuals
and budgets. Figure 6 shows the dataset “sales” used to generate all the indicators for our example.

Figure 6 - Sample Sales Data of an Automotive Company

Figure 2 shows the “Goals” dataset for each of the indicators that we wish to represent in the dashboard,
and that is used to create the final indicators dataset.

Figure 7 - Goal or Budget for each Indicator

Finally, Appendix A shows the stored process that is used in our example to merge and generate the final
indicators dataset. Note that the final dataset is created in the work library so it is accessible to the
workspace created by the Portlet, and most importantly, to avoid concurrency problems between different
sessions. It is advised that dynamic data used by the Portlet be always created in the work library.

LAYER 2 – BACKEND CONNECTIVITY

There are several ways to create a connection to a SAS Workspace server. In the example presented in this
paper the Portlet makes use of a customized connection pool which connects to a SAS server using directly
supplied Metadata Server attributes. Examples on creating server connections can be found in the SAS
website under the documentation section [see reference 3]. In our particular application, we create and
manage a connection pool that will create workspace connections on demand unless there are connections
available in the pool. Further on the Connection Pool implementation is presented in the next section.

The sample stored process that is executed in our example through the Portlet edit page, accesses a
dataset under the library “Chrysler”. Therefore, this library has to be accessible to the workspace server that
is attempting to run the stored process. In order to access this SAS dataset, the SAS programmer needs to
make sure two conditions are in place:

• The containing library needs to be registered in the SAS management console, as Figure 8 shows:

Figure 8 - Library registered via the Data Library Manager Plugin

• The library needs to be pre-assigned as shown in Figure 9:

Figure 9 - Library Pre-assigned Option

LAYER 3 – MIDDLEWARE ARCHITECTURE: Building an Editable Portlet

As described in the SAS support documentation, an Editable Portlet is served by different action classes (or
servlets) which define the flow in the Portlet. An Editable Portlet (or often called a Portlet Template) gives
the capability to the user to edit the Portlet’s instance. For more information on Editable Portlets refer to [5]
in the References section. Each of the action classes used in our example are described below:

BaseAction: This class sets up the logger and implements the methods for checking errors in the Portlet.
The explanation of this class falls out of the scope of this paper, but it is pertinent to mention that all action
classes extend BaseAction, which implements PortletActionInterface.

DisplayAction: This class is responsible for the generation of the right data to display in the CSF diagrams,
and in the summary table. Its “service” method creates during the first load a pool of connections to the SAS
server that will control and dispatch connections at every request from the Portlet. DisplayAction also
creates a SalesData object which is a utility class explained in this section. This class does most of the work.
Appendix B provides the main fragment of the service method in the DisplayAction class which performs the
main operations.

RefreshAction: This action class is a summarized version of DisplayAction and is responsible for re-running
the stored process, generating the datasets, and assigning the new loaded data to the table and the
diagrams. This all is done in the generateTableView method in the SalesData object. Appendix C provides
this class’ “service” method code which performs the main actions.

EditorAction: This class is the responsible for performing utility actions like constructing the URLs for the
OK and Cancel buttons in the editor page. Appendix D shows the code for the “service” method in this class,
which performs the main actions.

In this example, the Portlet is initially loaded using default information provided through a resource bundle
file. This file is read by a Java and gets the necessary information to connect to the SAS Metadata Server,
the default stored process repository (or server directory), and the name of the initial dataset to be
diagramed. Figure 8 shows the flow between action classes and JSP pages in the Editable Portlet.

Figure 10 - Dashboard Portlet Diagram Flow

The utility classes are:

SalesData: This class is the responsible for abstracting the process of creating the TableViewComposite
object, rendering the indicators table in the user interface, running the stored process, assigning the new
data to the TableViewComposite, and calculating the percentages that indicate the ratio actual/budget for
each indicator. For more information on TableViewComposite beans, please refer to [2] in the References
section. The calculated percentages are used by the Rangeview applet to render the arrow in the right range
of the CSF diagram. The main method that is called to generate the data and run the stored process is
called generateTableView, which code is presented below:

public void generateTableView(HttpServletRequest req, HttpServletResponse resp,
PortletContext cont){

request = req;
 response = resp;
 context = cont;

 HttpSession session = request.getSession();

 session.setAttribute("sales_sprocessPath", storedProcessName);

 sqlConnection = conPool.getConnection();
 context.setAttribute("sales_connection", sqlConnection);

 try{
 //Prepare action provider for the table
 initializeActionProvider();

 //run user's stored process
 runStoredProcess();

 assignTableView();

 //Get updated percentages and indicators' names

 Vector percentages = getPercentages();
 session.setAttribute("sales_percentages", percentages);
 Vector indicatorsNames = getIndicatorsNames();
 session.setAttribute("sales_indicatorsNames", indicatorsNames);
 }
 catch(Exception e){
 String message = e.getMessage();
 context.setAttribute(Initializer.PORTLET_EXCEPTION_KEY, message);
 }
}

This method calls five other methods in the SalesData class. initializeActionProvider() is a
method that simply initializes the action provider associated with the TableViewComposite bean. For more
information on initializing action providers, please refer to [1] in the References section.

runStoredProcess() is the method that runs the stored process indicated in the editor page of the
Portlet. It uses the ConnectionPool object to obtain the IStoredProcessService object associated with the
workspace where the current connection was generated from. In this example, all the connectivity process
was abstracted into a ConnectionPool class using the Java Connection Factory API provided by SAS. For
more information on how to get a workspace connection from a SAS server, please refer to [2] in the
References section.

Below is the code fragment from the runStoredProcess method:

buildParameters is a private method that gets all the parameters from the editor page as a Properties
object and constructs a string appending the name of the variable with an equal sign and the value of the
parameter, i.e.,
“<param-name1>=<param-value1> <param-name2>=<param-name2> …”

assignTableView() builds the SQL statement with the new dataset indicated in the Portlet editor page,
creates a new JDBCTableModelAdapter object with the new query which then is associated with the
TableViewComposite.

private void runStoredProcess(){

 if (storedProcessName != null && !storedProcessName.equals("")){
 try{

IStoredProcessService spService = conPool.getStoredProcess(sqlConnection);

spService.Execute(storedProcessName, buildParameters(extraParams));

 ILanguageService lang = spService.Parent();

 }
 catch(GenericError ex){
 String message = ex.getMessage();
 context.setAttribute(Initializer.PORTLET_EXCEPTION_KEY, message);
 }
 }
}

private void assignTableView() throws Exception{

HttpSession session = request.getSession();

 //Assign grand total table
 synchronized (session) {

 //Setup the query for the connection
 String jdbcQuery = "select * from "+indicatorsTableName;

 //Setup the JDBC model adapter
 JDBCToTableModelAdapter adapter = null;
 if (session != null){
 adapter = (JDBCToTableModelAdapter)session.getAttribute(SALES_MODEL);
 }
 try{
 adapter = new JDBCToTableModelAdapter(sqlConnection, jdbcQuery);
 if (context != null){
 context.setAttribute(SALES_MODEL, adapter);
 }
 }
 catch(Exception e){
 throw new Exception();
 }

Finally, the generateTableView method in the SalesData object calls the methods getPercentages and
getIndicatorsNames which return vectors with the percentages of the actual respective to the budget (or
goal) for each indicator and each indicators names, respectively.

This is done by looping through the TableView object contained in the TableViewComposite object and
getting the value for the actual and the budget for each indicator. Note that this method heavily relies on the
guidelines provided for the source data, as it has to be in the format <Indicator> <Actual> <Budget> to be
able to calculate the percentages. The following code fragment illustrates this.

//Assign the tableView
 TableViewComposite sales_TableView = null;

 if (session != null){

sales_TableView = (TableViewComposite)session.getAttribute(TABLE_VIEW);
 }

 if (sales_TableView == null){
 sales_TableView = new TableViewComposite();
 }
 sales_TableView.setModel(adapter);

TableView tViewSummary = (TableView)
sales_TableView.getComponent(sales_TableView.TABLEVIEW_TABLEDATA);

 session.setAttribute(TABLE_VIEW, sales_TableView);

 }

}

private Vector getPercentages(){

HttpSession session = request.getSession();

 Vector percentages = new Vector();

TableViewComposite tvcSummary =
(TableViewComposite)session.getAttribute(TABLE_VIEW);

TableView tViewSummary = (TableView)
tvcSummary.getComponent(tvcSummary.TABLEVIEW_TABLEDATA);

 TableModel modelSummary = tViewSummary.getModel();

 for (int j=0; j < modelSummary.getRowCount(); j++){

 String sactual = modelSummary.getValueAt(j, 1).toString();
 String sbudget = modelSummary.getValueAt(j, 2).toString();

 double actual=0;
 double budget=0;

 //Find the format of the variable
 try{
 Number nf = NumberFormat.getNumberInstance().parse(sactual.trim());
 actual = nf.doubleValue();

 nf = NumberFormat.getInstance().parse(sbudget.trim());
 budget = nf.doubleValue();
 }

Also note that this method takes into account the possibility that the variables actual and budget in the SAS
dataset have a currency informat and parses it adequately.

Similar to the getPercentages method is the getIndicatorsName. Both methods produce a vector with
the percentages achieved by each indicator, and each indicator’s name respectively. After these two
methods have been called in the generateTableView method, the produced vectors are stored as a
session attribute so they might be accessed in the JSP display page.

ConnectionPool: This class is an abstraction of all the methods related to getting a connection to the SAS
Metadata server and getting a connection to a registered SAS Workspace server. Besides creating
connections, this method is responsible for maintaining them once they are returned to the pool by the
application, and cleaning up the resources when a connection has been dropped or closed. Explaining the
step-by-step implementation of the connection pool is out of this paper’s scope, but for more information on
how to create connections a SAS server using the Java Connection Factory refer to [3] in the References
section. The main methods from the ConnectionPool class utilized by the Portlet are:

• getConnection(): Returns a java.sql.Connection object obtained from the SAS server.
• returnConnection(): Returns the connection back to the pool to be reused by another Portlet

request.
• getStoredProcess(): Returns a stored process service associated with the connection

previously obtained from the pool.

LAYER 4 – GRAPHICAL USER INTERFACE

This section is one of the main focuses of this paper since it presents how the SAS CSF applet can be used
from the Editable Portlet. But first, before we go through the implementation, let’s go through the flow
diagram of JSP pages in the Portlet:

catch(ParseException e){
 try{
 //Find if the number is in currency format
 Number nf =NumberFormat.getCurrencyInstance().parse(sactual.trim());
 actual = nf.doubleValue();

 nf = NumberFormat.getCurrencyInstance().parse(sbudget.trim());
 budget = nf.doubleValue();
 }
 catch(ParseException ex){
 String message = ex.getMessage();
 context.setAttribute(Initializer.PORTLET_EXCEPTION_KEY,

"One of the values for actual or budget variables cannot be
 parsed as a number. Please check your source data. Root
 cause: " + message);
}

 }

 Double percentage = new Double(actual/budget);
 percentages.addElement(percentage);

 }
}

Figure 11 - Portlet's JSP pages Flow Diagram

The implementation of the sales_editor.jsp page, which is the one that displays the form for editing the
Portlet’s instance, is very straightforward HTML. The sales_error.jsp page is a simple JSP page that is
redirected to by the Display Action class and prints the cause of the exception if there has been one during
the execution.

Now, let’s get into the heart of the matter and study the display page implementation, which contains the
most acclaimed CSF diagrams.

The SAS Critical Success Factor diagram is commonly generated by the DS2CSF macro, which serves as a
wrapper around the applet and is responsible for passing the arguments to the applet, generating a full
HTML page, and generating the style tags for the look and feel of the HTML page which embeds the CSF
diagram. Unfortunately, a simple call to this macro from the Portlet will not work, since a requirement for
Portlets is that the JSP and HTML pages contained in them should not have <html> and <body> tags; and
this is precisely what the DS2CSF macro does. A workaround for this is to embed the applet object by
ourselves in our JSP page fragment, passing the appropriate arguments for its rendering.

The following text presents the code fragment that embeds the CSF applet into the JSP page:

<OBJECT ALT="Percentage” HEIGHT="165” WIDTH="190” CLASSID="clsid:8AD9C840-044E-
11D1-B3E9-00805F499D931”>

<PARAM NAME="ARCHIVE" VALUE="rvapplet.jar">
<PARAM NAME="CODE" VALUE="RVApplet.class">
<PARAM NAME="JAVA_CODEBASE"
VALUE="http://www2.sas.com/codebase/graph/v91">

 <PARAM NAME="TYPE" VALUE="application/x-java-applet;version=1.4">
 <PARAM NAME="GRAPHTYPE" VALUE="CLASSIC">
 <PARAM NAME="VALUE" VALUE="<insert-value-to-represent>">
 <PARAM NAME="VALUEPOSITION" VALUE="Bottom_Center">
 <PARAM NAME="BACKGROUNDCOLOR" VALUE="WHITE">
 <PARAM NAME="START" VALUE="0">
 <PARAM NAME="END1" VALUE="0.33">
 <PARAM NAME="COLOR1" VALUE="#CC6633">
 <PARAM NAME="END2" VALUE="0.66">
 <PARAM NAME="COLOR2" VALUE="#FF9933">
 <PARAM NAME="END3" VALUE="1">
 <PARAM NAME="COLOR3" VALUE="#FFFF66">

There was a problem with the Java applet or Plugin in your browser. The
graphic cannot be displayed.

</OBJECT>

For those who are not acquainted with applets, these are applications written in Java that run inside a web
page, executed within the browser itself. An applet downloads and executes on the end user's computer
rather than executing on the server. The object tag embeds the applet in the generated HTML page. The
ALT parameter specifies the alternate text to display. The CLASSID parameter is a URL indicating the
implementation for the OBJECT. In some systems this is a class identifier. The applet is rendered in the
dimensions specified by the HEIGHT and WIDTH parameters. Contained within the OBJECT tag, you find
the list of parameters that are to be passed to the applet class. The required NAME attribute of PARAM gives
the name of the parameter while the VALUE attribute gives the parameter's value. The parameters passed to
the applet are explained below:

• ARCHIVE: specifies JAR files required to run the applet, in this case, rvapplet.jar. This file
must exist at the location specified by the CODEBASE parameter.

• CODE (URI): Indicates the applet's class file, in this case RVApplet.class.

• JAVA_CODEBASE: Specifies the download URL for the applet class and all other required classes.
In this case, the classes are downloaded from the SAS library repository directory:
http://www2.sas.com/codebase/graph/v91

• TYPE: specifies the MIME type of the data referenced in the DATA attribute in advance of retrieving
it.

• GRAPHTYPE: Specifies the style of the critical success factor diagram that can be either classic or
digital. Our example displays the classic display, but the digital might be also used and has the
following appearance:

• VALUE: Specifies the number that will be represented in the CSF diagram. In our example, it is
dynamically calculated by the Portlet calling the getPercentages method from the SalesData
object.

• VALUEPOSITION: Indicates the position where the number represented in the diagram will appear
respective to the diagram itself.

• BACKGROUNDCOLOR: Indicates the color of the background of the diagram.

• START: Indicates the numeric value at the start of the first range in the Rangeview applet.

• ENDX: indicates the end of the xth range in the Rangeview applet.

• COLORX: Indicates the color of the xth range in the Rangeview applet.

There are some other parameters that can be used with this applet to make the CSF diagram drillable,
indicating the drill target and the URL to display when clicked. This functionality was not implemented in this
paper’s sample Portlet, hence it is out of this paper’s scope. SAS provides great documentation on the

macro that generates this applet. For more information refer to [4] in the References section.

CONCLUSION

Now with SAS Portal, SAS Integration Technologies and the extensive SAS graphic libraries, corporations
are able to create Executive Dashboards with real time data and customizable data source, using very
attractive and easy to read diagrams such as the SAS Rangeview applet. This paper illustrated the steps for
the implementation of an Executive Dashboard Editable Portlet, in a way that executives are able to spot at
a glance any problem/opportunity in the area of sales, allowing them to stay focused on mission critical
issues and the success of their enterprise.

APPENDIX A: Sample Stored Process used to merge and summarize the automotive sales
data into a comprehensible indicators dataset.

/**
* STORED PROCESS NAME: CreateIndicators *
* PURPOSE: To create an indicators table called <tablename> to represent *
* graphically via KPIs. *
* PARAMETERS: <year>: represents the year for which the stored process will *
* create the indicators table. *
* <quarter>: represents the quarter of the selected year for *
* which the stored process will create the indicators table. *
* <tablename>: Name of the table to generate with the final *
* indicators. This table will have the form of: *
* Column 1: Indicator *
* Column 2: Actual *
* Column 3: Budget *
***/

%global year quarter tablename;

*ProcessBody;

proc sql;
 create table indicators as
 select sum(totalrevenue) as Revenue "Revenue",
 sum(totalprofit) as Profit "Profit",
 (sum(totalrevenue)*100)/sum(NationTotalAutoSales) as
marketShare "Market Share (%)",
 avg(customerSatisfaction) as AverageCustomerSatisfaction
"Average Customer Satisfaction"
 from Chrysler.sales
 where year=&year and quarter=&quarter
 group by quarter;
quit;

proc transpose data=indicators out=indicators(rename=(col1=Actual
label=Indicators) drop=_name_);

run;

data indicators;
 length Indicator $30;
 set indicators;
 Indicator=Indicators;
 drop Indicators;
run;

** Create the table with the products sales actuals ;

proc sql;
 create table indProducts as
 select product, totalrevenue
 from Chrysler.sales
 where year=&year and quarter=&quarter;
quit;

data indProducts;
 length Indicator $30 Actual 8;
 set indProducts;
 Indicator=Product;
 Actual=totalrevenue;

 drop Product totalrevenue;
run;

** Join the two indicators tables ;
proc append base=indicators data=indProducts;
run;

proc transpose data=Chrysler.goals
 out=goals(rename=(col1=Budget _name_=Indicators));
run;

data goals;
 length Indicator $30;
 set goals;
 Indicator=Indicators;
 drop Indicators;
 if (Indicator = 'marketShare') then
 Indicator = 'Market Share (%)';
 else if (Indicator = 'AverageCustomerSatisfaction') then
 Indicator = 'Average Customer Satisfaction';
run;

** Join the indicators table with the goals table;

proc sql;
 create table &tablename as
 select b.Indicator, Actual, Budget
 from indicators a, goals b
 where trim(a.Indicator) = trim(b.Indicator);
quit;

APPENDIX B: DisplayAction’s “service” Method

public String service(HttpServletRequest request,
 HttpServletResponse response,
 PortletContext context) throws Exception
{

super.service(request, response, context);

 HttpSession session = request.getSession();

 String baseURL = NavigationUtil.buildBaseURL(context, request,
"display");

 context.setAttribute("sales_baseURL", baseURL);

 String url = NavigationUtil.buildBaseURL(context, request,
 "refresh");

 context.setAttribute(Initializer.DISPLAY_REFRESH_URL_KEY, url);

String generateDefaultTable = (String)
session.getAttribute("sales_generateDefaultTable");

if (generateDefaultTable == null || generateDefaultTable.equals("true")){

//Get path to stored processes
 ResourceBundle rb = ResourceBundle.getBundle("application");
 String storedProcessPath = rb.getString("sasmacropath");

 //Get connection from server
 if (conPool == null) {
 conPool = new ConnectionPool();
 context.setAttribute("sales_connPool", conPool);
 session.setAttribute("sales_sprocessPath", storedProcessPath);
 }

SalesData data = (SalesData)
session.getAttribute("sales_salesDataObject");

if (data == null) {

 data = new SalesData(conPool);
 session.setAttribute("sales_salesDataObject", data);
 }

 //Assign table view if not assigned already
 data.generateTableView(request, response, context);

 session.setAttribute("sales_generateDefaultTable", "false");

}

errorCheck(context);

return (String) context.getAttribute("display-page");

}

APPENDIX C: RefreshAction’s “service” Method

public String service(HttpServletRequest request,
 HttpServletResponse response,
 PortletContext context) throws Exception
{
 super.service(request, response, context);

SalesData data = (SalesData)
request.getSession().getAttribute("sales_salesDataObject");

 //Assign table view if not assigned already
 if (data != null){
 data.generateTableView(request, response, context);
 }

 return (String)context.getAttribute("display-page");
 }

APPENDIX D: EditorAction’s “service” Method

public String service(HttpServletRequest request,
 HttpServletResponse response,
 PortletContext context) throws Exception
{
 super.service(request, response, context);

 //create the URLs for the OK and Cancel buttons.
 String url;

 url = NavigationUtil.buildBaseURL(context, request,
 "ok");
 context.setAttribute(Initializer.EDIT_OK_URL_KEY, url);

 url = NavigationUtil.buildBaseURL(context, request,
 "cancel");
 context.setAttribute(Initializer.EDIT_CANCEL_URL_KEY, url);

 // the following call resets the mode back to display for the
 // next call
 context.resetMode();

 return (String) context.getAttribute("edit-page");
 }

REFERENCES

[1] SAS Institute Inc. Samples, “JSP TableView with ActionProvider”.
Available at: http://support.sas.com/ctx/samples/index.jsp?sid=1572

[2] SAS Institute Inc. SAS Custom tags, “The Custom Tag Handler Class for the TableViewComposite”.
Available at:
http://support.sas.com/rnd/gendoc/bi/api/Components/taglibs/sas/sas_TableViewComposite.html

[3] SAS Institute Inc. SAS 9.1.3 Integration Technologies Developer’s Guide, “Connecting with Server
Attributes Read from a SAS Metadata Server”. Available at:
http://support.sas.com/rnd/itech/doc9/dev_guide/dist-obj/javaclnt/javaprog/connfact_omr.html

[4] SAS Institute Inc. SAS 9.1.3 User Documentation, “Creating Critical Success Factor Diagrams”

[5] SAS Institute Inc. SAS 9.1.3 Integration Technologies Developer’s Guide, “Developing Custom Portlets”.
Available at:
http://support.sas.com/rnd/itech/doc9/portal_dev/portlets/dg_portlets.html

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Elibeth Carpenter
Application Developer
Comsys SAS Practice
5278 Lovers Lane
Kalamazoo, MI 49002
Email: ecarpenter@comsys.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

