
Paper AD03

That's the Signpost Up Ahead— Your Next Stop,
SAS IML

Gary Allen Senior Database Analyst – Wunderman Brands

Introduction
SAS IML is a mathematics programming language within the SAS system. SAS
IML is a separate language within SAS that enables custom procedures that use
matrix algebra, non linear optimization, and more. Getting started in IML begins
with the “proc iml ;” statement and ends with the “quit” statement. To use iml
data needs to be imported and reports need to be produced, and data needs to
be exported. This paper will cover the steps to do these necessary tasks.

Direct Entry

The first and most direct way to establish a matrix is by assigning values to a
matrix name. For example:

my_matrix = {1 0, 0 1} ;

sets my_matrix equal to a 2 x 2 identity matrix. There are a few things to note
here. The values of the matrix are specified between { } brackets, these are the
only bracket style that can be used for this. The values are separated by spaces
and rows are separated by commas. The technical name for a matrix entered in
this way is a literal. Matrix values can be numbers or text. A matrix may be all
numbers or all text but not both.

Common Operators
The statements covered in this paper have common functionality called
operators. The var, where and labeling operators will be covered in this section.

Var Operator

The var operator lets you specify a set of dataset variables to use. The var
operator has a single argument which may be one of the following:

Argument Type Description Example

Argument Type Description Example
A literal containing
variable names

 var {time1 time5
time9}

An expression in
parentheses yielding
variable names

 var('time1':'time9')

One of the keywords
ALL , _NUM_ ,
CHAR

Use _ALL_ for all
variables, _NUM_ for
all numeric variables
and _CHAR_ for text
variables.

 var _all_

The name of a matrix
containing variable
names

 var time

Where Operator

The WHERE operator selects observations from datasets based on the
conditional statement in its argument, The syntax is ;

WHERE (conditional statement)

The condition statement is made up of a variable, a comparison-operator and a
operand, which is a literal value, a matrix name, or an expression in parentheses.
The comparison operators are:

Operator Function
< less than
<= less than or equal to
= equal to
> greater than
>= greater than or equal to
^= not equal to
? contains a given string
^? does not contain a given string
=: begins with a given string
=* sounds like or is spelled similar to

a given string

Arguments in WHERE operators can be matrices. A note about comparisons
using Matrices: A “true” is returned with ^= ^? < <= > >= if all the
elements in the matrix satisfy the condition. Whereas the = ? =: =* operators
return a true if any of the elements in the matrix satisfy the condition.

The logical expressions AND (&) and OR (|) can be specified within the WHERE
clause. Only the symbols “&” and “|” can be used.

Labeling Operators: Row Name – Column Name Statements

The ROWNAME= and COLNAME= specify matrices to be used as labels in
reports or variable names in SAS dataset output. The COLNAME= matrix
specifies the name of a matrix that will label the columns. When importing data,
the variables names are kept in the COLNAME matrix, when exporting data the
text values in the COLNAME matrix name the variables. The COLNAME matrix is
actually a row vector of text values.

The ROWNAME matrix is used to label observations. When importing data the
values of the specified variable is kept and used to label reports. When data is
exported the information in the ROWNAME matrix is placed in the dataset under
a variable of the same name. The ROWNAME matrix is a column matrix with as
many text values as observations.

Importing Data

SAS Datasets

SAS datasets are imported using a two statement process. The first statement
points to a dataset to use, and the second statement reads the data into one or
more matrices.

Use Statement

The USE statement points to a SAS dataset whose information will be imported.
The syntax for the statement is:

USE SAS-data-set optional VAR operator

optional WHERE(argument) operator
optional NOBS name ;

The arguments in USE statement are a SAS dataset. The dataset can be a one
word or two word name. Also, the dataset can be specified with dataset options
(i.e. keep =, drop = etc.). The USE statement opens the data set for read
access and sets it as the current dataset.

Read Statement
The READ statement imports data from the current dataset into one or more
matrices. The READ statement has two forms:

READ range

VAR operator
optional WHERE(argument) operator

and :

READ range
 optional VAR operator
optional WHERE(argument) operator
optional INTO matrix – name [ROWNAME = row-name matrix

 COLNAME = column-name matrix] ;

The READ statement selects variables or records from the current SAS data set
into column matrices or into a single matrix. The first form of the READ statement
will produce a column matrix for each variable in the VAR operator. The second
form will read all text or numerical variables specified by the VAR operator into
the matrix named in the INTO argument. If you do not specify a VAR clause, the
default variables read into the INTO matrix are all the numeric variables. To read
all character variables into the INTO matrix use VAR _CHAR_.

Sample Code
use inner ;

read all var _all_ into ind ;
read all var _char_ into lvlabl ;

close inner ;

This code selects the local SAS dataset inner as the current dataset with the
USE statement. The next two lines import data with the READ statement. The
first READ statement imports all the numeric variables into the matrix “ind”. Note
that all the observations are selected. The second imports all text variables into
the matrix “lvlabl”.

CSV Files
The process for reading flat files into IML is parallel to the same process in base
SAS. The process has an infile and an input statement. They are presented here
because they are different and have limitations.

Infile Statement

The INFILE statement sets the flat file to use for input. The INFILE statement has
the syntax:

INFILE file indicator options ;
The file indicator can be a literal in quotes, a keyword set with a filename
statement or an expression in parentheses. It should be noted that with IML the
file path and filename cannot be longer than 64 characters. The options that can
be used are a subset of those in the BASE SAS version, and have addition
limitations. The options are :

LENGTH=variable specifies a variable that is length of a record.
RECFM=N specifies that the file is to be read in as a pure binary file rather than
as a file with record separators. The byte operand (<) on the INPUT statement is
used to get new records rather than using separate input statements or the new
line (/) operator.
To control how IML handles reading past the end a record, the option familiar in
BASE SAS are used:
FLOWOVER allows the INPUT statement to go to the next record to obtain
values for the variables. MISSOVER assigns missing values to variables read
past the end of the record and STOPOVER treats going past the end of a record
as an error condition, and triggers an end-of-file condition. The default is
STOPOVER.

Input Statement

The IML INPUT is also parallel to the same statement in BASE SAS. The INPUT
statement reads data from the current flat file into matrices. The syntax is :

INPUT variables optional informats

 optional record-directives
 optional positionals ;

The variables argument specifies the variables you want to read from the current
position in the record. Each variable can be followed immediately by an input
informat specification, using the informats argument. Standard BASE SAS
informats are available. If the width is unspecified, the informat uses list-input

rules to determine the length by searching for a blank (or comma) delimiter. The
special format $RECORD can be used to read the rest of the record into one text
variable.

The record-directives are used to advance to a new record. The Record-
directives available are the holding @ sign is used at the end of an INPUT
statement to instruct IML to hold the current record so that you can continue to
read from the record with later INPUT statements. If the @ is not used IML
automatically goes to the next record for the next INPUT statement. The / sign
advances to the next record.

The > operand and the < operand are used with the RECFM = n option in the
infile statement for reading in file by byte position. The < specifies that the next
record to be read starts at the indicated byte position in the file. The > instructs
IML to read the indicated number of bytes as the next record.

The positionals instruct PROC IML to go to a specific column on the record. The
positionals operators available are: @ operand which goes to the indicated
column and the + operand which the indicated number of columns. The
operands can be a literal number, a variable name, or an expression in
parentheses.

Sample Code

proc iml ;

loop = 1 ;

infile "D:\my_folder\iml_test_data.csv" ;

do data ;
 input name $ number1 number2 ;

 if loop = 1 then do ;
 name_ = name ;
 number1_ = number1 ;
 number2_ = number2 ;
 end ;
 if loop > 1 then do ;
 name_ = name_ // name ;
 number1_ = number1_ // number1 ;
 number2_ = number2_ // number2 ;
 end ;

 loop = loop + 1 ;

end ;

closefile “D:\my_folder\iml_test_data.csv” ;
matrix1 = number1_ || number2_ ;

quit ;

This sample code starts with a straight forward INFILE statement. Next it
executes a loop with the special operand “data” that goes from start of file to end
of file. The interior of the loop concatenates variables newly read in to column
matrixes. After the loop the column matrixes are concatenated into a single
matrix.

Exporting Data

SAS Datasets

Exporting data to SAS datasets parallels importing in that it has a two statement
syntax where the first sets the current SAS dataset and the second assigns
matrix values to the records. To set the dataset a CREATE statement is used
and to assign records an APPEND statement is used.

Create Statement

The CREATE statement has two syntaxes:

CREATE SAS dataset optional Var Operator ;
CREATE SAS dataset FROM matrix

Optional label operator [COLNAME= column label matrix
ROWNAME = observation label matrix] :

The CREATE statement sets a new current SAS data set and makes the dataset
available fro both read and write. The variables in the new SAS data set are
either the variables specified with the VAR operator or from the columns of the
matrix in the FROM statement. The FROM clause and the VAR clause should
not be used together.

The SAS dataset can be a one-word name or two-word name. The matrix in the
FROM clause is a existing matrix with the data you want to export. Although it
must be noted the actual exporting is not done here, but with the subsequent
APPEND statement.

The text values in the column label matrix become the names of the variables in
the new SAS dataset. And if an observation label matrix is specified, the same
ROWNAME= matrix must also be used on subsequent APPEND statements.

The variable types and lengths are inherited from the current attributes of the
matrices specified in the VAR operator or the matrix used in the FROM clause. If
no variables are specified all the matrixes columns are used.

Append Statement

The APPEND statement does the actual exporting to the current dataset opened
by the CREATE statement. The APEND statement also has two forms:

APPEND optional VAR operator ;

APPEND optional FROM matrix

 optional [ROWNAME = observation label matrix] ;

The form of the APPEND statement used must be the same as the CREATE
statement used. The APPEND statement to adds data to the end of the current
output data set. The FROM clause and the VAR clause should not be specified
together.

Sample Code
create outdat.fedata from feffall[colname = varlabl rowname = obslabl] ;
append from feffall [rowname = obslabl] ;

close outdat.fedata ;

This code creates a SAS dataset, outdat.fedata from the matrix feffall. The
variables in the dataset will have the names of the text values in varlabl. So these
must be valid SAS names (no spaces or non alphanumeric characters, etc.). Also
the will be a variable called obslabl with the values in the column matrix obslabl.

CSV Files

File Statement

Like importing data from a flat file, exporting data involves statements with the
same names that are used in BASE SAS. First use a FILE statement to set an
open flat file and a PUT statement is used to write values to the flat file.

The syntax for the FILE statement is :

FILE file indicator options ;

The file indicator can be a literal in quotes, a keyword set with a filename
statement or an expression in parentheses. It should be noted that with IML the
file path and filename cannot be longer than 64 characters. The options that can
be used are a subset of those in the BASE SAS version, and have addition
limitations. The options are :

RECFM=N specifies that the file is to be written as a pure binary file without
record-separator characters. LRECL=operand specifies the record length of the
output file. The default record length is 512.

Two special filenames that are recognized by IML: LOG and PRINT. These refer
to the standard output streams for all SAS sessions.

Put Statement
PUT variables optional formats
 optional record-directives

 optional positionals ;

The variables argument specifies the variables you want to read from the current
position in the record. Each variable can be followed immediately by a format
specification, using the formats argument. Standard BASE SAS formats are
available.

The record-directives are used to advance to a new record. The Record-
directives available are the holding @ sign is used at the end of an INPUT
statement to instruct IML to hold the current record so that you can continue to
read from the record with later INPUT statements. If the @ is not used IML
automatically goes to the next record for the next INPUT statement. The / sign
advances to the next record.

The > operand and the < operand are used with the RECFM = n option in the
infile statement for reading in file by byte position. The < specifies that the next
record to be read starts at the indicated byte position in the file. The > instructs
IML to read the indicated number of bytes as the next record.

The positionals instruct PROC IML to go to a specific column on the record. The
positionals operators available are: @ operand which goes to the indicated
column and the + operand which the indicated number of columns. The
operands can be a literal number, a variable name, or an expression in
parentheses

Sample Code
proc iml ;

filename csvout "D:\MY_FOLDER\sample_csv_out.csv" ;

a = { 1 2 3, 4 50 66, 70 88 9.9 } ;

file csvout ;

do i=1 to nrow(a);
 do j=1 to ncol(a);
 put (a[i,j]) best3. ',' @ ;
 end;
 put;
end;

closefile csvout;
quit ;

endsas ;

In this code sample, the rows and columns of matrix a are looped through and
output to the flat flie “sample_csv_out.csv”. The “@” position holding operator is
used to stay on the same row until every column is outputted.

Conclusion

This paper has outlined the methods of getting data into and out of SAS IML.
With this information and some practice at putting it to use, you can get started
with programming in IML. I should say that programming in IML has been the
most fun and rewarding SAS programming I have done.

