
1

MWSUG 2017 – Paper SA06

Merge with Caution: How to Avoid Common
Problems when Combining SAS® Datasets

Joshua M. Horstman, Nested Loop Consulting, Indianapolis, IN

ABSTRACT

Although merging is one of the most frequently performed operations when manipulating SAS datasets,
there are many problems which can occur, some of which can be rather subtle. This paper examines
several common issues, provides examples to illustrate what can go wrong and why, and discusses best
practices to avoid unintended consequences when merging.

INTRODUCTION

Anyone who has spent much time programming with SAS has likely found themselves needing to
combine data from multiple datasets into a single dataset. This is most commonly performed by using the
MERGE statement within a DATA step. While the merge seems like a relatively simple and
straightforward process, there are many traps waiting to snare the unsuspecting programmer.

In a seminal pair of papers, Foley (1997, 1998) catalogs some 28 potential traps related to merging.
These range from rather mundane oversights such as omitting the BY statement to more esoteric matters
relating to the inner workings of SAS. Some can be rather subtle and pernicious. In this paper, we will
examine five examples that highlight five common problems: a missing BY statement, the many-to-many
merge, mismatched BY variable lengths, overlapping variables, and the automatic retain.

EXAMPLE 1: MISSING BY STATEMENT

THE DATA

For our first example, we have the following two SAS datasets:

The PEAKS dataset contains information about the heights of each of the seven summits. The
LOCATIONS dataset includes the continent and country in which each mountain is located. Note that, for
whatever reason, there is no record in the LOCATIONS dataset corresponding to Mt. Vinson, which is in
Antarctica, but not in any country.

PEAKS Dataset

MOUNTAIN HEIGHT

Aconcagua 22838

Everest 29029

Elbrus 18510

Vinson 16050

Denali 20322

Kilimanjaro 19341

Kosciuszko 7310

LOCATIONS Dataset

MOUNTAIN CONTINENT COUNTRY

Aconcagua South America Argentina

Everest Asia Nepal

Elbrus Europe Russia

Denali North America United States

Kilimanjaro Africa Tanzania

Kosciuszko Australia Australia

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

2

THE MERGE

We perform a simple merge on these two datasets, but we neglect to include a BY statement.

data merge1;

 merge locations peaks;

run;

This produces the resulting MERGE1 dataset shown below. Observe that MERGE1 has seven records,
but CONTINENT and COUNTRY and missing for the last one. Also, note that Mt. Vinson has now been
relocated to North America, while Denali has moved to Africa and Kilimanjaro has been transferred to
Australia. Clearly, this result is undesirable.

THE EXPLANATION

Since we did not include a BY statement, SAS performs what is sometimes called a one-to-one merge.
Rather than matching up observations based on the value of one or more BY variables, observations are
simply paired based on their positions within the original datasets.

This is very rarely what is wanted. The one-to-one merge should only be used very carefully and in
situations where there is no need to match observations based on any sort of relationship between the
two datasets. The vast majority of circumstances call for a match-merge, which requires a BY statement.

THE CORRECTION

By simply including a BY statement in our merge, we can ensure that information is matched up based on
the variable MOUNTAIN. Note that we need to sort each dataset first before we can make use of any BY
group processing in a DATA step.

proc sort data=peaks; by mountain; run;

proc sort data=locations; by mountain; run;

data merge1b;

 merge locations peaks;

 by mountain;

run;

MERGE1 Dataset

MOUNTAIN CONTINENT COUNTRY HEIGHT

Aconcagua South America Argentina 22838

Everest Asia Nepal 29029

Elbrus Europe Russia 18510

Vinson North America United States 16050

Denali Africa Tanzania 20322

Kilimanjaro Australia Australia 19341

Kosciuszko 7310

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

3

This modified code produces a correctly merged dataset:

THE LESSON

Obviously, it’s critical that we include a BY statement whenever our intention is to perform a match-
merge. Note that SAS did not issue any kind of WARNING or ERROR in response to our missing BY
statement. That’s because, as mentioned, there are situations where one might choose to do this
deliberately.

However, because this is so rare, it may be wise to consider using the MERGENOBY system option to
prevent this from happening inadvertently. The MERGENOBY system option can be set to NOWARN,
WARN, or ERROR. Using MERGENOBY=WARN will cause SAS to generate a warning whenever a
merge is attempted without a corresponding BY statement. Similarly, MERGENOBY=ERROR will
generate an error in such cases. The default is MERGENOBY=NOWARN, which will do nothing.

EXAMPLE 2: MANY-TO-MANY MERGE

THE DATA

For our second example, we will work with the following two datasets.

Each dataset contains nine records. The MENU dataset contains three foods for each of the three meals
– breakfast, lunch, and dinner. Similarly, the DRINKLIST dataset contains three drinks associated with
each of one of the three meals.

MERGE1B Dataset

MOUNTAIN CONTINENT COUNTRY HEIGHT

Aconcagua South America Argentina 22838

Denali North America United States 20322

Elbrus Europe Russia 18510

Everest Asia Nepal 29029

Kilimanjaro Africa Tanzania 19341

Kosciuszko Australia Australia 7310

Vinson 16050

MENU Dataset

MEAL FOOD

breakfast pancakes

breakfast waffles

breakfast omelet

lunch hamburger

lunch salad

lunch pizza

dinner chicken

dinner salmon

dinner pasta

DRINKLIST Dataset

MEAL DRINK

breakfast milk

breakfast juice

breakfast coffee

lunch tea

lunch lemonade

lunch water

dinner beer

dinner wine

dinner soda

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

4

THE MERGE

Our goal in this exercise is to create a list of all the food and drink combinations that are available at each
meal. We sort each dataset by MEAL and then perform a merge using MEAL as the BY variable.

proc sort data=menu; by meal food; run;

proc sort data=drinklist; by meal drink; run;

data merge2;

 merge menu drinklist;

 by meal;

run;

The resulting dataset, MERGE2, is shown to the right.

Notice that the output dataset has only nine records, three for
each meal. There are actually nine possible food and drink
combinations for each meal, for a total of 27 combinations.
The MERGE2 dataset does not contain all the results we were
expecting. For example, we see “omelet” and “coffee”
together in the first record, but we do not find “omelet”
matched up with either of the other breakfast drinks.

THE EXPLANATION

To understand why we get this result, it is useful to keep in
mind that the DATA step is really an implied loop. Each time
through the loop, the MERGE statement reads in one
additional record from each dataset listed, so long as there
are still additional records remaining in the current BY group.

When this DATA step first executes, it begins with the BY group corresponding to MEAL=”breakfast”. It
reads in the first record from MENU (FOOD=“omelet”) and the first record from DRINKLIST
(DRINK=“coffee”). When the DATA step loop executes for the second time, it finds that there are still
additional records remaining in each dataset for the current BY group, so it reads in the next record from
MENU (FOOD=“pancakes”) and the next record from DRINKLIST (DRINK=“juice”).

In this manner, the records are paired up based solely upon their position within each BY group. In fact,
this behavior is exactly what we saw in the one-to-one merge from the first example, except that here it
occurs separately within each BY group. Thus, omelet and coffee are paired up even though there is no
particular relationship between the two except that they both happen to come alphabetically first among
breakfast items within their respective datasets.

It’s worth noting that SAS does provide a useful note in the SAS log which gives us some indication that
things might not be proceeding as we had intended. This note should not be disregarded lightly:

NOTE: MERGE statement has more than one data set with repeats of BY values.

THE CORRECTION

What we are really looking for here is often referred to as a “Cartesian product” of the two datasets – that
is, every possible combination consisting of one record from the first dataset and one record from the
second dataset. While there are several ways to perform a Cartesian product within a DATA step, they
involve the use of more advanced techniques.

MERGE2 Dataset

MEAL FOOD DRINK

breakfast omelet coffee

breakfast pancakes juice

breakfast waffles milk

dinner chicken beer

dinner pasta soda

dinner salmon wine

lunch hamburger lemonade

lunch pizza tea

lunch salad water

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

5

The simplest and most common way of obtaining the Cartesian
product of two datasets in SAS is by performing a join using the
SQL procedure. In this case, we actually only want a Cartesian
product of each respective BY group, which can be accomplished
as follows:

 proc sql noprint;

 create table merge2b as

 select a.meal, a.food, b.drink

 from menu as a join drinklist as b

 on menu.meal = drinklist.meal;

 quit;

This code produces an output dataset containing 27 rows as
shown to the right.

Note that our SELECT statement specifies the MEAL column
from the MENU dataset (internally referenced as A), but we could
select the MEAL column from the DRINKLIST dataset instead.
However, if we simply refer to the MEAL column without
specifying a source dataset, we will receive an error indicating an
ambiguous column reference has been detected. While it is
possible to avoid this error by using the NOWARN option on the
PROC SQL statement, this may inadvertently suppress
messages we wish to see. Accordingly, it is advisable to explicitly
specify the dataset from which each column originates.

THE LESSON

They key lesson here is that the many-to-many merge in the
DATA step operates much like the one-to-one merge we saw in
the first example. In both cases, observations are paired based
on their positions in the datasets being merged. While there may
be unique applications where this is desirable, it generally does
not result in the outcome being sought.

EXAMPLE 3: MISMATCHED BY VARIABLE
LENGTHS

THE DATA

For our third example, we have the following two SAS datasets:

EMPLOYEES Dataset

LASTNAME TITLE

Brooks Secretary

Howard President

Slagle Custodian

SALARIES Dataset

LASTNAME SALARY

Brooks 50000

Brookstein 75000

Howard 100000

Slagle 25000

MERGE2B Dataset

MEAL FOOD DRINK

breakfast omelet milk

breakfast omelet coffee

breakfast omelet juice

breakfast pancakes milk

breakfast pancakes coffee

breakfast pancakes juice

breakfast waffles milk

breakfast waffles coffee

breakfast waffles juice

dinner chicken beer

dinner chicken soda

dinner chicken wine

dinner pasta beer

dinner pasta soda

dinner pasta wine

dinner salmon beer

dinner salmon soda

dinner salmon wine

lunch hamburger water

lunch hamburger lemonade

lunch hamburger tea

lunch pizza water

lunch pizza lemonade

lunch pizza tea

lunch salad water

lunch salad lemonade

lunch salad tea

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

6

For the purposes of this example, it is important to note that the variable LASTNAME has different lengths
in the two datasets. In the EMPLOYEES dataset, the length of LASTNAME is 6, while in the SALARIES
dataset it is 10.

Notice also that the SALARIES dataset contains an extra record that is not in the EMPLOYEES dataset.
Perhaps it is an old record from a terminated employee that was not properly purged from the database.
Data is not always as clean in the real world as we would like it to be.

THE MERGE

We perform a simple merge of these two datasets using LASTNAME as the BY variable. Since the
datasets are already sorted by LASTNAME, it is not necessary to sort them prior to the merge.

data merge3;

 merge employees salaries;

 by lastname;

run;

The resulting dataset is not what we were expecting:

We have two records with the last name of Brooks, but one of them has the salary information associated
with Brookstein. What has gone wrong here? Fortunately, in this case, the SAS log provides a clue:

WARNING: Multiple lengths were specified for the BY variable lastname by
input data sets. This might cause unexpected results.

Furthermore, if we inspect the properties of the MERGE3 dataset, we will find that the LASTNAME
variable there has a length of 6. Thus, the value “Brookstein” was truncated to 6 characters and is now
indistinguishable from “Brooks”.

THE EXPLANATION

 In order to explain these strange results, we need to take a look under the hood of the DATA step and
discuss the program data vector. The program data vector (PDV) is a temporary location in memory that
SAS uses during the normal processing of a DATA step.

The structure of the PDV is determined during DATA step compilation by scanning the DATA step code
that was submitted. In our example, since the EMPLOYEES dataset appears first in the code, the
variables from the EMPLOYEES dataset and their associated attributes are added first to the PDV. Thus,
the variable LASTNAME is assigned a length of 6 in the PDV.

As the scanning continues and the SALARIES dataset is encountered, the compiler recognizes that the
PDV already includes a variable called LASTNAME and takes no further action with respect to that
variable. The fact that the variable has a different length has no impact on the PDV at that point.

Once the compilation phase is complete and DATA step execution begins, data which are read in using
our MERGE statement are placed into the appropriate locations in the PDV. If a value is too long to fit
into the corresponding variable in the PDV, it is simply truncated. Thus, in our case, “Brookstein”
becomes “Brooks”.

MERGE3 Dataset

LASTNAME TITLE SALARY

Brooks Secretary 50000

Brooks Secretary 75000

Howard President 100000

Slagle Custodian 25000

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

7

THE CORRECTION

One might think this code could be corrected by using the IN= dataset option to ensure that only records
with a corresponding entry in the EMPLOYEES dataset are present in the output dataset. That code
would look like this:

data merge3b;

 merge employees(in=a) salaries;

 by lastname;

 if a;

run;

However, this produces the same result as the original DATA step code. Because of the truncation, SAS
matches up the Brookstein salary record with the Brooks employee record. Thus, as far as SAS is
concerned, both input datasets contributed to the resulting record.

Of course, one could solve this problem by altering the input datasets to ensure that then lengths of
shared BY variables match. Another simple solution is to reverse the order of the datasets on the
MERGE statement so that the dataset having the longer length associated with the BY variable comes
first. However, this may not always be possible in situations with multiple BY variables that have
mismatched lengths.

A more proactive solution is to take control of the process by explicitly declaring the desired variable
length using a LENGTH statement. It is important that the LENGTH statement appear prior to the
MERGE statement in the DATA step so that it will be encountered first by the compiler during the process
of constructing the PDV.

data merge3c;

 length lastname $10;

 merge employees salaries;

 by lastname;

run;

This produces the dataset one might have expected in
the first place, shown at right.

If one did not wish to include observations based only
on one of the input datasets, one could modify the
above code using the IN= dataset option and a
subsetting IF statement as shown further above.

THE LESSON

The key lesson from this example is to avoid merging datasets on BY variables having mismatched
lengths. Instead, use a LENGTH statement to explicitly control the process. A second lesson is to
always check the SAS log carefully and don’t just ignore SAS warnings. See Virgile (2003) for additional
discussion of this topic.

MERGE3C Dataset

LASTNAME TITLE SALARY

Brooks Secretary 50000

Brookstein 75000

Howard President 100000

Slagle Custodian 25000

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

8

EXAMPLE 4: OVERLAPPING VARIABLES

THE DATA

Our fourth example is based on the following two datasets.

The BASELINE dataset contains one observation for each subject, SUBJID, in a research study as well
as a baseline value, LBSTRESN, for some unspecified laboratory test. The POSTBASE dataset contains
multiple observations for each subject. Each record includes a visit number (VISIT), a lab result from that
visit (LBSTRESN), as well as a response variable, RESP.

THE MERGE

Suppose we wish to perform some computation or derivation involving the response at each visit and the
baseline lab result. Since it is commonly known that variables from a dataset further to the right on the
MERGE statement overwrite the values of variables from datasets listed earlier, we might be tempted to
merge these datasets using the following code.

data merge4;

 merge postbase baseline;

 by subjid;

run;

The result of this operation is not what was intended.

Notice that the first and fourth rows of the resulting dataset include the value of LBSTRESN from the
BASELINE dataset while the other rows still include the values from the POSTBASE dataset.

THE EXPLANATION

Once again, the explanation of these results involves the Program Data Vector (PDV). As we discussed
earlier, the structure of the PDV is determined during DATA step compilation. At execution time, data
which are read in using statements such as SET, MERGE, and INPUT are placed into the appropriate
locations in the PDV. DATA step statements that manipulate the values of dataset variables are actually
interacting with the PDV. When it is time for an output record to be written, the contents of the PDV are
copied to the output dataset.

BASELINE Dataset

SUBJID LBSTRESN

1 90.0

2 75.5

POSTBASE Dataset

SUBJID VISIT LBSTRESN RESP

1 1 85.7 SD

1 2 94.3 SD

1 3 71.2 PD

2 1 66.6 SD

2 2 88.8 PR

MERGE4 Dataset

SUBJID VISIT LBSTRESN RESP

1 1 90.0 SD

1 2 94.3 SD

1 3 71.2 PD

2 1 75.5 SD

2 2 88.8 PR

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

9

When the first record is read from the POSTBASE dataset, the value of LBSTRESN in the PDV is 85.7.
Next, the first record from the BASELINE dataset is read and the value of LBSTRESN in the PDV is
overwritten with 90.0. Since this DATA step contains no other executable statements, the PDV is written
to the output dataset. Thus, the first record in MERGE4 contains a value of 90.0.

During the next iteration of the DATA step, the MERGE statement reads the second record from
POSTBASE. This record contains a value of 94.3 for LBSTRESN, and that value is written to the PDV.
Since all of the record for the current BY group (SUBJID=1) have already been read from the BASELINE
dataset, the MERGE statement does not read any additional records from BASELINE. As a result, the
value of 94.3 for LBSTRESN remains in the PDV, and that is what is written to the output dataset as the
second record.

THE CORRECTION

If our intention was for the value of LBSTRESN from BASELINE to overwrite all of the values from
POSTBASE, we will need to modify our code. One way to solve this problem is to simply drop (or
rename) LBSTRESN from the POSTBASE dataset before merging. This can be accomplished as follows.

data merge4b;

 merge postbase(drop=lbstresn) baseline;

 by subjid;

run;

When the MERGE statement reads records from POSTBASE, there will be no LBSTRESN variable to
read since it has already been dropped from the input dataset. Consequently, all values of LBSTRESN in
the output dataset will be those read from BASELINE.

THE LESSON

When merging datasets, it is necessary that there be some variables in common on which to merge.
These are the BY variables. When the datasets have additional variables in common aside from the BY
variables, these are often referred to as overlapping variables. In general, it is best to avoid overlapping
variables to prevent problems like the one described above. Drop (or rename) any overlapping variables
so that each occurs in only one of the datasets being merged.

EXAMPLE 5: AUTOMATIC RETAIN

THE DATA

For our final example, we have two SAS datasets containing data, once again pertaining to medical
research. The DEMOG dataset contains demographic information such as the patient’s age and weight.
This information is recorded only once at the beginning of the study, so there is only one record per
patient. The VITALS dataset contains vital signs measurements such as heart rate. These
measurements are recorded at each study visit, so there can be multiple records per patient.

Both datasets include a patient identification number which provides a unique key to the data. The
VITALS dataset also includes a visit number. The combination of the patient identification number and
the visit number uniquely identifies a particular record.

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

10

THE MERGE

We wish to merge these two datasets. We also wish to convert the patient’s weight from pounds to
kilograms. We write the following SAS code:

data merge5;

 merge demog vitals;

 by subjid;

 weight = weight / 2.2;

run;

As expected, the dataset resulting from the merge contains 5 variables and 6 records.

Unfortunately, a careful inspection of the WEIGHT variable reveals a serious error. Notice that the value
of WEIGHT changes for each record, even within the same patient. This is clearly not the desired result.

THE EXPLANATION

Once again, we turn our attention to the Program Data Vector (PDV). As mentioned previously, there are
two distinct phases to running SAS code: compilation and execution. To understand what has gone
wrong, we’ll walk step-by-step through the process of compiling and executing this code.

Compilation

As SAS compiles our example code above, the first statement that affects construction of the PDV is the
MERGE statement. The first dataset listed on the MERGE statement is DEMOG, which includes three
variables: SUBJID, AGE, and WEIGHT. All three are included in the PDV using the same attributes
(length, format, label, etc.) present in the input dataset. The next dataset listed is VITALS, which includes
three variables: SUBJID, VISIT, and HEART. Since, SUBJID is already on the PDV, only the latter two
are added.

DEMOG Dataset

SUBJID AGE WEIGHT

1 42 185

2 55 170

3 30 160

VITALS Dataset

SUBJID VISIT HEART

1 1 60

1 2 58

2 1 74

2 2 72

2 3 69

3 1 71

MERGE5 Dataset

SUBJID AGE WEIGHT VISIT HEART

1 42 84.090909091 1 60

1 42 38.223140496 2 58

2 55 77.272727273 1 74

2 55 35.123966942 2 72

2 55 15.965439519 3 69

3 30 72.727272727 1 71

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

11

Upon the completion of DATA step compilation, the following PDV structure is in place. Note that no
actual values have been written to the PDV yet. That will occur during the execution phase.

Execution

As we discuss the execution of the DATA step, it is important to remember that a DATA step is essentially
a loop. The statements in the DATA step are executed repeatedly until certain conditions are met that
cause execution to terminate. One such condition is a SET or MERGE statement that runs out of new
records to read from all of the input datasets listed within the statement. In the meantime, the contents of
the PDV are written to the specified output dataset each time execution returns to the top of the DATA
step (unless you override this behavior using statements such as OUTPUT).

As our example code begins, the first statement to execute is the MERGE statement. Since the DEMOG
dataset is listed first, the first record from DEMOG is read into the PDV. Next, the first record from the
VITALS dataset is read. Since both datasets contain the SUBJID variable, the value from VITALS
overwrites what had been previously read from DEMOG. Fortunately, since SUBJID is a BY variable, it
has the same value on both datasets. Once the MERGE statement has executed for the first time, the
PDV looks like this:

The next statement to execute is our weight conversion. This statement reads the value of WEIGHT from
the PDV, divides it by 2.2, and then writes the result back to the PDV. After this statement executes, we
have the following PDV:

We have now reached the bottom of the DATA step. Execution returns to the top and the current
contents of the PDV are written to the ALLDATA dataset. So far, everything is proceeding exactly as
expected.

Automatic Retain

There is a common misconception that the values in the PDV are reset to missing when execution returns
to the top of the DATA step. This is only true for variables which are assigned values by an INPUT or
assignment statement (unless overridden by a RETAIN statement). For variables read with a SET,
MERGE, MODIFY, or UPDATE statement, the values are automatically retained from one iteration of the
DATA step to the next.

In our example, all of the variables on the PDV were read with a MERGE statement, so all values are
retained. When the second iteration of the DATA step begins, the PDV looks just like it did when the first
iteration ended.

Program Data Vector for MERGE5

Variable: SUBJID AGE WEIGHT VISIT HEART

Value:

Program Data Vector for MERGE5

Variable: SUBJID AGE WEIGHT VISIT HEART

Value: 1 42 185 1 60

Program Data Vector for MERGE5

Variable: SUBJID AGE WEIGHT VISIT HEART

Value: 1 42 84.0909 1 60

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

12

Next, the MERGE statement executes again. Since the DEMOG dataset does not contain any more
records for the current BY group (SUBJID = 1), nothing is read from DEMOG. There is still one record for
the current BY group in the VITALS dataset, so the values from that record are copied to the PDV. Since
nothing was read from DEMOG, the existing values of AGE and WEIGHT survive. The PDV now has the
following state:

Now we come once again to the weight conversion statement. The current value of WEIGHT (84.0909) is
read from the PDV and divided by 2.2, and the result (38.2231) is written back to the PDV. Having
reached the end of the DATA step, the contents of the PDV are written out as the second record of the
output dataset.

At last we have uncovered the source of our problem. The value of WEIGHT is read only once for each
BY group, while the weight conversion statement executes once for each iteration of the DATA step. The
WEIGHT continues to be divided by 2.2 repeatedly until the end of the BY group is reached.

THE CORRECTION

Now that we understand what is causing this unexpected behavior, what can we do about it? The safest
and most conservative option is to limit all merges to the required statements and perform additional
processing in a separate DATA step.

data merge5b1;

 merge demog vitals;

 by subjid;

run;

data merge5b;

 set merge5b1;

 weight = weight / 2.2;

run;

However, it is not always necessary to take such drastic action. This merge can be made to perform as
expected within a single DATA step by simply renaming one of the input variables as follows:

data merge5c(drop=weight_lbs);

 merge demog(rename=(weight=weight_lbs)) vitals;

 by subjid;

 weight = weight_lbs / 2.2;

run;

As shown below, this modified code produces the output dataset we were expecting. Since
WEIGHT_LBS is retained but not modified, each record within a given BY group will have the same value
of WEIGHT.

Program Data Vector for MERGE5

Variable: SUBJID AGE WEIGHT VISIT HEART

Value: 1 42 84.0909 2 58

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

13

THE LESSON

It is advisable to be very careful when adding complex logic to a DATA step that performs a merge. One
should clearly understand how the PDV works and the ramifications of the automatic retain. If these
concepts are unclear, or one simply wishes to play it safe, move the additional logic to a separate DATA
step.

CONCLUSION

Merging datasets is one of the most basic and common functions performed in SAS. However, the
underlying procedure is more complex than it might first appear

Even the most skilled programmer can sometimes overlook subtle traps. Thus, it is advisable to
habitually practice certain programming techniques to defend against these errors:

1. Don’t merge without a BY statement unless you know exactly what you are doing, and
consider using the MERGENOBY=ERROR option to avoid doing so inadvertently.

2. Avoid performing a many-to-many merge (where multiple datasets have repeats of the same
BY variable) unless you know exactly what you are doing. Use the SQL procedure when you
need a Cartesian product.

3. Always set the length explicitly when merging on a BY variable with mismatched lengths, or
avoid the situation in the first place.

4. Don’t merge with overlapping variables unless there is a specific reason you need to do so,
and then only with full knowledge of how the merge actually works.

5. Avoid adding additional statements beyond those required for the merge: the DATA
statement, the MERGE statement, the BY statement, possibly a subsetting IF statement, and
of course the RUN statement. If this is too cumbersome, then at the very least, refrain from
modifying the values of existing variables from an input dataset in a merge.

Finally, it is imperative for an effective SAS programmer to be equipped with a thorough understanding of
the internal workings of the DATA step to avoid mistakes like the ones discussed in this paper. See
Johnson (2012) or Li (2013) for a comprehensive treatment of the program data vector and Virgile (2000)
for additional discussion of the PDV specifically as it relates to merging.

MERGE5C Dataset

SUBJID AGE WEIGHT VISIT HEART

1 42 84.090909091 1 60

1 42 84.090909091 2 58

2 55 77.272727273 1 74

2 55 77.272727273 2 72

2 55 77.272727273 3 69

3 30 72.727272727 1 71

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

14

REFERENCES

Foley, Malachy J. “Advanced MATCH-MERGING: Techniques, Tricks, and Traps.” Proceedings of the
Twenty-Second Annual SAS® Users Group International. Cary, NC: SAS Institute Inc., 1997.
Paper 39. http://www2.sas.com/proceedings/sugi22/ADVTUTOR/PAPER39.PDF

Foley, Malachy J. “MATCH-MERGING: 20 Some Traps and How to Avoid Them.” Proceedings of the
Twenty-Third Annual SAS® Users Group International. Cary, NC: SAS Institute Inc., 1998.
Paper 47. http://www2.sas.com/proceedings/sugi23/Advtutor/P47.pdf

Johnson, Jim. “The Use and Abuse of the Program Data Vector.” Proceedings of the SAS® Global
Forum 2012 Conference. Cary, NC: SAS Institute Inc., 2012. Paper 255-2012.
http://support.sas.com/resources/papers/proceedings12/255-2012.pdf

Li, Arthur. “Essentials of the Program Data Vector (PDV): Directing the Aim to Understanding the DATA
Step!” Proceedings of the SAS® Global Forum 2013 Conference. Cary, NC: SAS Institute Inc.,
2013. Paper 125-2013. http://support.sas.com/resources/papers/proceedings13/125-2013.pdf

Virgile, Bob. “How MERGE Really Works.” Proceedings of the Pharmaceutical Industry SAS® Users
Group 2000 Annual Conference. Chapel Hill, NC: PharmaSUG, 2000. Paper DM12.
http://www.lexjansen.com/pharmasug/2000/DMandVis/dm12.pdf

Virgile, Bob. “Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!” Proceedings of the
NorthEast SAS Users Group 2003 Conference, Washington, DC. Paper AT005.
http://www.lexjansen.com/nesug/nesug03/at/at005.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Joshua M. Horstman
Nested Loop Consulting
317-721-1009
josh@nestedloopconsulting.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://www2.sas.com/proceedings/sugi22/ADVTUTOR/PAPER39.PDF
http://www2.sas.com/proceedings/sugi23/Advtutor/P47.pdf
http://support.sas.com/resources/papers/proceedings12/255-2012.pdf
http://support.sas.com/resources/papers/proceedings13/125-2013.pdf
http://www.lexjansen.com/pharmasug/2000/DMandVis/dm12.pdf
http://www.lexjansen.com/nesug/nesug03/at/at005.pdf

