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ABSTRACT  

Although regulatory agencies request pharmacometric datasets be submitted as SAS
®
 transport files for 

review, current clinical and preclinical ADME data analysis is handled mostly by non-SAS
®
 programs. 

Previously, we reported a SAS
®
-based application, AIR Binder, for automatic analysis and reporting of a 

specific cytochrome P450 (CYP) inhibition assay, a key preclinical drug metabolism assay for the 
prediction of drug-drug interactions (PharmaSUG 2017). Significantly improved productivity and efficiency 
resulted in the expansion of the application to a wide range of preclinical and clinical ADME assays for 
dynamic visualization, data analysis and reporting.  Considering the complexity of data structures and 
presentation styles across these assays, SAS

®
 macros were designed and written to be more generalized 

and object-oriented. Key features include: various styles of ODS panel plots implemented to visualize 
profiles of metabolites for cross-species comparison and toxicology species selection; enhanced 
pharmacokinetic parameter analysis and display for metabolites; comprehensive statistical analysis of 
plasma protein binding data with PROC GLM; customized non-linear fitting for CYP inhibition and 
induction assays with kinetic parameter calculation and display using PROC NLIN. With the current 
infrastructure it is convenient to expand the program with the integration of new drug metabolism assay 
types for data analysis and visualization.  Overall, AIR Binder 2.0 dynamically visualized data to efficiently 
convey information for quick decision making, which enhanced communications within study teams, 
between CRO and clients, and significantly shortened reporting turnaround time of drug metabolism 
projects for drug discovery and development. 

INTRODUCTION  

Preclinical and clinical ADME assays are important components to support drug discovery and 
development. Data from these ADME assays are critical to understand pharmacokinetic and metabolic 
fate of drug molecules, providing essential supporting material for IND and NDA applications with 
regulatory agencies. Cross-species metabolite profiling and identification using microsomes or 
hepatocytes as well as plasma protein binding are two primary ADME assays required for IND filing of a 
new chemical entity (NCE), both of which could help in selecting animal species for drug safety testing. 
Other in vitro ADME assays eventually required for clinical drug development and NDA filing include CYP 
inhibition and induction assays for drug-drug interactions (DDI), as well as CYP reaction phenotyping, 
which is important to understand DDI and also serves as a tool to identify the NCEôs potential impact on 
polymorphic populations. In addition, definitive metabolite profiling and identification are required for mass 
balance studies in animals and human together with the determination of pharmacokinetic parameters for 
the NCE and its key metabolites. 
 
Today, these preclinical and clinical ADME assays are often standardized in most pharmaceutical 
companies and CROs; however, data tables and figures across these assays including key messages to 
be delivered and presented are diverse in format. In the past, data analysis, table making, figure plotting, 
and curve fitting in our organization heavily relied on Microsoft Excel, together with a few specialized 
scientific software packages such as SigmaPlot or Prism for non-linear curve fitting due to their integrated 
kinetic equations. However, the process was labor-intensive, time-consuming and inefficient, and required 
data transfer between unrelated programs. Considering the complexity of data structures and 
presentation styles across these ADME assays, a better, more efficient, flexible process was needed. We 
sought a flexible, efficient and low maintenance platform to handle various assay reporting. SAS

®
 macros 

were thus selected, designed and written in a generalized and object-oriented format to guide us to the 
right direction to achieve that goal.   
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We further developed AIR Binder (Automatic In Vitro/In Vivo ADME Report Binder), a SAS
®
-based 

application (Sun 2017), for dynamic visualization, data analysis and reporting of preclinical and clinical 
ADME assay data. Some key features include: (1) ODS panel plots were implemented to visualize 
profiles of metabolites for cross-species comparison and toxicology species selection, pharmacokinetics, 
and other ADME assays; (2) PROC GLM was applied for comprehensive statistical analysis for plasma 
protein binding data; (3) PROC REG and NLIN were used for various linear and nonlinear curve fitting in 
CYP inhibition and induction assays (IC50 and EC50 determination using a 4-parameter logistic model), 
metabolic stability (t1/2 determination), and pharmacokinetics (non-compartment and compartment 
models). AIR Binder dynamically visualized these ADME assay data to efficiently convey information for 
quick decision making within study teams, which also significantly enhanced communications between 
CRO and clients, and greatly shortened reporting turnaround time for drug metabolism projects in 
discovery and development. With the current infrastructure of AIR Binder, it is convenient to expand the 
program with the integration of new ADME assay types for data analysis and visualization. Overall, AIR 
Binder is a standardized and customized program for efficiently reporting preclinical and clinical ADME 
data, significantly reducing turnaround time, eliminating unnecessary errors due to data transfer, 
minimizing labor cost, and enhancing productivity. 
 
In this paper, we describe the design of SAS

®
 macros in AIR Binder to be more object-oriented, such that 

code was shared efficiently across all ADME assays. Then, for each individual ADME assay, the specific 
requirements and challenges in data analysis and presentation are discussed, which include CYP 
inhibition and induction, plasma protein binding, CYP phenotyping, metabolic stability and intrinsic 
clearance, metabolite profiling and identification, and pharmacokinetics. For each part, key assay 
information, data structure, scientific calculation criteria, data visualization and the role of AIR Binder in 
enhancing data analysis and visualization are discussed.  
 

OBJECT-ORIENTED MACROS: CODE SHARE AND REUSE IN AIR BINDER  

Object-oriented programming (OOP) is a software design philosophy. The emphasis of OOP is on the 
data and operations rather than concentrating on the order of programming steps. Java, Python, and C++ 
are the most popular OOP languages today. Significant reusability of code can be gained by means of 
object-oriented programming concepts including ñencapsulationò, ñpolymorphismò, and ñinheritanceò. Real 
object-oriented SAS

®
 applications can be created with SAS

®
 Component Language (SCL), which is not 

covered in this paper. 
 
Instead, AIR Binder was developed in Base SAS

®
 (version 9.2), which was designed with streamlined 

SAS
®
 macros. Although SAS

®
 macro language is not inherently object-oriented, structurally it has some 

characteristics of object-oriented languages. Thus, more accurately, AIR Binder was designed with 
object-oriented concepts to organize SAS

®
 macros, so they could be extensively shared across ADME 

assay types. These SAS
®
 macro functions were reusable to analyze, visualize and report all preclinical 

and clinical ADME assay data. 
 
By definition, encapsulation indicates dividing the code into a public interface and a private 
implementation of the interface. Main deliverables of these ADME assays are tables and figures, which 
construct the top class of AIR Binder. For example, in the generalized ñreport tableò class, several basic 
components were included, resembling a generic recipe that generate the ADME assay tables but at the 
same time did not contain specific individual assay data (Figure 1). The report table class may contain 
various subclass and individual methods. Common subclasses include those that read in raw tables such 
as CSV files, round numbers, calculate basic statistics such as mean and standard deviation, transpose 
various numbers of replicates, display certain significant figures, and finally draw tables with desired 
features and styles. Accordingly, AIR Binder was written this way to generalize high-level macros that 
were used across individual ADME assays (ñobjectsò in OOP). For example, to create a table for the CYP 
inhibition assay, a series of class/subclass macros were lined up, together with unique methods for this 
specific assay type. Each macro function written in AIR Binder was a self-sustainable "object" with local 
variable defined and macro parameters generalized. The same concept was used across ADME assays.   
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Figure 1 An example of AIR Binder code organization 

 
SAS

®
 macros to possess the polymorphism feature of OOP should have the ability to overload generic 

SAS
®
 functions so that they have appropriate behavior based on the context at runtime. The following 

function STAT in AIR Binder is a generalized macro to calculate arithmetic means and standard deviation 
of a specified variable Y from an input file INFILE. The calculated mean (MEAN_Y) and standard 
deviation (STD_Y) using PROC MEANS are merged with INFILE to create the output file OUTFILE. Two 
other parameters that are passed in STAT are ID and X. The ID parameter is the identifier variable or a 
list of variables such as different enzymes, hepatocyte donors, species, patient groups, concentrations, 
time points, or combinations of two or more of these variables. The X parameter is a separate identifier 
variable that can be further used for normalization purposes, a common requirement to present preclinical 
and clinical ADME assay data, which are a series of concentration or time points in general. 
 

%macro stat(infile=infile,outfile=outfile,id=in,x=in,y=in,mean_y=out,std_y=out);  

 

 proc sort data=&infile; by &id &x; run;  

 

 data &outfile._stat (keep=&id &x &y); set &infile; run;  

 

 proc means data=&outfile._stat; by &id &x;  

  output out=&outfile._staty  

mean(&y)=&mean_y  

std(&y)=&std_y;  

run;  

 

 data &outfile; merge &infile &outfile._staty(drop=_type_ _freq_); by &id &x; run;  

%mend;  

 
Similarly, for the macro function NORM, the parameter EQUATION describes an assay-dependent 
calculation at runtime and the parameter ZERO defines the X variable value for normalization, which can 
be a zero concentration in the CYP inhibition and induction assays, or a CYP name with the highest 
formation of metabolites in the CYP phenotyping assay. Thus, this single macro is a generic interface that 
has multiple implementations decided at runtime, the concept of polymorphism in OOP.  
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%macro norm(inf ile=in,outfile=out,id=in,x=in,y=in,mean_y=in,std_y=in,  

 equation=in,zero=in,pct= out );  

  

 proc sort data=&infile; by &id; run;  

 

 data &outfile._norm; set &infile (keep=&id &x &mean_y); by &id; run;  

 

 data &outfile._zero (drop=&x &mean_y);  

set &outfile._nor m;  

where &x="&zero";  

ctrl=&mean_y;  

run;  

 

 proc sort data=&outfile._zero nodup; by &id; run;  

 

 data &outfile(drop=ctrl);  

merge &infile &outfile._zero;  

  by &id;  

&pct=&equation;  

run;  

%mend;  

 
To leverage polymorphism in other instances, some SAS

®
 macro functions in AIR Binder were nested, 

defined and executed at runtime. One example was the code setup for figure plotting schemes: a single 
fitting curve (for all assays required), two fitting curve overlay (such as ±NDAPH results for the IC50 shift 
plot in CYP inhibition assays), and three fitting curve overlay (such as three hepatocyte donors normally 
used for CYP induction assays). The following code is a part of a 4-parmater logistic fitting curve plot. The 
PREP4PL macro can be called once or multiple times to generate datasets based on the kinetic 
parameters determined with PROC NLIN, then to generate datasets for fitting curves, and also to create a 
sub dataset for the inset display in figures. The PLOTFITTING1/2/3 macro functions are called 
subsequently to draw corresponding figures using the SGPLOT procedure:  
 

 /* part of a 4 - paramter logistic fitting curve plot function */  

 %if &assayname=fitting and &overlay=single %then %do;  

  %prep4pl (éall parametersé)  

   %plotfitting1 (éall parametersé) 

 %end;  

 

 %else %if &assayname=fitting and &overlay=double %then %do;  

  %prep4pl (éall parametersé) 

  %prep4pl (éall parametersé) 

   %plotfitting2 (éall parametersé) 

 %end;  

 

 %else %if &assayname=fitting and &overlay=triple %then %do;  

  %prep4pl (éall parametersé) 

  %pr ep4pl (éall parametersé) 

  %prep4pl (éall parametersé) 

   %plotfitting3 (éall parametersé) 

 %end;  

 
To enhance code reusability, conditional definition of SAS

®
 macros was implemented. The following is a 

function called PLUM in AIR Binder that was used in all ADME assays to insert a ñÑò sign between 
arithmetic mean and standard deviation values.  It was also used to insert a ñĬ/õò sign between geometric 
mean and standard deviation values for special situations such as CYP induction assays when using an 
mRNA expression endpoint. The TYPE parameter defined runtime output. In addition, macro variables of 
these mathematic signs were defined as local variables using the %LET statement including 
PLUSMINUS, MULT and DIVI, to enhance functionality and reusability.  

 

     %macro plum(infile=in,outfile=out,type=in,mean_y=in,std_y=in,y_stat=out);  

 

 %let plusminus=(*ESC*){unicode 00b1};  

 %let mult=(*ESC*){unicode 00d7};  

 %let divi=(*ESC*){unicode 00f7};   



AIR Binder 2.0, continued  MWSUG 2017 

5 

 %if &type=ari %then %do;  

  data &outfile(drop=&mean_y &std_y);  

   set &infile;  

   if &mean_y NE .  and &std_y NE .  then do;  

    &y_stat = 

right(&mean_y) || " " || "&plusminus" || " " || left(&std_y);  

   end;  

   else if &mean_y NE .  and &std_y EQ .  then do;  

    &y_stat = " " || right(&mean_y) || " ";  

   end;  

   else do; &y_sta t = "NA"; end;  

  run;  

 %end;  

 

 %if &type=geo %then %do;  

  data &outfile(drop=&mean_y &std_y);  

   set &infile;  

   if &mean_y NE .  and &std_y NE .  then do;  

    &y_stat =  

right(&mean_y) || " " || "&mult.|&divi" || " " || left(&std_y);  

   end;  

   else if &me an_y NE .  and &std_y EQ .  then do;  

    &y_stat = " " || right(&mean_y) || " ";  

   end;  

   else do; &y_stat = "NA"; end;  

  run;  

 %end;  

    %mend;  

 
Inheritance indicates the ability to create a subclass that contains specializations of the parent class, 
which is the mechanism an object acquires some or all properties of another object. The %INCLUDE 
statement is an efficient tool for code reuse. For the examples above, macro functions STAT and NORM 
can be called alternatively for multiple times to form a new function ANNE below. The new function first 
calculates the mean and standard deviation of the variable Y, and then the variable Y is normalized by a 
ñZEROò value and a defined ñEQUATIONò parameter. Following that, mean and standard deviation for the 
normalized Y (or the new variable PCT) is calculated. Thus, the new macro ANNE processes full 
functions of STAT and NORM but the combination creates a new function. The variation of different 
combination patterns of STAT and NORM creates different applications.  
 

%include "c: \ sas \ siri \ stat.sas";  

%include "c: \ sas \ siri \ norm.sas";  

 

%macro anne(infile=in,outfile=in,id=in,x=in,y=in,mean_y= out ,

 std_y= out ,pct= out ,mean_pct= out ,std_pct= out ,equation=in,zero=in);  

 

 %stat (infile=&infile,outfile=&outfile._ystat,  

  id=&id,x=&x, y=&y,mean_y=&mean_y,std_y=&std_y)  

 

 %norm (infile=&outfile._ystat,outfile=&outfile._norm,  

  id=&id,x=&x,y=&y,mean_y=&mean_y,std_y=&std_y,  

  equation=&equation,zero=&zero,pct=&pct)  

 

 %stat (infile=&outfile._norm,outfile=&outfile,  

  id=&id,x=&x,y=&pct,mean_y=& mean_pct,std_y=&std_pct)  

%mend;  

 

Therefore, with the designed organization of code in AIR Binder, which was more object-oriented by 
applying the concepts of encapsulation, polymorphism, and inheritance, the reusability of code was 
significantly enhanced. The code rewriting time was dramatically reduced across preclinical and clinical 
ADME assay reporting. Also, minimal time was needed to develop an application for a new assay type 
integrated to AIR Binder. Specific examples for these ADME assays including data handling, workflow, 
and typical output are summarized in detail below.   
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CYP INHIBITION AND INDUCTION 

CYP inhibition (such as reversible inhibition and mechanism-based inactivation) and induction are 
essential contributors for clinical drug-drug interactions. Key kinetic parameters can be derived from 
preclinical in vitro CYP inhibition and induction assays and then applied to predict clinical drug-drug 
interactions. The combined effects of inhibition and induction were integrated into a mechanistic static 
model (Einolf 2014), the so-called ñnet effectò model with the equation below: 
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where AUCR is the ratio of the pharmacokinetic AUC in the presence and absence of a potential 
inhibitor/inducer (ñperpetratorò), fm is the fraction of the ñvictimò drug metabolized by a specific enzyme 
(such as CYP3A4), fg is the fraction of the ñvictimò drug escaping from gut extraction, and Ʉliver and Ʉgut 
are the product of the following terms in liver and gut, respectively: 
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where [I] is the concentration of the inhibitor/inducer (such as its Cmax), kdegradation is the degradation rate of 
a specific enzyme (a constant, for example, 0.0003 min

-1 
and 0.0005 min

-1
 for CYP3A4 in liver and gut, 

respectively), Ki is the inhibition constant for reversible inhibition, kinact is the maximum inactivation rate, KI 
is the concentration of inactivator at half kinact, Emax is the maximum induction ratio, EC50 is the half-
maximal effective concentration for induction, and d is an estimated value derived from linear weighted 
least-square regression. The methods to determine these kinetic parameters are described as follows.  

 
First, IC50 assay for direct inhibition is a simplified form for a representative Ki determination. Previously 
we described the application of a 4-parameter logistic model to calculate IC50 values (Sun 2017):  
 

Ὢὼ    
    

ρ  
ὼ
 

  

 
where ū0 is the lower asymptote, ū1is the upper asymptote, ū2 is the inflection point or IC50, and ū3 is the 
Hill slope. A typical graphic output for direct inhibition IC50 curve fitting in AIR Binder is shown in Figure 2. 

 

 
 

Figure 2 IC50 curve fitting and plot for direct inhibition assay  
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Four variations of IC50 fitting were also described previously (Sun 2017) that include (1) a relative IC50 
(&fittype=RELATIVE); (2) an absolute IC50 (&fittype=ABSOLUTE); (3) a lower asymptote constrained IC50 
(&fittype=LOWERCSN); and (4) an upper asymptote constrained IC50 (&fittype=UPPERCSN). They were 
integrated into a flexible single SAS® function by conditionally selecting 4 macro variables: ñ&MINCOLò, 
ñ&MAXCOLò, ñ&IC50COLò, and ñ&HILLCOLò, as defined by various %LET macro statements as follows:  
 
   ...part of a 4 - paramter logistic model  preparation function...  

 

 %if &fittype=relative %then %do;  

  %let maxcal=max;  

  %let mincal=min;  

  %let maxcol=col1;  

  %let mincol=col2;  

  %let ic50col=col3;  

  %let hillcol=col4;  

  %let dropcol=col1 col2 col3 col4 i;  

 %end;  

 

 %if &fittype=absolute %then %do;  

  %let maxcal=100;  

  %let mincal=0;  

  %let maxcol=100;  

  %let mincol=0;  

  %let ic50col=col1;  

  %let hillcol=col2;  

  %let dropcol=col1 col2 i;  

 %end;  

 

 %if &fittype=lowercsn %then %do;  

  %let maxcal=max;  

  %let mincal=0;  

  %let maxcol=col1;  

  %let mincol=0;  

  %let ic50col=col2;  

  %let hillcol=col3;  

  %let dropcol=col1 col2 col3 i;  

 %end;  

 

 %if &fittype=uppercsn %then %d o;  

  %let maxcal=100;  

  %let mincal=min;  

  %let maxcol=100;  

  %let mincol=col1;  

  %let ic50col=col2;  

  %let hillcol=col3;  

  %let dropcol=col1 col2 col3 i;  

 %end;  

 

The values of these variables are assigned from the PARAMETERESTIMATES table (COL1-4) generated 
by the ODS OUTPUT statement in PROC NLIN. Additionally, the macro variables &MAXCAL and 
&MINCAL control the MODEL statement in PROC NLIN, and &DROPCOL adjusts the variable list to draw 
a curve fitting line. In practice, a 3-parameter logistic model by constraining the lower asymptote to zero 
(LOWERCSN) was commonly used for IC50 determination:  
 

Ὢὼ
 

ρ  
ὼ
 

  

 
where ū1 is the upper asymptote, ū2 is IC50, and ū3 is the Hill slope. IC50 is in general a good indicator of 
Ki for many compounds in drug development especially when they are not tightly bound inhibitors. 
However, the Ki value is an intrinsic parameter that is independent of substrate, enzyme and other 
experimental conditions. In practice, Ki assay is a combination of several IC50 assays at different 
substrate concentrations. Its data structure and processing for table and figure generation in AIR Binder 
are exactly the same as that of an individual IC50 assay.  
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Ki values for several typical inhibition mechanisms including competitive, non-competitive, uncompetitive, 
and mixed inhibition are determined by fitting the following equations using PROC NLIN: 
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where V is the rate of reaction as measured by a specific metabolite formation, Vmax is the maximal rate of 
reaction, Km is the affinity constant, [S] is the substrate concentration, [I] is the inhibitor concentration, Ki is 
the inhibition constant, and Ŭ is the interaction parameter that determines the degree to which the inhibitor 
binding changes the substrate binding affinity to the enzyme. 
 
The relationship between IC50 and Ki for a competitive inhibition is expressed as follows: 
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The direct inhibition assay is conducted at the substrate concentration of Km and thus Ki is estimated as a 
half of IC50. However, for tightly bound inhibitors, the relationship between IC50 and Ki for competitive 
inhibition is expressed as follows: 
 

ὑȟ
 Ὅὅ

Ὁ
ς

ρ
Ὓ
ὑ

 

 
where [E0] is the initial enzyme concentration. Thus, for a tight binder, Ki is also determined by the initial 
enzyme concentration, in addition to its IC50 value.  

 
Second, the IC50 shift assay (Figure 3) in the presence and absence of a catalytic factor (±NADPH) 
serves as an indicator for further investigation of mechanism-based inactivation. The kinetic parameters 
KI and kinact of a specific enzyme are derived from a two-step process. First, a linear regression analysis of 
a time-course inhibition (using PROC REG) is used to calculate the initial rate constant (kobs) at various 
concentrations of a compound. Then, kobs values are used to fit a non-linear function with PROC:  
 

Ὧ Ὧ ȟ

 Ὧ Ὅ

ὑ Ὅ
 

 
where kobs is the first order rate constant for a mechanism-based inactivation as estimated from the slope 
of a time-course inhibition (natural logarithm of residual activity), [I] is the compound concentration, kinact is 
the maximal rate of enzyme inactivation, and KI is the compound concentration resulting in the sum of kobs 
at [I]=0 and 50% of the maximum enzyme inactivation.  



AIR Binder 2.0, continued  MWSUG 2017 

9 

 
 

Figure 3 Display of IC50 shift for metabolism-dependent inhibition 

 
 
Third, for a CYP induction assay two separate sets of data are generally collected: a fold change of 
enzyme activity and mRNA expression levels. Similarly, a four-parameter logistic model by constraining 
the lower asymptote is often used to determine EC50 and Emax: 
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The fold induction for the enzyme activity at a specific concentration of a compound is commonly 
normalized to the solvent control directly. But the fold induction for mRNA expression level requires 
additional interpretation and is calculated with the following equations: 
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where CT (threshold cycle) is the cycle number in real time PCR at which the fluorescence generated 
within a reaction crosses the threshold of detection, ȹCT is the difference in threshold cycle between the 
specific CYP mRNA studied and an endogenous control such as GAPDH mRNA (glyceraldehyde-3-
phosphate dehydrogenase, one of the most commonly used housekeeping gene), ȹȹCT is the difference 
in ȹCT between potential inducer-treated sample and vehicle control. 
 
The 4-parameter logistic model preparation function for CYP inhibition curve overlay and CYP induction 
donor curve overlay are two objects from a generic logistic model preparation class in AIR Binder. A 
typical graphic output for induction mRNA expression EC50 curve fitting is presented in Figure 4. 
Compared to CYP inhibition IC50 curves, the mean and standard deviation of the fold induction used for 
mRNA expression are geometric instead of arithmetic, for the consideration that the fold induction of 
mRNA expression follows an exponential form. The GEOMEAN function was integrated to calculate the 
geometric mean of fold induction for any non-missing values of replicates. The EXP and LOG functions 
were used to calculate the geometric standard deviation.  
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Figure 4 EC50 curve overlay for mRNA fold induction in multiple donors 
 

In detail, the geometric mean and standard deviation of fold induction for mRNA expression are 
calculated with the following equations: 
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where µg is the geometric mean, xi is the fold induction for mRNA expression, and ůg is the geometric 
standard deviation. A comparison table output for geometric and arithmetic mean and standard deviation 
for the mRNA and enzyme activity fold induction in an induction assay are shown in Figure 5. 
 

 

 
 

Figure 5 Geometric and arithmetic mean and standard deviation display for fold induction  

Geometric Mean and 

Standard Deviation

Assay Conc ȹCT mRNA Fold Induction 

Info (ɛM) R1 R2 R3 Mean ± SD R1 R2 R3 Geo Mean ×|÷ SD 

CYP3A4 

Donor1 

0 0.395 0.389 0.327 0.370 ± 0.0376 0.983 0.987 1.03 1.00 ×|÷ 1.03 

0.03 -0.0726 0.585 0.817 0.443 ± 0.461 1.36 0.862 0.734 0.951 ×|÷ 1.38 

0.1 -0.258 -0.0932 0.170 -0.0604 ± 0.216 1.55 1.38 1.15 1.35 ×|÷ 1.16 

0.3 -1.83 -1.46 -1.23 -1.51 ± 0.303 4.60 3.56 3.03 3.67 ×|÷ 1.23 

1 -3.01 -3.37 -2.32 -2.90 ± 0.534 10.4 13.4 6.45 9.65 ×|÷ 1.45 

3 -3.43 -3.52 -3.00 -3.32 ± 0.278 13.9 14.8 10.3 12.9 ×|÷ 1.21 

10 -3.22 -3.60 -3.41 -3.41 ± 0.190 12.0 15.7 13.7 13.7 ×|÷ 1.14 

30 -3.50 -3.19 -3.14 -3.28 ± 0.195 14.6 11.8 11.4 12.5 ×|÷ 1.14 

 

Assay Conc Activity (pmol/minute/million cells) Enzyme Activity Fold Induction 

Info (ɛM) R1 R2 R3 Mean ± SD R1 R2 R3 Mean ± SD 

CYP3A4 

Donor1 

0 42.0 44.8 34.6 40.5 ± 5.27 1.04 1.11 0.855 1.00 ± 0.130 

0.03 41.1 45.4 41.8 42.8 ± 2.31 1.02 1.12 1.03 1.06 ± 0.0570 

0.1 46.3 42.1 42.4 43.6 ± 2.34 1.14 1.04 1.05 1.08 ± 0.0579 

0.3 58.3 50.2 51.2 53.2 ± 4.42 1.44 1.24 1.27 1.32 ± 0.109 

1 86.1 87.4 89.3 87.6 ± 1.61 2.13 2.16 2.21 2.16 ± 0.0398 

3 142 150 156 149 ± 7.02 3.51 3.71 3.86 3.69 ± 0.174 

10 205 186 161 184 ± 22.1 5.07 4.60 3.98 4.55 ± 0.545 

30 163 200 173 179 ± 19.1 4.03 4.94 4.28 4.42 ± 0.473 
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PLASMA PROTEIN BINDING 

Plasma protein binding is a routine preclinical and clinical ADME assay designed to measure the 
percentage of drug molecules bound to plasma proteins using the equilibrium dialysis method. Free or 
unbound fraction (fu) of drug molecules is determined and compared across species for the selection of 
optimal preclinical toxicology species, and/or compared across patient groups in clinical studies for 
optimal pharmacokinetic analysis. Sometimes, free fraction may also be measured in a time course 
postdose to determine concentration dependency, to elucidate unexpected pharmacokinetic profiles. For 
most drug molecules, the unbound drug concentration in vivo determines efficacy and toxicity, which may 
not always be related to free fraction values derived from the plasma protein binding assay in vitro (Liu 
2014). An explanation is that free fraction impacts both bioavailability and clearance, as presented below 
with the total and free drug exposure in plasma by a well-established mathematical liver model called 
ñwell-stirred modelò: 
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where AUCtotal is the total plasma concentration of a drug molecule or the overall drug exposure, 
AUCunbound is the overall unbound drug exposure, F is bioavailability, CLtotal is total clearance for the 
elimination of a drug molecule via metabolism and/or drug transport, fu is free fraction, and Q is hepatic 
blood flow.  
 
The unique data structure of the plasma protein binding assay is the paired concentration columns in raw 
tables: both donor- and receiver-side concentrations, which are separated by a dialysis cellulose 
membrane in an equilibrium dialysis device. Before generation of statistics, exactly paired data points 
should be used first to calculate the free fraction with the following equation:  
 

ὖὩὶὧὩὲὸ ὟὲὦέόὲὨ Ὢ ρππρ
ὅ ὅ
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where Cdonor is the concentration of a drug molecule in the donor side of the membrane at equilibrium in 
an equilibrium dialysis experiment, Creceiver is the concentration of the drug molecule in the receiver side of 
the membrane (or dialysate). The standard table output in AIR Binder for plasma protein binding assay 
includes plasma species, concentration of a drug molecule, replicates (usually 4-6) with calculated mean 
and standard deviation of the donor-side concentration, receiver-side concentration, and free fraction 
values (Figure 6).  

 

 

Figure 6 Paired data display for free fraction calculation in a plasma protein binding assay  

Plasma Concentration Donor Concentration (ɛM) Receiver Concentration (ɛM) Percent Unbound 

Species (ɛM) R1 R2 R3 R4 Mean ± SD R1 R2 R3 R4 Mean ± SD R1 R2 R3 R4 Mean ± SD 

Rat 0.1 11.8 12.7 13.0 11.9 12.4 ± 0.592 0.499 0.470 0.459 0.473 0.475 ± 0.0169 4.23 3.70 3.53 3.97 3.86 ± 0.307 

1 123 122 127 109 120 ± 7.80 4.01 3.68 4.21 3.79 3.92 ± 0.236 3.26 3.02 3.31 3.48 3.27 ± 0.191 

5 389 428 414 436 417 ± 20.6 83.8 79.0 78.4 86.3 81.9 ± 3.81 21.5 18.5 18.9 19.8 19.7 ± 1.36 

20 646 710 553 730 660 ± 79.7 251 267 224 253 249 ± 18.0 38.9 37.6 40.5 34.7 37.9 ± 2.47 

Dog 0.1 6.45 7.72 7.63 7.52 7.33 ± 0.592 1.73 1.70 2.18 1.56 1.79 ± 0.269 26.8 22.0 28.6 20.7 24.5 ± 3.75 

1 82.5 75.8 86.1 76.7 80.3 ± 4.89 22.7 25.6 26.0 23.7 24.5 ± 1.56 27.5 33.8 30.2 30.9 30.6 ± 2.57 

5 336 316 357 367 344 ± 22.7 133 136 138 136 136 ± 2.06 39.6 43.0 38.7 37.1 39.6 ± 2.53 

20 628 636 646 611 630 ± 14.8 297 287 299 266 287 ± 15.1 47.3 45.1 46.3 43.5 45.6 ± 1.61 

Human 0.1 8.48 9.19 7.54 8.37 8.40 ± 0.676 1.37 1.33 1.32 1.24 1.32 ± 0.0545 16.2 14.5 17.5 14.8 15.7 ± 1.39 

1 97.2 80.0 90.8 84.7 88.2 ± 7.47 15.8 16.5 16.5 17.0 16.5 ± 0.493 16.3 20.6 18.2 20.1 18.8 ± 1.98 

5 331 318 284 367 325 ± 34.3 101 105 114 110 108 ± 5.69 30.5 33.0 40.1 30.0 33.4 ± 4.68 

20 523 611 587 548 567 ± 39.3 299 236 265 242 261 ± 28.5 57.2 38.6 45.1 44.2 46.3 ± 7.81 
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The main workflow in AIR Binder to generate the previous free fraction table (Figure 6) is a batch of 
functions (called ñFROGò, a new macro inherited from six upper-level macro functions): 

%macro frog(infile=infile,outfile=outfile,keeplist=in,  

 id=in,x=in,y=in,mean_y=out,std_y=out,y_stat=out,sigfig=3);  

 

 %tres(infile=&infile,outfile=&outfile._tres,keeplist= &keeplist);  

 

 %stat(infile=&outfile._tres,outfile=&outfile._stat,  

  id=&id,x=&x,y=&y,mean_y=&mean_y,std_y=&std_y)  

 

 %flip(infile=&outfile._stat,outfile=&outfile._flip,  

  id=&id,x=&x,y=&y,mean_y=&mean_y,std_y=&std_y)  

 

 %snip(infile=&outfile._flip,outfile=&o utfile._round,  

  roundvarlist=&mean_y &std_y,sigfig=&sigfig)  

 

 %deco(infile=&outfile._round,outfile=&outfile._sig,  

  sfvarlist=&y.1 &y.2 &y.3 &y.4 &mean_y &std_y,sigfig=&sigfig)  

 

 %plum(infile=&outfile._sig,outfile=&outfile,type=ari,  

  mean_y=sf_&mean_y,st d_y=sf_&std_y,y_stat=&y_stat)  

%mend; 

 

FROG was called three times to create separate tables for the donor-side concentration, receiver-side 
concentration, and free fraction values, and then these tables were merged into a final table. The process 
started with the selection of three columns of data: species, concentration, and a measured/calculated 
endpoint (donor-side concentration, receiver-side concentration, or free fraction) using TRES, followed by 
calculation of statistics (STAT), transpose of quadruplicates (FLIP), rounding to 3 significant figures 
(SNIP), display of 3 significant figures (DECO), and joining mean and standard deviation with a ñÑò sign 
(PLUM). All these functions were written in generalized forms. 

In addition, the percent recovery is calculated with the following equation: 

 

ὖὩὶὧὩὲὸ ὙὩὧέὺὩὶώρππ
ὅ ὠ ὅ ὠ

ὅ ὠ
 

 
where Cdonor and Vdonor are the concentration of a drug molecule and volume in the donor side of the 
membrane at equilibrium, respectively; Creceiver and Vreceiver are the concentration of a drug molecule and 
volume in the receiver side of the membrane (or dialysate), respectively; Cspike is the concentration of a 
drug molecule spiked in plasma prior to loading the dialysis device. The only data processing difference in 
AIR Binder to create a recovery table was an additional step to calculate the mean of Cspike before 
executing FROG (considering that Cspike is not paired with Cdonor and Creceiver, but determined separately). 
 
In addition to data display, a key data analysis and visualization part for the plasma protein binding assay 
is to determine species and/or concentration dependency. Analysis of variance (ANOVA) was used in AIR 
Binder to determine whether there is a difference between the means of groups such as different 
concentration or patient groups.  If only one independent variable is to be analyzed for variance, for 
example, to determine human plasma free fraction in vitro, a key question is the dependency of the 
independent variable (concentration). Similarly, we may want to understand if there is a species 
difference at the same concentration of a drug molecule, if there is a difference of plasma protein binding 
between patient groups, or if there is a difference of free fraction of a drug molecule at several time points 
post-dose. These comparisons are normally conducted with a one-way ANOVA using the ANOVA 
procedure with a null hypothesis:  
 

Ὄȡ ‘ ‘ Ễ  ‘ 
 

where µ1, µ2, é, Õk are the means of each group to be compared. Thus, any individual free fraction can 
be written using the following 1-factor model:  
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where µ is the grand mean of all free fraction values, ‗k is the group effect (such as species or 
concentration dependency) on the free fraction value for the kth group, and Ůik is the error term (also 
called residual or within-group term). The F-test is performed to test the significance with the following 
equation:  
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where MS is mean squares or mean square deviation for the between- and within-group variance to be 
compared, SS is sum of squares, N is the total number of subjects/samples, K is the number of groups to 
be compared, µ is the grand mean of all free fraction values, ni is the number of subjects/samples within 
the group i, and mi is the mean of free fraction values within the group i.  
 
If significant difference is found from PROC ANOVA, the null hypothesis will be rejected. A multiple 
comparison test, also called post-hoc will be used to find group difference. There are a variety of post hoc 
tests available in SAS

®
 such as Tukeyôs studentized range test (TUKEY), Duncanôs multiple-range test 

(DUNCAN), the Student-Newman-Keulsô multiple comparison test (SNK), and Scheffeôs multiple-
comparison procedure (SCHEFFE). In AIR Binder, a Tukey-Kramer method was the default post hoc test 
to compare group difference of free fraction values for plasma protein binding assays. Specifically, 
Tukeyôs Honestly Significant Difference (HSD) is calculated as: 
 

ὌὛὈ ή
ὓὛ

ὔ
 

 

where Ŭ is the Type I error rate, qŬ is a value from the studentized range statistic table based on Ŭ, 
MSwithin is the mean squares of the within group, for within-group degree of freedom (N-K), and number of 
groups (K), and N is the number of subjects/samples in each group. Then a pairwise difference in mean is 
compared to HSD at the Ŭ level, which will be considered significant if ȹmean pairwise > HSD.  
 
If variance of two independent variables is to be compared, for example, the difference of free fraction 
values across both species and concentration levels, a two-way AVOVA will be performed. In AIR Binder, 
PROC ANOVA was used for balanced design (equal numbers of subjects or replicates per cell) and the 
GLM procedure was used for unbalanced design (unequal numbers of subjects or replicates per cell). 
 
Considering the nature of plasma protein binding assays, most of times unequal numbers of subjects or 
replicates were derived, and thus PROC GLM was used more routinely in AIR Binder. When both the 
species- and concentration-dependency are tested for mean free fraction values, the model is written as 
follows: 
 

Ὢȟ ‘ † ‗ †‗ ‐  

 
where µ is the grand mean of all free fraction values, Űj is the group effect on the free fraction for the jth 

category of the row variable (such as species), ‗k is the group effect on free fraction for the kth category 
of the column variable (such as concentration), (Ű‗) jk is the interaction effect for the combination of the jth 
row category and kth column category, and Ůijk is the error term.  
 
Compared with PROC ANOVA, LSMEANS was used to produce least squares in PROC GLM, which is 
the adjusted means for plasma free fraction of a drug molecule. In general, we also assume that a type III 
sum of squares (the SS3 option for the MODEL statement in PROC GLM) is suitable for the assay, which 
gives sum of squares for the effect of each variable (such as species or concentration) evaluated after all 
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other factors have been accounted for. The equations to calculate the F values for the factor A (such as 
species), factor B (such as concentration), and their interaction effects (AxB) are presented as follows: 
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where MS is mean squares, SS is sum of squares, N is the total number of subjects/samples, J and K are 
row and column variables to compare, for both between- and within-group variance. Similarly, if 
significant differences are found from a two-way ANOVA, a post-hoc test is performed to find group 
difference (Figures 7 and 8). 

 

Figure 7 ANOVA post hoc analysis with p values displayed 

 

 
Figure 8 Plasma protein binding plots: (A) dose response; (B) interactions; and (C) pairwise comparison   
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Dog/0.1   0.2969 <.0001 <.0001 0.0211 0.3668 0.0195 <.0001 <.0001 <.0001 0.6157 <.0001 

Dog/1  0.2969  0.0171 <.0001 <.0001 0.0005 0.9830 <.0001 <.0001 <.0001 0.0017 0.1015 

Dog/5  <.0001 0.0171  0.3150 <.0001 <.0001 0.2722 0.1783 <.0001 <.0001 <.0001 0.9998 

Dog/20  <.0001 <.0001 0.3150  <.0001 <.0001 0.0003 1.0000 <.0001 <.0001 <.0001 0.0724 

Human/0.1  0.0211 <.0001 <.0001 <.0001  0.9699 <.0001 <.0001 0.0005 0.0002 0.8480 <.0001 

Human /1  0.3668 0.0005 <.0001 <.0001 0.9699  <.0001 <.0001 <.0001 <.0001 1.0000 <.0001 

Human /5  0.0195 0.9830 0.2722 0.0003 <.0001 <.0001  0.0001 <.0001 <.0001 <.0001 0.7168 

Human /20  <.0001 <.0001 0.1783 1.0000 <.0001 <.0001 0.0001  <.0001 <.0001 <.0001 0.0341 

Rat/0.1  <.0001 <.0001 <.0001 <.0001 0.0005 <.0001 <.0001 <.0001  1.0000 <.0001 <.0001 

Rat /1  <.0001 <.0001 <.0001 <.0001 0.0002 <.0001 <.0001 <.0001 1.0000  <.0001 <.0001 

Rat /5  0.6157 0.0017 <.0001 <.0001 0.8480 1.0000 <.0001 <.0001 <.0001 <.0001  <.0001 

Rat /20  <.0001 0.1015 0.9998 0.0724 <.0001 <.0001 0.7168 0.0341 <.0001 <.0001 <.0001  

 

(A) (B) (C)



AIR Binder 2.0, continued  MWSUG 2017 

15 

CYP REACTION PHENOTYPING 

CYP reaction phenotyping is a critical in vitro ADME assay for the assessment of potential drug-drug 
interactions. Fraction contribution to drug metabolism by a specific CYP is required to be determined to 
calculate the ratio of pharmacokinetic AUC in the presence and absence of the compound, as discussed 
previously in the ñCYP Inhibition and Inductionò section. On the other hand, due to the polymorphism of 
certain cytochrome P450s such as CYP2D6 and several CYP2Cs, the phenotyping assay is also key to 
the assessment of human pharmacokinetic variations across populations. Two separate assays are 
commonly used in parallel to quantitate the contribution of individual CYP enzymes: (1) using specific 
CYP chemical inhibitors with human liver microsomes, and (2) using recombinant cytochrome P450s 
(rCYP). For each assay, both parent compound depletion and metabolite formation are often monitored. 
 
Due to the complexity of data structure especially special summary table and figure presentations for 
CYP reaction phenotyping assays, a standardized workflow was designed in AIR Binder (Figure 9). Four 
sub-processes were integrated into four macros: QPTRR, QPTRC, QPTCR, and QPTCC (Q for queue, 
PT for phenotyping, the fourth digit R/C for rCYP/chemical inhibitor, and the fifth digit R/C for raw 
/calculated data). For each sub-process, majority of integrated macros are shared functions, such a 
READ (read in raw tables), LOOK (format), TYPE (conditional variable selection and re-assignment), 
R2ID1V (table report for 2 identifier and 1 variable, used for raw data presentation), and REST/PNEE 
(tables/figure generation for summarized data). 
 
Grouped macros were also created for special data handling, such as KPTTBL, which was used for the 
presentation of raw data of both rCYP and chemical inhibitor assays that included a series of data 
handling and calculation processes. On the other hand, for summarized tables and figures, the calculation 
for the parent depletion and metabolite formation processes was different (e.g. a distinct normalization 
approach), and thus used different SAS

®
 macros or macro orders/organizations.  

 
Figure 9 Workflow for CYP reaction phenotyping data handling, analysis, and reporting  
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Specifically, for the chemical inhibitor assay using human liver microsomes, the percent of metabolite 
present after an x-minute incubation period is calculated relative to that of the plus NADPH control 
incubation: 
 

Ϸ ὓὩὸὥὦέὰὭὸὩ ὖὶὩίὩὲὸ   
ὓὩὸὥὦέὰὭὸὩ ὥὸ ὸ

ὔὃὈὖὌ ὅέὲὸὶέὰ ÁÔ Ô
  ρππ 

 

However, for the rCYP assay, the percent of metabolite present after an x-minute incubation period is 
calculated relative to the highest amount observed in any rCYP incubations that need to be determined 
by ranking a list of data values. Also, additional lookup tables for relative abundance of each rCYP in 
human liver microsomes need to be integrated beforehand: 
 

ὶὅὣὖ ὓὩὸὥὦέὰὭὸὩ ὖὶὩίὩὲὸ  ὓὩὸὥὦέὰὭὸὩ ὥὸ ὸ ὓὩὸὥὦέὰὭὸὩ ὥὸ ὸ  ὙὩὰὥὸὭὺὩ ὃὦόὲὨὥὲὧὩ 
 

Ϸ ὙὩὰὥὸὭὺὩ ὓὩὸὥὦέὰὭὸὩ ὖὶὩίὩὲὸ   
ὶὅὣὖ ὓὩὸὥὦέὰὭὸὩ ὖὶὩίὩὲὸ

ὌὭὫὬὩίὸ ὶὅὣὖ ὓὩὸὥὦέὰὭὸὩ ὖὶὩίὩὲὸ
 ρππ 

From study to study, different CYP enzymes or even non-CYP enzymes are required to be evaluated. At 
the same time, different numbers (names) of metabolites are to be presented. Considering the challenges 
of formatting and ordering the identifier variables, an object-oriented design was used to maintain efficient 
and reusable code. All individual assay-specific information was saved in external files. The advantage of 
using external files was to minimize code maintenance. For CYP reaction phenotyping, the order of 
samples was saved in one CSV file (ñlstcpd83.csvò in Figure 10), which was read in by a macro TYPE in 
AIR Binder and was assigned with a numeric order. A paired CSV file (ñfmtcpd83.csvò in Figure 10) 
includes two variables: one numeric column for the sample order, and the other variable for detailed 
assay information. Then PROC FORMAT (integrated in the macro LOOK in AIR Binder) formatted them 
for both table and figure presentation.  
 

 
 

Figure 10 External files used in AIR Binder to format identifier variables  

cyp1a2_cpd83

cyp1a2_m1

cyp1a2_m2

cyp1a2_m3

cyp2c8_cpd83

cyp2c8_m1

cyp2c8_m2

cyp2c8_m3

cyp2c9_cpd83

cyp2c9_m1

cyp2c9_m2

cyp2c9_m3

cyp2d6_cpd83

cyp2d6_m1

cyp2d6_m2

cyp2d6_m3

cyp3a4k_cpd83

cyp3a4k_m1

cyp3a4k_m2

cyp3a4k_m3

cyp3a4t_cpd83

cyp3a4t_m1

cyp3a4t_m2

cyp3a4t_m3

1,Furafylline (CYP1A2) Compound83  

2,Furafylline (CYP1A2) Metabolite1  

3,Furafylline (CYP1A2) Metabolite2

4,Furafylline (CYP1A2) Metabolite3

5,Montelukast (CYP2C8) Compound83  

6,Montelukast (CYP2C8) Metabolite1  

7,Montelukast (CYP2C8) Metabolite2

8,Montelukast (CYP2C8) Metabolite3

9,Sulfaphenazole (CYP2C9) Compound83  

10,Sulfaphenazole (CYP2C9) Metabolite1  

11,Sulfaphenazole (CYP2C9) Metabolite2

12,Sulfaphenazole (CYP2C9) Metabolite3

13,Quinidine (CYP2D6) Compound83  

14,Quinidine (CYP2D6) Metabolite1  

15,Quinidine (CYP2D6) Metabolite2

16,Quinidine (CYP2D6) Metabolite3

17,Ketoconazole (CYP3A4/5) Compound83  

18,Ketoconazole (CYP3A4/5) Metabolite1  

19,Ketoconazole (CYP3A4/5) Metabolite2

20,Ketoconazole (CYP3A4/5) Metabolite3

21,Troleandomycin (CYP3A4/5) Compound83  

22,Troleandomycin (CYP3A4/5) Metabolite1  

23,Troleandomycin (CYP3A4/5) Metabolite2

24,Troleandomycin (CYP3A4/5) Metabolite3 

lstcpd83.csv fmtcpd83.csv
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In detail, the function LOOK controls format (when the LABEL variable is a character) and informat (when 
the LABEL variable is a numeric) in AIR Binder. The START variable for format and informat can be either 
character or numeric, and thus four types of format/informat can be chosen in LOOK including "C" for a 
character format, "N" for a numeric format, "J" for a character informat, and "I" for a numeric informat. For 
the previous CYP reaction phenotyping example (ñfmtcpd83.csvò in Figure 10), the type was ñNò (a numeric 

format). The format from raw external CSV file was created with the CNTLIN option:  
 

    %macro look(infile=infile,fmtname=in,ty pe=in);  

 

 data _fmt;  

  infile &infile dsd dlm=",";  

  retain fmtname "&fmtname" type "&type";  

  input start label :$50.;  

 run;  

 

 proc format cntlin=_fmt; run;  

    %mend;  

 
In addition, the macro TYPE was used to grab the identifier variable for each CYP reaction phenotyping 
sample from an external CSV file (ñlstcpd83.csvò in Figure 10), and to create a new identifier variable by 
numeric order. First, the total number of unique identifiers was determined using the CALL SYMPUT 
routine and %EVAL function with a global macro viable DIMTYPE to store the information. Second, the 
CALL SYMPUT routine was used to extract each identifier line by line and store them in a &&VAR&I 
macro variable. Third, the IF/THEN statement was used to look up the identifier by comparing it to the 
&&VAR&I macro variable, and then to assign a new numeric value in order. TYPE was used in other 
assays as well to order the identifier variable, and was especially efficient for a lengthy/complicated 
identifier column. 
 
    %macro type(lstfil e=in,infile=in,id=in,newid=in,outfile=in);  

 

 data _dimtype; infile &lstfile dsd dlm=","; input _id :$30.; run;  

 

 data _null_; set _dimtype end=eof;  

  line+ 1;  

if eof then call symput("dimtypec",line);  

r un;  

 

 %let dimtype=%eval(&dimtypec);  

 

 %do t= 1 %to &d imtype;  

  data &outfile._typeraw&t.;  

infile &lstfile dsd dlm=",";  

   input _id :$30.; if _n_ =&t. then output; run;  

 

  data _null_; set &outfile._typeraw&t.;  

   call symput('sam'||left(&t),strip(_id)); run;  

 %end;  

 

 %let j=0;    

 %let outprefix=temp;  

 

 data &outfile._&outprefix.0; set &infile; run;  

 

 %do i= 1 %to &dimtype;  

  %put air binder typewriter: &&sam&i;  

 

  data &outfile._&outprefix&i;  

set &outfile._&outprefix&j;  

   if &id = "&&sam&i" then &newid=&i; run;  

  %let j=%eval(&j+1);  

 %end;  

 

 data &outfil e(drop=&id); set &outfile._&outprefix&dimtype; run;  

 

 proc sort data=&outfile; by &newid; run;  

 

    %mend;   
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For the application of recombinant CYPs in CYP reaction phenotyping, extrapolation of the data from 
individual CYP enzymes to human liver microsomes was often required. Although a relative contribution 
method based on the highest contribution level and CYP protein expression abundance in liver is 
informative, sometimes, an intersystem extrapolation factor (ISEF) can be determined to facilitate the 
interpretation of data (Chen 2011):  
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where ISEF can be calculated using either Vmax, the maximum rate of reaction, or the intrinsic clearance 
value (CLint). For the graphic presentation of CYP reaction phenotyping assays, the VBAR statement in 
PROC SGPANEL is an option. The NEEDLE statement is another option that takes advantage of using 
bar charts and hidden scatter plots to show error bars freely (Figure 11): 
 
     proc  sgpanel  data=cypphenotyping noautolegend;  

 panelby metabolite/spacing= 5 layout=panel columns= 2 onepanel novarname sparse ;  

 scatter x=cypid y=percent /yerrorupper=upper markerattrs=(size= 0 pct);  

 needle x=cypid  y=percent /lineattrs=(thickness= 18.83  color=vligb);  

 format cypid cypidfmt.;  

 colaxis label=" " type=discrete;  

 rowaxis label="Relative Percentage";  

     run ;  

 

 
Figure 11 CYP reaction phenotyping graphics using PROC SGPANEL 
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METABOLIC STABILITY AND INTRINSIC CLEARANCE 

Metabolic stability assays using human liver microsomes, S9 fractions (post-mitochondrial supernatant 
fraction), cytosols, and hepatocytes are used to determine intrinsic clearance of a compound, and thus to 
understand pharmacokinetic data. As described previously in the ñPlasma Protein Bindingò section, the 
AUCunbound is a function of dose and intrinsic clearance: 
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where AUCunbound is the overall unbound drug exposure, CLint is the intrinsic clearance that is determined 
in vitro via two methods in general: (1) ñmetabolite formationò by determining Km and Vmax, as described 
previously in the ñCYP Reaction Phenotypingò section; and (2) ñparent compound depletionò, also called 
the ñT1/2 methodò (Obach 1999). The T1/2 method was more generally used in both drug discovery and 
development studies, which measures the first-order rate constant for the depletion of parent compound 
at a low concentration (such as 1 µM): 
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where f(t) is the percent remaining of a compound (as normalized by a 0-minute incubation control), k is 
the first-order rate constant. The half-life (t1/2) and intrinsic clearance are calculated with the following 
equations: 
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where CLint,m is the intrinsic clearance as determined by a parent depletion method (mL/min/mg) using 
microsomes,  Cm is the concentration of microsomal protein in the incubation (mg/mL), and k is the first-
order rate constant. Two options are available for data fitting: linear or non-linear regression. If the linear 
regression is used (PROC SGPLOT with the REG statement), the percent parent compound remaining 
was transformed to logarithm first (Figure 12). In that case, the linear fitting becomes: 
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Figure 12 Microsomal intrinsic clearance determined by linear regression (SGPANEL/REG)  

T1/2: 13.0 min 
CL: 48.0 mL/min/kg 

T1/2: 58.2 min 
CL: 10.7 mL/min/kg 

T1/2: 7.80 min 
CL: 80.0 mL/min/kg 

T1/2: 21.9 min 
CL: 28.5 mL/min/kg 
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Figure 13 Microsomal intrinsic clearance determined by nonlinear regression (SGPLOT/NLIN) 

 
 
Similarly, the intrinsic clearance can be determined by direct fitting the exponential equation using PROC 
NLIN with SGPLOT (Figure 13). The t1/2 values for these compounds as determined by two methods were 
close; however, the data presentation especially the standard deviation rendered dramatic different look 
due to the scale of y-axis. The default REG procedure in SAS

®
 for linear regression provides extensive 

information on the fitting performance, which is useful in some situation such as the evaluation of lack of 
fitting without additional programming (compared with the non-linear fitting using PROC NLIN). 
 
The intrinsic clearance is scaled using the following equation as presented within the insets of Figures 12 
and 13:  
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where CLint,m,scaled is the scaled intrinsic clearance by body weight as determined by parent compound 
depletion in a time course (mL/min/kg),  Cm is concentration of microsomal protein in the incubation 
(mg/mL), and ɟm is the ratio of milligram microsomes per kilogram of body weight (a constant, for 
example, approximately 900 for human liver microsomes). 
 
In addition, the intrinsic clearance for hepatocytes is determined similarly: 
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where CLint,h is the intrinsic clearance as determined by a parent depletion method in hepatocytes 
(µL/min/million cells of hepatocyte), Ch is concentration of hepatocytes (million cells/µL), ɟh is the ratio of 
million hepatocytes per kilogram of body weight (a constant, for example, approximately 2880 for human 
hepatocytes), and CLint,h, scaled is often expressed as L/h/kg, and thus the equation is multiplied by 0.00006.   

T1/2: 13.6 min 
CL: 45.9 mL/min/kg 

T1/2: 61.0 min 
CL: 10.2 mL/min/kg 

T1/2: 6.68 min 
CL: 93.4 mL/min/kg 

T1/2: 22.4 min 
CL: 27.8 mL/min/kg 
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METABOLITE PROFILING, IDENTIFICATION, AND PHARMACOKINETICS 

According to FDA's "Guidance for Industry: Safety Testing of Drug Metabolites", metabolites should be 
profiled and compared between human and other species used in nonclinical safety assessment. Cross-
species metabolite profiling and metabolite identification using hepatocytes is a common preclinical assay 
that is often required for IND application. The purpose of the assay is to avoid late-stage discovery of 
potentially problematic drug metabolites (i.e, unique human metabolites or metabolites with 
disproportionately greater human exposure, as defined in the aforementioned guidance document). 
 
Developing useful visualization tools for the metabolite profiling and comparison is important to efficiently 
convey information for quicker decision making. SAS

®
 ODS provides powerful solutions to dynamically 

visualize these data to enhance communications within study teams, between CRO and clients. Stacked 
bar chart (Figure 14) using PROC SGPLOT (the VBAR statement with the GROUP option) was a solution 
to compare abundance of metabolites visually, which might be more efficient when the numbers of 
metabolites are limited.  
 
When many metabolites were involved for comparison especially with a large range of abundance, 
paneled bar charts using PROC SGPANEL (the VBAR statement with the option 
LAYOUT=ROWLATTICE) provided better visualization effects (Figure 15). In addition, paneled plots 
using PROC SGPANEL (both SCATTER and SERIES statements with the GROUP option) were useful to 
demonstrate time-course formation of metabolites in vivo (Figure 16).  
 

 
 

Figure 14 Stacked bar chart for cross-species metabolite profiles in hepatocytes  
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Figure 15 Paneled bar chart for cross-species metabolite profiles in hepatocytes 

 
 
 

 
 

Figure 16 Time-course paneled plot for cross-species metabolite profiles in vivo   
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In addition, paneled box and whisker plots (Figure 17) implemented in AIR Binder provided informative 
graphics to compare metabolite formation profiles between patient groups, which demonstrated the 
distribution of results with outliers, a statistic advantage using SAS® as a platform. 
 
For metabolites, like parent compound, one important parameter required to be calculated for their 
pharmacokinetics is the area under the concentration-time curve (AUC). The linear trapezoidal rule is the 
primary method for the estimation: 
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where AUCtotal,i.v. is the total AUC when the drug is given as an intravenous bolus, C0 is the zero-time 
concentration, and k is the elimination rate constant. For the elimination phase of an oral dose, the AUC 
can be calculated with the trapezoidal rule as follows: 
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where AUCi is the AUC during the time interval from ȹti to ȹti+1, and ki is the elimination rate constant. 
When the decline is exponential, a log trapezoidal method is more accurate and thus was used 
accordingly. For example, across patients the equal-volume time-point pooled samples were analyzed 
and followed by AUC calculation in AIR Binder. The paneled plot was again efficient to display these 
results, together with curve overlay (Figures 18 and 19).  
 
Additionally, another usage of AIR Binder was reconstructing chromatograms between different LC/MS 
systems for metabolite profiling. Figure 20 is an example of reconstructing the time-slice profiles of 
metabolites from accelerator mass spectrometry (AMS), a technology used for micro tracer metabolite 
profiling studies.  
 

 
 

Figure 17 Paneled box and whisker plot to compare metabolite profiles between patient groups  
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Figure 18 Pharmacokinetics of metabolites with AUC normalized by total radioactivity 

 
 

 
Figure 19 Time-course metabolite formation table with AUC normalized by total radioactivity 

 

 
 

Figure 20 Chromatogram reconstruction using metabolite profiles from time slices in AMS  
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