
1

MWSUG 2017 - Paper BB15

Building Intelligent Macros:
Driving a Variable Parameter System with Metadata

Arthur L. Carpenter, California Occidental Consultants, Anchorage, Alaska

ABSTRACT
When faced with generating a series of reports, graphs, and charts; we will often use the macro language to simplify the
process. Commonly we will write a series of generalized macros, each with the capability of creating a variety of outputs
that depend the macro parameter inputs. For large projects, potentially with hundreds of outputs, controlling the
macro calls can itself become difficult.

The use of control files (metadata) to organize and process when a single macro is to be executed multiple times was
discussed by Rosenbloom and Carpenter (2015). But those techniques only partially help us when multiple macros, each
with its own set of parameters, are to be called. This paper discusses a technique that allows you to control the order of
macro calls along with each macro’s parameter set, while using a metadata control file.

KEYWORDS
Metadata, macro language, CALL EXECUTE, %NRSTR, %TSLIT

INTRODUCTION
When a single macro is to be called multiple times with varying parameters, a metadata control file such as the one
discussed in detail in Rosenbloom and Carpenter (2015) can be used. Typically this metadata file will contain one row
per macro call and one column per parameter. Depending on the ultimate objective of the programmer, the metadata
control file can be used to generate a series of macro variable lists or a series of CALL EXECUTES.

Driving a Single Macro (rectangular control file)
When a single macro is to be called multiple times, the control file will tend to be rectangular. Consider the %PRINTIT

macro, which has three parameters (DSN, VARLIST, and TITLE).
If we wished to call this macro multiple times with different
parameter values we could create a control file with one
observation for each time the macro is to be called.

The data
in this

control file (WORK.SINGLE) has one variable for each parameter
and one row for each time the macro is to be called. For a simple
execution such as this one, a DATA _NULL_ step with a CALL
EXECUTE routine can be used to generate the macro calls.

%macro printit(dsn=,varlist=,title=);
title1 "&title";
proc print data=&dsn;
 var &varlist;
 run;
%mend printit;

data _null_;
 set single;
 call execute(catt('%printit(dsn=',dsn,',varlist=',varlist,',title=',title,')'));
 run;

Building Intelligent Macros: Driving a Variable Parameter System with Metadata (continued)

2

For the two observations in the control file, the CALL EXECUTE routine will generate two macro calls, and these will be
executed
immediately after
the DATA step has
completed its

execution.

Multiple Macros
Although the rectangular control file approach works great for multiple calls to a single macro, it is not very efficient
when multiple macros are to be called. And it especially does not work well when the different macros have very
different parameter structures. In this situation there may still be the need for a metadata control file, however a
different approach must be taken.

The basic example used here deals with the generation of an Annual Report. The report is composed of a series of
tables, charts, and graphs. Generalized macros have been written, which when executed create one or more of the
components for the final report. Because the macros have been generalized, each macro can actually create any
number of similar tables by varying the macro’s parameters. This allows us to generate hundreds of different tables
with only a few macros.

GENERALIZED MACROS
For the purposes of this paper the use of three simple macros will demonstrated. The beauty of the technique that is to
be described is that it is completely expandable to any number of macros, each with any number of parameters.

The %PRINTIT macro shown
here and above generates a
simple data listing. It has three
parameters, which are used to
name the data set, the
variables to print, and a title.

The %CHART macro uses the
GCHART procedure to generate
a vertical bar chart.
Parameters are used to name
the data set of interest, the
vertical variable, a grouping
variable, the type of the chart
to create, and a title.

The %SUMARIZE macro calls a
PROC SUMMARY step and is
used to summarize data prior
to the generation of a report.
The data set generated by this
procedure can in turn be used
by the %PRINTIT macro.

%macro printit(dsn=,varlist=,title=);
title1 "&title";
proc print data=&dsn;
 var &varlist;
 run;
%mend printit;

%macro chart(dsn=, gvar=, yvar=, type= ,title=);
title1 "&title";
proc gchart data=&dsn;
 vbar &yvar/group=&gvar type=&type;
 run;
 quit;
%mend chart;

%macro summarize(dsn=,classlist=, var=);
proc summary data=&dsn;
 class &classlist;
 var &var;
 output out=summry mean= n= stderr=/autoname;
 run;
%mend summarize;

Figure 1

%printit(dsn=sashelp.class,varlist=name sex height weight,title=class)

%printit(dsn=summry,varlist=_all_,title=Summarized)

Building Intelligent Macros: Driving a Variable Parameter System with Metadata (continued)

3

The macro calls that generate our annual report be called in the order that we would like our report tables to appear.
Clearly with a number of macros being called and a series of often different parameters, the calls themselves are not

easily read. The construction of this type of series of macro calls is prone to error. It is easy to miss specify a parameter,
skip a macro call, place calls in the wrong order, and other such coding problems. One way to make the code easier to
read and maintain is to place one parameter per line of code.

Figure 3 shows the same macro calls as were
shown in Figure 2, however it is now much easier
to visualize the individual parameters in each
macro call. It is also much easier to assess the
order of the macro calls and whether or not the
order of the macro calls is appropriate for our
annual report. All this and we have not yet even
added any comments!

BUILDING METADATA
Creating a series of calls to generalized macros, such as was done in Figure 3, is often sufficient for most applications,
but when you have hundreds of macro calls or if you calling macros that have more than three or four parameters, even
coding them as is done in Figure 3 can be problematic. One approach that can be used to simplify the control of large
numbers of macro calls is through the use of metadata.

%printit(dsn=sashelp.class,varlist=name sex height weight,title=class data)
%chart(dsn=sashelp.class,yvar=weight,gvar=sex,type=percent, title=Weight distribution
for gender)
%summarize(dsn=sashelp.class,classlist=sex age,var=height weight)
%printit(dsn=summry,varlist=_all_,title=Summarized class data)

%printit(dsn=sashelp.class,
 varlist=name sex height weight,
 title=class data)
%chart(dsn=sashelp.class,
 yvar=weight,
 gvar=sex,
 type=percent,
 title=Weight distribution for gender)
%summarize(dsn=sashelp.class,
 classlist=sex age,
 var=height weight)
%printit(dsn=summry,
 varlist=_all_,
 title=Summarized class data)

Figure 2

Figure 3

Building Intelligent Macros: Driving a Variable Parameter System with Metadata (continued)

4

The metadata approach moves all of the critical information provided in the code into data, while leaving the syntax
behind. The information in Figure 4 is the same as
in Figure 3 except all the code has been removed.
In this particular example the metadata is being
stored in a XLS file, however it could just as easily
been in a CSV file, TEXT file, or any other file form
that can be imported into SAS®.

One immediate advantage of this approach is that
the metadata can be maintained by someone with
little or no SAS knowledge. As we will see as we
look at how this metadata is used, the technique
is highly expandable, and can support drastic
changes to the metadata without causing any
changes to the code that uses the metadata.

In the approach used here we will read this
metadata file into SAS using a PROC IMPORT step.
Generally this will be the easiest way to bring the
metadata into SAS, but as long as we end up with
a SAS data set, it does not matter.

The PROC IMPORT is completely straight forward. In the PROC IMPORT step shown in Figure 5, the XLS file
2_METADATA.XLS is imported and the SAS data set
WORK.METADATA is created. This data set has the
same information in it as was contained in the XLS file.
Depending on your version of SAS and your OS, the
DBMS used by PROC IMPORT may be different, such as
XLS, XLSX.

Inspection of the data set
WORK.METADATA, shown in Figure 6
shows that it contains the same
information as is shown in Figures 2, 3,
and 4.

We now have the ability to take
advantage of the metadata in a DATA
step. We can build lists of macro
variables, as was demonstrated in
Rosenbloom and Carpenter (2015), or we
can build the macro calls directly and
execute them through the use of the CALL
EXECUTE routine. Because in this
example we are only interested in
executing a series of macro calls, the CALL
EXECUTE approach will be used.

Figure 4

proc import file="&somepath\2_MetaData.xls"
 out=metadata
 replace
 dbms=excelcs;
 run;

Figure 5

Figure 6

Building Intelligent Macros: Driving a Variable Parameter System with Metadata (continued)

5

BUILDING AND EXECUTING THE MACRO CALLS
Except for the actual SAS syntax the metadata contains all the information that we need to construct the macro calls.
Our approach will be to read the data and use the power of the DATA step to create the macro call, including its
parameters. The macro calls will then be submitted for execution.

For the first macro call, a call to the %PRINTIT macro, we need to construct the code shown in Figure 7. Because this

code will be submitted for execution using CALL
EXECUTE, the macro call itself must be masked during
the execution of the DATA step itself. This allows the
CALL EXECUTE routine to add the macro call to a
buffer for execution after the termination of the DATA

step.

We can mask the macro call through the use of single quotes. Effectively we need to construct an argument for CALL

EXECUTE that both contains and
masks the macro call. The single
quotes prevents the DATA step
from seeing the %PRINTIT as a
macro call, and the macro call is
constructed and passed out of
the DATA step, where it is
executed after the DATA step
completes its own execution.

The DATA step in Figure 9 will read the metadata and utilize the information that it contains to build the masked macro

call.

➊ A character string variable
is defined that will hold the
macro call. In this particular
instance the string length
has been limited to 500
characters. This may be too
short for some applications,
but is sufficient for these
examples.

➋ The BY statement enables
the use of FIRST. and LAST.
processing. The NOTSORTED
keyword is needed because
although the incoming data
is grouped by macro name, it
is not sorted by macro name.

Note this logic fails if there are two successive calls to the same macro (see Extension 2 below for a coding solution).

➌ This is the first observation for this macro call. The call itself will be held by the variable STRING, so the macro name,
its % sign, and the value of first parameter are added to the variable first.

➍ This is not the first observation for this macro, add the parameter and its value to the growing list.

%printit(dsn=sashelp.class,
 varlist=name sex height weight,
 title=class data)

Figure 7

data _null_;
call execute('%printit(dsn=sashelp.class,
 varlist=name sex height weight,
 title=class data)');

run;
 Figure 8

data _null_;
 length string $500; ➊
 retain string;
 set metadata;
 by macro notsorted; ➋
 if first.macro then do; ➌
 string = cats('%',macro,'(',parm,'=',value);
 end;
 else string = cats(string,',',parm,'=',value); ➍
 if last.macro then do; ➎
 string = cats(string,')');
 put string=; ➏
 call execute(string); ➐
 end;
 run;

Figure 9

Building Intelligent Macros: Driving a Variable Parameter System with Metadata (continued)

6

➎ This is the last observation for this macro, add the last two closing parentheses.

➏ The value of STRING is written to the SAS Log so that you can see what it contains. This is of course optional and is
only shown here to demonstrate the value held by the variable STRING.

➐ The value of the variable STRING, which contains the masked macro call, is passed to the buffer for execution after
the DATA step terminates.

A portion of the SAS Log (Figure 10) shows the results of the PUT statement ➏, which was included in the DATA step so
that we could visualize the generated code.

The SAS Log also shows us the code that is actually executed after being written to the buffer by CALL EXECUTE. The
first %PRINTIT macro call is shown in Figure 11.

Depending on your version of SAS the macro may be expanded in the SAS Log.

string=%printit(dsn=sashelp.class,varlist=name sex height weight,title=class data)
string=%chart(dsn=sashelp.class,yvar=weight,gvar=sex,type=percent,title=Weight Distribution for Gender)
string=%summarize(dsn=sashelp.class,classlist=sex age,var=height weight)
string=%printit(dsn=summry,varlist=_all_,title=Summarized Class Data)

Figure 10

NOTE: CALL EXECUTE generated line.
1 + %printit(dsn=sashelp.class,varlist=name sex height weight,title=class data)

Figure 11a

NOTE: CALL EXECUTE generated line.
1 + title1 "class data";
1 + proc print data=sashelp.class; var name sex height weight; run;

Figure 12b

Building Intelligent Macros: Driving a Variable Parameter System with Metadata (continued)

7

EXTENSION 1: MACRO CALLS WITHOUT PARAMETERS
The DATA step in Figure 9 assumes that each macro has at least one parameter. While this will generally be true, it will
not always be true. Fortunately the coding changes are simple and fairly straightforward. We merely need to detect those

macro calls without
parameters, so that we can do
some special handling.

This is actually simple if we
assume that the PARM
variable will only be missing for
macros without parameters.
As this seems to be a
reasonable assumption we can
add the necessary logic to the
DATA step in Figure 9.

➊ The assumption is that the
PARM variable will be missing
for macros without
parameters.

➋ Only the % sign and macro
name need to be
concatenated.

➌ A single parenthesis is
needed to close macro calls
with parameters.

data _null_;
 length string $500;
 retain string;
 set metadata;
 by macro notsorted;
 if first.macro then do;
 if parm=' ' then do; ➊
 string = cats('%',macro); ➋
 end;
 else do;
 string = cats('%',macro,'(',parm,'=',value);
 end;
 end;
 else string = cats(string,',',parm,'=',value);
 if last.macro then do;
 if parm ne' ' then do; ➌
 string = cats(string,')');
 end;
 put string=;
 call execute(string);
 end;
 run;

Figure 13

Building Intelligent Macros: Driving a Variable Parameter System with Metadata (continued)

8

EXTENSION 2: CONTROLLING CALL ORDER
The DATA steps in Figures 9 and 12 will both fail if the same macro is called successively. This is an artifact of the use of

the macro name in the BY statement. As a
result there is no way to differentiate
between two different calls to the same
macro when one directly follows the other.
A common way to solve this problem is to
add a numbering system of some kind to the
metadata. For reporting systems very often
a table number will be included anyway and
we can take advantage of the this number to
differentiate the macro calls.

Adding a table number to the metadata
gives us a way to not only augment our
titles, but to solve the problem of successive
macro calls to the same macro. In Figure 13
the TABLE column has been added and the
order of the macro calls has been changed.
Notice that now that there are two
successive calls to %PRINTIT, but that each
has its own distinct table number (1.1.2 and
1.1.3).

In the titles ‘Table:’ has been added. In the
DATA step that processes the metadata, the
table number will be added to the title using

this code and the TRANWRD function.

➊ The length of VALUE has
been increased to accommodate
the table number that is
inserted at ➌.

➋ The variable TABLE has been
added to the BY statement. This
ensures that successive macro
calls of the same macro can be
distinguished.

➌ The TRANWRD function is
used to add the table number
wherever the ‘Table:’ is detected.

The remainder of the DATA step remains unchanged from Figure 12.

Figure 14

data _null_;
 length string $500 value $100; ➊
 retain string;
 set metadata;
 by table macro notsorted; ➋

 * Insert Table number if requested; ➌
 value = tranwrd(value,'Table:',catx(' ','Table:',table));

. . . Code not shown . . .

Figure 15

Building Intelligent Macros: Driving a Variable Parameter System with Metadata (continued)

9

EXTENSION 3: WORKING WITH LISTS WITHIN A PARAMETER
In the previous examples, the list of values in the variable list (PARAM=VARLIST) for the %PRINTIT macro (line 14 in
Figure 13) were on a single line. When the user does not have full control over how the metadata control table is created,
it may not be possible to place all the items in a list on a single line. When this can happen our data step needs to be
flexible enough to accommodate this form of the metadata.

A portion of some metadata that is in this form is shown in Figure 15. Rather than appearing on a single line the list of
variables used with the VARLIST parameters appears
with one variable per line. This causes the parameter
name (VARLIST) to repeat (lines 16-19 in Figure 15).
One obvious advantage of this form is that the list of
items can be very long.

The changes to the DATA step require us to detect
lists that span multiple observations. This is
accomplished by adding the variable PARM to the BY
statement, which gives us the ability to use FIRST.
and LAST. processing on the PARM variable.

➊ The variable
PARM is added
to the BY
statement.

➋ The logic to
detect macro
calls without
parameters has
been simplified.

➌ If this is the
first occurrence of
this parameter,
add the
parameter name
and equal sign as
well as its value
to the macro call.

➍ If it is not the
first occurrence of
the parameter
then just add the
parameter value
separate by a
space.

CONCLUSION
Applications for the use of metadata control files to manage the execution of a series of macro calls are many and varied.
Most commonly the metadata is of a form where each observation of the metadata forms a distinct macro call. While this
form of metadata may be the most commonly encountered, it is by no means the only metadata form. Through the power
of the DATA step we can make use of metadata that may come to us in a variety of forms.

In this paper the discussion centers on metadata in a vertical format. This type of control file tends to use multiple
observations to describe each macro call and may require the use of DATA step logic to build each macro call. But
because we are working in the DATA step, this approach can be highly flexible.

Figure 16

data _null_;
 length string $500 value $100;
 retain string;
 set metadata;
 by table macro parm notsorted; ➊

 value = tranwrd(value,'Table:',catx(' ','Table:',table));

 if first.macro then do;
 string = cats('%',macro); ➋
 if parm ne ' ' then string = cats(string,'(',parm,'=',value);
 end;
 else if first.parm then string = cats(string,',',parm,'=',value); ➌
 else string = catx(' ',string,value); ➍
 if last.macro then do;
 if parm ne ' ' then string = cats(string,')');
 put string=;
 call execute(string);
 end;
 run;

Figure 17

Building Intelligent Macros: Driving a Variable Parameter System with Metadata (continued)

10

REFERENCES
Carpenter, Art, 2016, Carpenter’s Complete Guide to the SAS® Macro Language, Third Edition, SAS
Institute Inc, Cary, NC. http://support.sas.com/publishing/authors/carpenter.html

Fehd, Ronald and Art Carpenter, 2007, “List Processing Basics: Creating and Using Lists of Macro
Variables” by Ronald Fehd and Art Carpenter which was presented at the 2007 SAS Global Forum
(Paper 113-2007). The discussion of the paper looks at different approaches used in the automation
of programs by using various kinds of macro variable lists. This paper appears in proceedings of a
number of conferences, including: SASGF(2007), WUSS (2008), MWSUG (2009), SESUG (2009).
http://www.caloxy.com/papers/72Lists.pdf

Rosenbloom, Mary F. O. and Carpenter, Arthur L., 2015, “Are You a Control Freak? Control Your Programs – Don’t Let
Them Control You!”, presented at the SAS Global Forum 2015 Conference in Dallas, Texas (paper 2220-2015).
http://support.sas.com/resources/papers/proceedings15/2220-2015.pdf

ABOUT THE AUTHOR
Art Carpenter is a SAS Certified Advanced Professional Programmer and his publications list includes; five books and
numerous papers and posters presented at SAS Global Forum, SUGI, PharmaSUG, WUSS, and other regional
conferences. Art has been using SAS since 1977 and has served in various leadership positions in local, regional, and
international user groups.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Arthur L. Carpenter
California Occidental Consultants
10606 Ketch Circle
Anchorage, AK 99515

(907) 865-9167
art@caloxy.com
www.caloxy.com

View Art Carpenter’s paper presentations page at:

http://www.sascommunity.org/wiki/Presentations:ArtCarpenter_Papers_and_Presentations

TRADEMARK REFRENCES
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/publishing/authors/carpenter.html
http://www.caloxy.com/papers/72Lists.pdf
http://support.sas.com/resources/papers/proceedings15/2220-2015.pdf
http://www.caloxy.com/
http://www.sascommunity.org/wiki/Presentations:ArtCarpenter_Papers_and_Presentations
http://www.sas.com/store/books/categories/usage-and-reference/carpenter-s-complete-guide-to-the-sas-macro-language-third-edition/prodBK_67815_en.html

	Extension 1: Macro calls without parameters
	extension 2: controlling call order
	Extension 3: working with lists within a parameter
	Conclusion
	References
	ABOUT THE AUTHOR
	Contact Information
	trademark Refrences

