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Abstract: 
 
Modelling in bioassay often uses linear, generalized linear (e.g., logistic or multi-
category logit) and nonlinear regression models.  As such, key matrices – and specialized 
software such as procedures in SAS/STAT and SAS/IML – are pervasive and wide-ranging 
since they are essential in point and interval estimation methods for the associated 
model parameters as well as for hypothesis testing and prediction. 
 
Using key representative illustrations, this paper highlights the forms of some of these 
important matrices in the context of estimation, hypothesis testing, and optimal 
experimental design.  After pointing out the inadequacy of these “optimal” 
experimental designs to detect lack-of-fit, we demonstrate how “robust” optimal 
designs are obtained by working with generalizations of the model.  These latter designs 
are thus useful for both parameter estimation and checking for goodness-of-fit.  
Examples are provided using models from toxicology and pharmacology. 
 
Keywords: Goodness-of-Fit; Logistic Regression; Multinomial Regression Models; 
Optimal Design; Robustness 
 
 
I. Introduction: 
 
Regression modelling is one of the most useful techniques in the applied sciences to 
determine relationships between attributes or variables.  As such, matrices, which are 
extensively used and key in all aspects of estimation, hypothesis testing and prediction, 
are the unifying theme of these methods, and are the focus of this paper.  To illustrate, 
a researcher may be interested in determining an association between the dose of a 
drug and a person’s blood pressure.  Then, depending upon distributional assumptions, 
linear, nonlinear or logistic regression methods may then be used to characterize this 
relationship. 
 
Before a regression model can be fit, however, an experimental design (i.e., study plan) 
must be established and implemented, and the data must be collected.  Indeed, each 
stage of this process – from choosing an efficient design, to recording the ensuing data, 
to data analysis (and perhaps prediction) – involves the use of crucial matrices, as is 
underscored below. 
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II. Regression Modelling: 
 
Using   to denote the outcome or dependent random variable,   to denote the 
realization of this random variable, and   to denote the independent variable (or 
         in the case of several independent variables), we use the term “model” to 
comprise the following components: 
(a) the assumed distribution for the response variable ( ) – usually chosen from the 

exponential family 
(b) the link function connecting        with the explanatory variable(s) and the 

model parameters (these parameters stacked in the vector  ) 
(c) the [mean] model function       , which joins the explanatory variable(s) and the 

model parameters 
(d) the variance (denoted   ) or variance function (perhaps depending on   and/or 

additional parameters such as   ) 
(e) the nature of the observations, such as independent or correlated (e.g. nested) 

measurements 
 
Perhaps the most common form of regression modelling is simple linear regression, in 
which   is assumed to have a normal distribution with constant variance and identity 
link, and with model function               so the model parameter vector here is 

  (
  

  
).  In this instance, the   independent realizations (observations) of   are 

stacked into the vector   and the errors (i.e., deviations between the actual responses 

and those predicted by the line) are stacked into the vector  , so that   (

  
  

 
  

) and 

  (

  
  
 
  

).  Also, with     matrix   [

   

 
 

  

 
   

], the entire linear model system can be 

written as 
 

                 (1) 
 
Parameter estimation of the model parameters in  , based on maximum likelihood 
estimation – which here is equivalent to minimizing the sum of squared errors – yields 

the estimate  ̂  (
 ̂ 

 ̂ 

).  This estimate in turn satisfies the so-called normal equations, 

 
   (    ̂)                    ̂      (2) 

 
As a consequence, the maximum-likelihood estimate (MLE) – and also the least-squares 
estimate (LSE) – for the constant variance normal linear model is 
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  ̂             (3) 
 
The Moore-Penrose inverse is used in (3) whenever     is not invertible.  Note that the 
variance of this MLE is the     matrix 
 

    ( ̂)            (4) 

 
This result is also relevant in the context of optimal designs discussed below since 
certain optimal design strategies attempt to minimize model parameter variances. 
 
The simple linear regression model is easily extended to the multiple linear regression 
model which includes several independent variables (        ).  Even though the   
matrix changes (i.e., in that it is then of dimension     with      ), the model 
structure in (1) and MLE/LSE in (3) remain unchanged. 
 
One situation in which a multiple linear model is useful is in the case of response surface 
modelling (RSM).  A quadratic RSM with two explanatory variables,    and   , again 
posits normal responses with constant variance but with model function           
                       

       
 .  It is then common practice to again stack the 

observations into vector form but to group the linear terms           into     matrix 
   and the quadratic terms         

    
   into     matrix   .  In this case, with 

   (

  

  

  

) and    (

   

   

   

),  equation (1) becomes 

 
 

       [     ] (
  

  
)                (5) 

 
Mindful of the key role of     (and its inverse), in this case we have 
 

 
    [

  
     

   

  
     

   

] (6) 

 
Interestingly, even though this RSM involves quadratic terms (in the mathematical 
sense), it is called a linear model since the independent variables (i.e., those in  ) and 
the model parameters (in  ) in        separate.  More precisely, we say that the model 
function        is a linear model function if none of the partial derivative of        
with respect to the model parameters involves any model parameter(s).  In the case of a 
normal dependent variable with constant variances, a model function for which at least 
one of these partial derivatives involves at least one model parameter is called a 
nonlinear model function.  Thus, constant-variance nonlinear models are identical to (1) 
but with stacked nonlinear model function vector        substituted in place of   .  
Interestingly, this means that linear models are a special case of nonlinear ones.  For 
nonlinear models, the counterpart of the   matrix above is the     Jacobian matrix, 



4 | P a g e  
 

denoted  .  The     row of   corresponds to the     observation (and   ), and comprises 

[
        

   
 
        

   
 

        

   
].  By definition,   depends upon at least one component of  , 

so we note that   =  ( ). In this instance, the analogue of the normal equations in (2) is  
 

  ̂ (   ( ̂))                 ̂  ( ̂)   ̂   (7) 

 

Here,  ̂   ( ̂), and in general equation (7) is a nonlinear system of   equations in   

unknowns – i.e., the   parameters in  .  To illustrate with a simplistic (   ) example, 

for          and the one-parameter decay model function             , we have 
        

  
     

    .  It follows that the normal equation (7) here is 

 
 

∑      
  ̂  

 

   
 ∑    

   ̂  

 

   
 (8) 

 

Solution of the nonlinear equation (8) for  ̂ – and of equation (7) for   in general – 
typically requires iterative methods such as the Modified Gauss-Newton method 
discussed in Seber & Wild (1989) and Bates & Watts (2007) and used by many software 

packages.  Note that in general, the (asymptotic) theoretical variance of  ̂ is    ( ̂)  

          and its estimate is 
 

    ̂( ̂)   ̂ ( ̂  ̂)
  

 (9) 

 
The term ‘asymptotic’ is used here to emphasize the approximate nature of these 
variance terms and the fact that the difference between the approximation and exact 
values is in general lower with a larger sample size. 
 
Our second illustration of a nonlinear model involves two-parameters and the Fieller-
Creasy model function, which can be written                   . This situation 
corresponds to one in which    cases (e.g., individuals) receive one treatment with 
mean   ,    cases receive a second treatment with mean    (both with the same 

variance),       and    
  

  
, and where    and    are indicator variables associated 

the two treatment groups.  Thus,      for subjects receiving treatment one,      
for subjects receiving treatment two, and        .  Another way to write this 
model function is           for treatment-one subjects (i.e., for          ) and 
            for treatment-two subjects (i.e., for                     ).  
The key parameter here is    since it corresponds to the ratio of the treatment means 
and thus provides the means to test for equality of the means by testing whether 
    . 
 
Demonstrating that the Fieller-Creasy model function is nonlinear is established by 
examining the partial derivatives and noting that at least one of these involves a model 
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parameter: for subjects receiving treatment one, 
        

   
   and 

        

   
  , and for 

subjects receiving treatment two, 
        

   
    and 

        

   
   .  The corresponding 

Jacobian matrix is then 
 

  [
   

   

     
     

] 

 
Here,    

 and    
 are vectors of one’s of lengths    and    respectively, and    

 is a 

vector of zero’s of length   .  Using basic matrix results, we obtain 
 

 
    [

       
       

          
 ]   

        
 

      
 [

    
        

              
 ] 

 

(10) 

To demonstrate the application of (9), from (10) we see that the estimated variance 

associated with  ̂   ̅  is  ̂    ̂ 
 

     ̂ 
  

 ̂ 

  
, and the estimated variance of  ̂  

 ̅ 

 ̅ 
 is 

 ̂       ̂ 
 

     ̂ 
 . 

 
Another example of a nonlinear model involves normal, constant-variance responses 
and either the two-parameter log-logistic (   ) or Weibull (     ) model functions, 
written respectively as 
 

 
          

 

          
                          

   (11) 

 
The graphs of these two model functions have the usual down-sloping sigmoidal shape 

typical of bioassay and toxicological data.  In both cases   (
  

  
) where    is a location 

parameter and    controls the slope.  Interestingly, since both of these model functions 
are similar, their fits to biological data are very close, thereby providing two 2-
parameter model functions which are rivals.  In sections IV and V, we point out that 
chosen experimental designs should provide information to estimate the model 
parameters, but to do so even if a rival model function is more appropriate for the 
mechanism under study. 
 
In addition to simple/multiple linear models and nonlinear models, another popular 
model used to represent bioassay and toxicology data is the binary/binomial logistic 
model.  Whereas the above (normal, constant variance) linear and nonlinear models use 
the identity link function, logistic modelling (of the common variety discussed here) uses 

the logit-link function,          (
 

   
).  Nonetheless, in analogous manner to normal-
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theory linear and nonlinear models, estimation and experimental design methods for 
the logistic model are based on the corresponding likelihood.  In the case of the 
constant-variance normal-theory linear and nonlinear models, by (1) the log-likelihood 

   is inversely related to the sum of squares,          ∑   
   

   ∑ (   
 
   

       )
 
   Also, setting the first derivatives of    (the so-called score vector function) 

to zero gives the normal equations in (2) and (7); also, the second derivative of    
(matrix) leads to the information matrix and to its inverse (and variance-covariance 

matrix for  ̂) given in (4) and (9). 
 
For the binary/binomial logistic model, the   variable often can correspond to dose or 
concentration and the researcher selects   such dose points, viz,           to run the 
experiment; this selection is indeed part of the experimental design problem discussed 
below.  This model assumes that independently    subjects (experimental units) receive 
dose   , and that the number of “successes”    has a binomial distribution with success 
probability  
 

 
   

        

          
             (

  

    
)          (12) 

 
Extensions of this expression to multiple independent variables are indeed 
straightforward. 
 
As for the above simple linear regression model, the model parameters in (12) are 

  (
  

  
); due to the binomial and independence assumptions here, after dropping a 

constant it follows that the corresponding log-likelihood expression is 
 

 
      ∑ [     

  

    
             ]

 

   
                 

 ∑ {                             }
 

   
 

(13) 

 

In this case, letting      represent the expected value vector (

     

     
 

     

)  (

    
    

 
    

), 

differentiating (13) with respect to   and setting to zero gives the normal equations, 
 

 
                i.e.,     {

∑             
   

∑               
   

 (14) 

 
As for nonlinear models, since the model parameters enter these equations in a 
nonlinear manner, iterative methods such as Modified Gauss-Newton method are 
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usually used to obtain the parameter estimates.  Differentiating a second time yields the 
(Fisher) information matrix: 
 

 

       [
    

     
]  

[
 
 
 ∑           

 

   
∑             

 

   

∑             
 

   
∑     

         
 

   ]
 
 
 

 (15) 

 
For this logistic model,           with       {                  
                }, and the dependence of   upon   is apparent since the    

depend upon  .  In similar spirit to (4) and (9) and with  ̂     ̂ , we have for this 
binomial logistic model the estimated (asymptotic) variance-covariance matrix 
 

    ̂( ̂)     ( ̂)  (   ̂ )
  

 (16) 

 
The previous examples of simple and multiple linear models, nonlinear models, and 
binomial logistic model demonstrate several commonalities – yet with some subtle 
nuances.  In each case, the likelihood is used to generate score functions and 
information matrices then used to give model parameter estimates and associated 
variances.  Model parameter estimates, obtained from so-called normal equations 
(equating the score functions to zero), involve iterative methods for all but linear 
models; similarly the associated variance-covariance matrices are estimated using the 
model parameter estimates for all but linear models, and are thus deemed approximate. 
 
Since most applied researchers wish to efficiently estimate parameters (including 
producing reliable confidence intervals for these) as well as provide some basis for the 
assessment of the quality of fit, we next discuss these in the context of modelling. 

 
III. Super-modelling and Goodness-of-Fit: 

 
In many instances, it is wise to connect distinct model functions.  One approach to doing 
this is to find a generalized “super-model” that contains the original model(s) as special 
cases.  To illustrate, in the context of Response Surface Models (RSM) with two 
explanatory variables discussed in the previous section, consider the following two rival 
model functions:                              and                 
          

       
 .  Clearly, both of these model functions are nested in (i.e., special 

cases of) the super-model                                    
       

  
since    results from     when           and    results from     when      . 
 
Our focus here is on the following: when a researcher has a model function in mind to 
describe a certain phenomenon, it is useful to be able to fit this model function (by 
estimating the model parameters) and to also test for inadequacies of this assumed 
model function.  As such, it is useful to think of the assumed model function as a special 
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case of a larger super-model.  Thus, when a researcher feels that    is the correct model 
function, it is useful to consider the more general     model function, which in turn 
contains other useful rival model functions (such as   ) as special cases.  Clearly this 
process of choosing     is not unique, so we focus on wise choices of    , which in turn 
contain other useful and important rival model functions as special cases. 
 
Generalizing linear models is generally straightforward: one can simply add higher-order 
terms onto the original model function.  Although this process is markedly more difficult 
for nonlinear model functions, some important results can be given.  In the previous 
section, it was noted that the two-parameter log-logistic (    ) and Weibull (      ) 
model functions provide commonly-observed sigmoidal fits to bioassay and toxicology 
data.  A super-model which generalizes these model functions is the three-parameter 
Eclectic (   ) model function 
 

 
          

 

(  
        

  
)
  

 
(17) 

 

It is important to note that the     model function is obtained when     , and the 
      model function results for     , thereby demonstrating that     is a super-
model (generalization) of both the     and       model functions.  Other important 
generalizations of these model functions are given in O’Brien (1994); for our present 
purposes we focus on the     model function in (17) to demonstrate how obtaining key 
super-models can be used in the context of obtaining an optimal design. 

 
IV. Optimal Design Theory: 
 
An n-point design, denoted  , is written 
 

   {
       

       
} (18) 

 
The    are non-negative design weights which sum to one; the    are design points that 
belong to the design space and are not necessarily distinct.  For the constant-variance 
normal setting with linear or nonlinear model function       , the     Jacobian 

matrix is   
  

  
 with       {          },the     (Fisher) information matrix is 

 
             (19) 

 
In the spirit of (15), this result, as well as the general case of either non-constant 
variance or non-normality, follows from the more general expression for the 
information matrix: 
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         (

    

     
) (20) 

 
For the normal and binomial models discussed here, in noting (4), (9) and (16), the 

(asymptotic) variance of  ̂    is proportional to         , so designs are often chosen 
to minimize some (convex) function of         .  To illustrate, designs which minimize 
its determinant are called D-optimal.  Since for nonlinear and logistic models,   
depends upon  , local or Bayesian designs can be obtained. 
 
Turning from parameter estimation to prediction, the (first-order) variance of the 
predicted response at the value   is 
 

 
         

       

   
      

       

  
   {           } (21) 

 
Designs that minimize (over  ) the maximum (over  ) of          in (21) are called G-
optimal.  As noted above, since this predicted variance depends upon   for logistic and 
nonlinear models, researchers often seek optimal designs using a “best guess” for   
(called a local optimal design) or assuming a plausible prior distribution on   (called a 
Bayesian optimal design). 
 
The General Equivalence Theorem (GET) of Kiefer and Wolfowitz (1960) proves that D- 
and G-optimal designs are equivalent.  They also showed that the variance function 
evaluated using the D-/G-optimal design does not exceed the line     (where   is the 
number of model function parameters) – but that it will exceed this line for all other 
designs.  A corollary establishes that the maximum of the variance function is achieved 
for the D-/G-optimal design at the support points of this design; this result is useful and 
essential for establishing optimality of a given design. 
 
A simple example involves the constant-variance, normal simple linear regression model 
where   is constrained to lie in the interval   [   ].  The GET and graph of the 

associated variance functions demonstrate that the design    {
  

      
} is D/G-

optimal in this setting.  This translates into recommending that half of the observations 
be taken at the lowest value of   (   ) and the other half at the highest value of   
(   ); optimality notwithstanding, researchers would be apprehensive to use the 
design    in practice. 
 
The above illustration demonstrates a practical characteristic: in most practical 
situations, optimal designs for  -parameter model functions comprise only   support 
points, thereby providing no ability to test for lack of fit of the assumed model.  
Researchers therefore often desire near-optimal “robust” designs that have extra 
support points which can then be used to test for model adequacy.  To illustrate, for the 
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above linear regression example, notice that the design    {
     

         
} is not 

strictly “optimal”, but may be near enough to optimal (in the sense defined in the next 
section) and can also be used to test for lack of fit of the assumed linear model function 
– at least “in the direction of” a quadratic model function.  
 
V. Robust Near-Optimal Design: 
 
As noted in sections II and III the context of Response Surface Models – and also in 
linear models in general – the assumed model function         can be embedded 

into the larger super-model,               [     ] (
  

  
)    .  Here,    is 

    ,    is     , and        .  Researchers commonly encounter the situation 
in which it is felt that    is the true model function, but a design is sought to efficiently 
estimate    (the model parameters of   ) and to also provide some information to 

detect lack of fit of    in the direction of    .  This is achieved by first noting that   
    

is the (Fisher) Information matrix associated with    in the linear model with model 
function   , and one numerical measure of information is therefore the determinant 

|  
   |.  Also, by (6), note that the information associated with the full vector   (

  

  
) 

in     is    , and by using rules of determinants for partitioned matrices, its 
determinant is 
 

       |  
   | |  

      
   (  

   )
  

  
   |

 |  
   ||  

 (     
)  | 

(22) 

 

Here,    
   (  

   )
  
  

  is the projection matrix/operator onto the column space of 

  , so (     
)   corresponds to the column space of the projection of    orthogonal 

to the column space of   .  As such, (22) demonstrates that the information regarding 
the full vector   in     (viz,      ) is partitioned into the product of the information 

regarding    in the sub-model    (i.e., |  
   |) multiplied by the additional information 

in    not in    in the larger model     (i.e., |  
 (     

)  |). 

 
We easily extend these matrix results to          in (19) and (20) by noting that for 
 

   [
      

      
], (23) 

 
we have 
 

          |          
     | (24) 
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Similar to the interpretation above, (24) shows that the information regarding the full 
vector   in     (viz,    ) is partitioned into the product of the information regarding    
in the sub-model    (i.e.,      ) multiplied by the additional information in    not in    

in the larger model     (i.e., |          
     |). 

 
These results motivate the following compound design criterion function (objective 
function): 
 

 
        

 

  
         

   

  
   |          

     | (25) 

 

In this expression, the sub-model contains    parameters, the super-model contains    
additional parameters; also,  , which lies between 0 and 1, controls the emphasis 
placed on the original versus the additional parameters.  As noted,       measures the 

information regarding the original    model parameters    and |          
     | 

captures the information regarding the additional    model parameters    not in   .  
Thus, for    , the criterion yields D-optimal designs for    in the sub-model   , and 
for      ⁄ , it gives D-optimal designs for full vector   in    .  Again by the General 
Equivalence Theorem, D-optimality is confirmed by plotting the corresponding variance 
function plot and noting whether the graph exceeds the relevant horizontal line. 
 
To illustrate, consider seeking an efficient local design for the two-parameter log-logistic 
(   ) model function in (11) with       and     .  We also allow for the possibility 
that perhaps the two-parameter Weibull (     ) model function fits.  As such, we nest 
the     model in the three-parameter Eclectic (   ) model function in (17), and find an 
efficient design.  Using the notation above,      and    .  In this setting, the local 
D-optimal design for the     model function (denoted   ) puts the weights of     at 
each of the points         and         , but provides no means to test for lack-of-
fit.  Using the nesting design criterion with        in (25), the optimal design (denoted 
  ) assigns the respective weights                  to the points 
                    .  Since this latter design has an extra support point, it can be 
used to test for lack of fit – more precisely, lack of fit of the     model function in the 
direction of the     model function (including the       model function as another 
special case). 
 
We next need a measure of the degree of ‘closeness’ of two designs, and one such 
measure is the so-called D-efficiency discussed in O’Brien & Funk (2003) and Atkinson et 
al (2007).  Applied to the current setting, this is 
 

 
(
         

         
)

   

        (26) 
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With a D-efficiency of 94.56%, using the robust near-optimal design    results in a 
modest efficiency sacrifice of only 5.44% yet an extra support point to check for 
goodness of fit. 
 
VI. Summary: 
 
Researchers working in statistical consulting – especially in toxicology and bioassay –
often assess dependencies between variables in their work by fitting linear, nonlinear or 
logistic models to their data.  As such, efficient experimental designs which can be used 
to estimate model parameters as well as to check for goodness-of-fit of the assumed 
model.  As demonstrated here, these methods rely on key special matrices and the 
method of imbedding the assumed model function into a larger class which contains 
important special cases is a useful and imperative strategy.  As evidenced by these 
illustrations, the key software tool in our research and consulting work are the suite of 
procedures in those in SAS/STAT and SAS/IML. 
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