
1

Paper SAS1700-2015

Creating Multi-Sheet Microsoft Excel Workbooks with SAS®:
The Basics and Beyond. Part 2
Vincent DelGobbo, SAS Institute Inc.

ABSTRACT
This presentation explains how to use Base SAS®9 software to create multi-sheet Excel workbooks. You
learn step-by-step techniques for quickly and easily creating attractive multi-sheet Excel workbooks that
contain your SAS® output using the ExcelXP Output Delivery System (ODS) tagset. The techniques can
be used regardless of the platform on which SAS software is installed. You can even use them on a
mainframe! Creating and delivering your workbooks on-demand and in real time using SAS server
technology is discussed. Although the title is similar to previous presentations by this author, this
presentation contains new and revised material not previously presented.

INTRODUCTION
This paper explains how to use Base SAS 9.1.3 or later to create the Excel workbook shown in Figure 1.

Figure 1. Multi-Sheet Excel Workbook Generated by the ExcelXP ODS Tagset

The workbook includes two worksheets that contain vaccine adverse event data for the United States
from 2004 to 2013.

andy
Text Box

2

Notable features of this workbook include the following:

1. Worksheet names are customized.

2. Title and footnote text are displayed in the document body.

3. Each worksheet prints on a single page.

4. The values in the numeric columns and summary row cells are displayed using Excel formats, not
SAS formats.

The code in this paper was tested using SAS 9.4 (ODS ExcelXP tagset version 1.130) and Microsoft
Excel 2010 software.

REQUIREMENTS
To use the techniques described in this paper, you must have the following software:

 Base SAS 9.1.3 Service Pack 4 or later on any supported operating system (z/OS, UNIX, etc.)
and hardware.

 Microsoft Excel 2002 (also referred to as Microsoft Excel XP) or later.

LIMITATIONS
Because the ExcelXP ODS tagset creates files that conform to the Microsoft XML Spreadsheet
Specification, you can create multi-sheet Excel workbooks that contain the output from almost any SAS
procedure. The exception is that the Microsoft XML Spreadsheet Specification does not support images,
so the output from graphics procedures cannot be used (Microsoft Corporation 2001).

You can use ExcelXP tagset options with all procedure output, but ODS style overrides apply only to the
PRINT, REPORT, and TABULATE procedures. Tagset options and style overrides are discussed in the
sections "Understanding and Using the ExcelXP Tagset Options" and "Understanding and Using ODS
Style Overrides", respectively.

You cannot use the techniques described in this paper to update existing workbooks. ODS creates the
entire document on each execution, and cannot alter existing workbooks.

SAMPLE DATA
Table 1 presents the column properties for the VaccineAE SAS table that is used to create the Excel
workbook shown in Figure 1.

Column Name Description Typical Values

State2 2-digit state abbreviation AK, DC, NC, WY

N2004
N2005
 . . .
N2013

Number of adverse events reports for 2004
to 2013

36, 817, 1144, 2906

Pct2004
Pct2005
 . . .
Pct2013

Percentage of total adverse events reports
for 2004-2013

0.407602676, 1.3170141474,
10.193765796

Table 1. Column Properties and Representative Data Values for the VaccineAE SAS Table

The data was extracted from the Vaccine Adverse Event Reporting System (VAERS), available at
http://vaers.hhs.gov. It is intended only for illustrative purposes.

http://vaers.hhs.gov/

3

OUTPUT DELIVERY SYSTEM (ODS) BASICS
ODS is the part of Base SAS software that enables you to generate different types of output from your
procedure code. An ODS destination controls the type of output that is generated (HTML, RTF, PDF,
etc.). An ODS style controls the appearance of the output. In this paper, we use a type of ODS
destination, called a tagset, that creates XML output that can be opened with Excel. This tagset, named
ExcelXP, creates an Excel workbook that has multiple worksheets.

The Excel workbook in Figure 1 was created using the ExcelXP ODS tagset and the PRINTER ODS style
supplied by SAS. The ExcelXP tagset creates an XML file that, when opened by Excel, is rendered as a
multi-sheet workbook. All formatting and layout are performed by SAS; there is no need to "hand-edit"
the Excel workbook. You simply use Excel to open the file created by ODS.

Here are the general ODS statements to generate XML output that is compatible with Excel 2002 and
later:

 ods _all_ close;

 ods tagsets.ExcelXP file='file-name.xml' style=style-name ... ;

 * Your SAS procedure code here;

 ods tagsets.ExcelXP close;

The first ODS statement () closes all destinations that are open because we want to generate only XML
output for use with Excel.

The second ODS statement () uses the ExcelXP tagset to generate the XML output and then store the
output in a file. You should use the XML extension instead of XLSX or XLSX because Excel 2007 and
later display a warning if the XML extension is not used (Microsoft Corporation 2015). The STYLE option
controls the appearance of the output, such as the font and color scheme. To see a list of ODS styles
that are available for use at your site, submit the following SAS code:

ods _all_ close;

ods listing;

proc template; list styles; run; quit;

To find the SAS code that generates sample output for the ODS styles available on your system, click the
Full Code tab in SAS Sample 36900 (SAS Institute Inc. 2009).

The third ODS statement () closes the ExcelXP destination and releases the XML file so that it can be
opened with Excel.

Note: If you place the files where users can access them over a network, you should set file permissions
to prevent accidental alteration.

OPENING THE OUTPUT WITH EXCEL
Follow these steps to open an ODS-generated XML file:

1. In Excel 2002, 2003, or 2010, select File Open.

In Excel 2007 select Office Button Open.

2. Navigate to the file or enter the path and filename in the File name field.

3. Click Open to import the XML file.

You can also navigate to the file using Microsoft Windows Explorer, and then double-click the file to open
it with Excel.

4

Excel reads and converts the XML file to the Excel format. After the conversion, you can perform any
Excel function on the data. To save a copy of the file in Excel binary (XLS) format using Excel 2002,
2003, or 2010, select File Save As and then, from the Save as type drop-down list, select

Microsoft Excel Workbook (*.xls). If you're using Excel 2007, click the Microsoft Office Button,

and then select Save As Excel 97-2003 Workbook. If you're using Excel 2007 or 2010 and want

to save the document in the Microsoft Office Open XML format, choose Excel Workbook (*.xlsx)

from the Save as type drop-down list.

UPDATING THE EXCELXP TAGSET
The version of the ExcelXP tagset that is shipped with Base SAS is periodically updated. There is
currently no notification system for tagset updates. To ensure that you have a recent version, compare
the ExcelXP tagset version, displayed in the SAS log whenever the tagset is used, to the version
available on the ODS website (SAS Institute Inc. 2015).

Submit this code to display the tagset version number in the SAS log:

filename temp temp;

ods tagsets.ExcelXP file=temp;

ods tagsets.ExcelXP close;

filename temp clear;

All the code in this paper uses an up-to-date version of the ODS ExcelXP tagset (version 1.130). If
you're using a tagset that's more than 2 or 3 versions old, consider upgrading by following the steps in
SAS Usage Note 32394 (SAS Institute Inc. 2008b). Otherwise, continue to the next section.

USING ODS TO CREATE THE MULTI-SHEET EXCEL WORKBOOK
Here is a listing of the basic SAS code used to create the Excel workbook:

ods _all_ close;

options topmargin = 0.5 in bottommargin = 0.5 in

 leftmargin = 0.5 in rightmargin = 0.5 in;

ods tagsets.ExcelXP file='VaccineAE.xml' style=Printer;

title j=c 'Vaccine Adverse Event Reporting System (VAERS) Report for the

 United States';

footnote j=l 'Source: http://vaers.hhs.gov';

* First worksheet;

proc report data=sample.VaccineAE nowd;

column State2 ('2004' N2004 Pct2004)

 ('2005' N2005 Pct2005)

 ('2006' N2006 Pct2006)

 ('2007' N2007 Pct2007)

 ('2008' N2008 Pct2008);

define State2 / display 'State';

define N2004 / analysis 'N';

define Pct2004 / analysis '(%)';

define N2005 / analysis 'N';

5

define Pct2005 / analysis '(%)';

... ;

define N2008 / analysis 'N';

define Pct2008 / analysis '(%)';

rbreak after / summarize;

run; quit;

* Second worksheet;

proc report data=sample.VaccineAE nowd;

column State2 ('2009' N2009 Pct2009)

 ('2010' N2010 Pct2010)

 ('2011' N2011 Pct2011)

 ('2012' N2012 Pct2012)

 ('2013' N2013 Pct2013);

define State2 / display 'State';

define N2009 / analysis 'N';

define Pct2009 / analysis '(%)';

define N2010 / analysis 'N';

define Pct2010 / analysis '(%)';

... ;

define N2013 / analysis 'N';

define Pct2013 / analysis '(%)';

rbreak after / summarize;

run; quit;

ods tagsets.ExcelXP close;

Stepping through the code, all open ODS destinations are closed, and then margins are specified to
control the appearance of the printed output.

As you can see in the ODS statement (), the ExcelXP tagset generates the output and the PRINTER
style controls the appearance of the output. By default, the ExcelXP tagset creates a new worksheet
when a SAS procedure creates new tabular output. Each instance of the REPORT procedure ()
creates one table showing half of the yearly data, and each table is created in a separate worksheet.

The RBREAK statement () creates a summary line listing the sum of all the analysis variables. The last
ODS statement () closes the ExcelXP destination and releases the XML file so that it can be opened
with Excel.

Figure 2 displays the results of executing the basic SAS code, and then opening the resulting
VaccineAE.xml file with Excel. Notice that Figure 2 does not match Figure 1. The following problems are
exhibited in Figure 2:

1. Unattractive, default worksheet names are used.

2. Title and footnote text are missing.

3. Printing results in more than one page per worksheet.

4. Incorrect display formats are used for the values in the numeric columns and summary row cells.

5. The background color of the summary row is not gray.

6

In the following sections we change the basic SAS code to correct these problems. The complete SAS
code used to create the workbook shown in Figure 1 is listed in the section "The Final SAS Code".

Figure 2. Initial ODS ExcelXP Tagset-Generated Workbook

UNDERSTANDING AND USING THE EXCELXP TAGSET OPTIONS
The ExcelXP tagset supports many options that control both the appearance and functionality of the
Excel workbook. Many of these tagset options are simply tied directly into existing Excel options or
features. For example, the SHEET_NAME option is used to specify the worksheet name.

Tagset options are specified in an ODS statement using the OPTIONS keyword:

ods tagsets.ExcelXP options(option-name1='value1'

 option-name2='value2' ...) ... ;

Note that the value that you specify for a tagset option remains in effect until the ExcelXP destination is
closed or the option is set to another value. Because multiple ODS statements are allowed, it is good
practice, in terms of functionality and code readability, to explicitly reset tagset options to their default
values when you are finished using them.

For example:

ods tagsets.ExcelXP file='file-name.xml' style=style-name ... ;

 ods tagsets.ExcelXP options(option-name='some-value');

 * Some SAS procedure code here;

 ods tagsets.ExcelXP options(option-name='default-value');

 * Other SAS procedure code here;

ods tagsets.ExcelXP close;

When specifying multiple ODS statements as shown above, specify the FILE, STYLE, or any other
keyword or option that is supported by ODS only in the initial ODS statement.

7

To see a listing of the supported options printed to the SAS log, submit the following SAS code:

filename temp temp;

ods tagsets.ExcelXP file=temp options(doc='help');

ods tagsets.ExcelXP close;

filename temp clear;

All of the tagset options and code work with any SAS procedure. However, ODS style overrides work
only with the PRINT, REPORT, and TABULATE procedures.

SPECIFYING WORKSHEET NAMES

ODS generates a unique name for each worksheet, as required by Excel. Figure 2 shows the worksheet
names that result from running the initial SAS code. There are, however, several tagset options that you
can use to alter the names of the worksheets (DelGobbo 2013, 2014).

Use the SHEET_NAME option to specify a worksheet name. Recall that tagset options remain in effect
until the ExcelXP destination is closed. We specify the option twice because we want a different name for
each worksheet.

ods tagsets.ExcelXP file='VaccineAE.xml' style=Printer;

title ... ; footnote ... ;

* First worksheet;

ods tagsets.ExcelXP options(sheet_name='2004 - 2008');

proc report data=sample.VaccineAE nowd;

... ;

run; quit;

* Second worksheet;

ods tagsets.ExcelXP options(sheet_name='2009 - 2013');

proc report data=sample.VaccineAE nowd;

... ;

run; quit;

ods tagsets.ExcelXP close;

Figure 4 shows the updated worksheet names.

INCLUDING TITLE AND FOOTNOTE TEXT IN THE WORKSHEET BODY

By default, SAS titles and footnotes appear as Excel print headers and print footers, respectively, which
are displayed when the Excel document is printed. You can confirm this by viewing the Excel
Header/Footer tab in the Page Setup dialog box, shown in Figure 3.

8

Figure 3. Excel Page Setup Dialog Box Showing Title and Footnote Text in Headers

To include title and footnote text on-screen, in the worksheet body, use the EMBEDDED_TITLES and
EMBEDDED_FOOTNOTES options:

ods tagsets.ExcelXP file='VaccineAE.xml' style=Printer;

* "Global" tagset options;

ods tagsets.ExcelXP options(embedded_titles='yes'

 embedded_footnotes='yes');

title ... ; footnote ... ;

* First worksheet;

ods tagsets.ExcelXP options(sheet_name='2004 - 2008');

proc report data=sample.VaccineAE nowd;

... ;

run; quit;

9

* Second worksheet;

ods tagsets.ExcelXP options(sheet_name='2009 - 2013');

proc report data=sample.VaccineAE nowd;

... ;

run; quit;

ods tagsets.ExcelXP close;

Because these options are placed at the beginning of the code and are not changed later, they affect all
worksheets. The title and footnote text are now included in the worksheet body (Figure 4).

Figure 4. ODS ExcelXP Tagset-Generated Workbook with Title, Footnote, and Worksheet Names

CONSTRAINING THE PRINTED OUTPUT TO A SINGLE PAGE PER WORKSHEET

One of the problems with the initial output is that it exceeds more than one page when a worksheet is
printed. Figure 5 and Figure 6 show the Excel settings and the corresponding ExcelXP tagset options
that constrain the printed output to one page per worksheet.

10

Figure 5. Excel Page Setup Dialog Box Showing Page Options

PAGES_FITWIDTH

PAGES_FITHEIGHT

11

 Figure 6. Excel Page Setup Dialog Box Showing Margin Settings

The remaining margin specifications in Figure 6 are controlled by the OPTIONS statement shown in the
"Using ODS to Create the Multi-Sheet Excel Workbook" section.

Here is the code to center the printed output horizontally and vertically on a single page:

ods tagsets.ExcelXP file='VaccineAE.xml' style=Printer;

* "Global" tagset options;

ods tagsets.ExcelXP options(embedded_titles='yes'

 embedded_footnotes='yes'

 pages_fitwidth='1'

 pages_fitheight='1'

 print_header_margin='0'

 print_footer_margin='0'

 center_horizontal='yes'

 center_vertical='yes');

title ... ; footnote ... ;

* First worksheet;

ods tagsets.ExcelXP options(sheet_name='2004 - 2008');

PRINT_HEADER_MARGIN

PRINT_FOOTER_MARGIN

CENTER_HORIZONTAL

CENTER_VERTICAL

12

proc report data=sample.VaccineAE nowd;

... ;

run; quit;

* Second worksheet;

ods tagsets.ExcelXP options(sheet_name='2009 - 2013');

proc report data=sample.VaccineAE nowd;

... ;

run; quit;

ods tagsets.ExcelXP close;

The printed output from each worksheet now fits on a single page in portrait orientation.

UNDERSTANDING AND USING ODS STYLE OVERRIDES
You can alter the attributes or style elements used by specific parts of your SAS output by using style
overrides. These specific parts of your SAS output are called locations. Figure 7 shows the locations
that are pertinent to the REPORT procedure output (SAS Institute Inc. 2008a). The COLUMN location
controls the appearance of data cells and the SUMMARY location controls the summary line cells.

Figure 7. Style Locations for the REPORT Procedure

13

Style overrides are supported by the PRINT, REPORT, and TABULATE procedures, and can be specified
several ways. Here are the two most common formats:

 style(location)=[style-attribute-name1=value1

 style-attribute-name2=value2 ...]

 style(location)=style-element-name

The first format () uses individual style attributes defined inline. For example, this PROC REPORT
code alters three attributes of the COLUMN location for the MYVAR variable:

define myvar / style(column)=[background=yellow font_size=10pt just=left];

Although this is the most commonly used format, it has some disadvantages. To use the same style
override for different variables, you must apply it in multiple places, making your SAS code harder to read
and maintain. And, if you want to use the style overrides in other SAS programs, you must copy the list of
attribute name/value pairs to the new code. Because of these drawbacks, inline style overrides should be
used sparingly.

The second format () overcomes these problems by referencing a style element. Using this format
involves creating a new style element, setting the style attributes within the element, and then using the
style element name in your style override. This results in code that is easier to read, maintain, and reuse.
Earlier papers by this author provide a detailed discussion of this topic (DelGobbo 2008, 2009, 2010,
2011).

Refer to the ODS documentation for a full listing of style attributes (SAS Institute Inc. 2014a).

CHANGING THE BACKGROUND COLOR OF THE SUMMARY LINE

We want a gray background color for the summary line to help draw attention to the column totals. To
accomplish this, change the value of the BACKGROUND attribute for the SUMMARY location using a
style override:

ods tagsets.ExcelXP file='VaccineAE.xml' style=Printer;

* "Global" tagset options;

ods tagsets.ExcelXP options(...);

title ... ; footnote ... ;

* First worksheet;

ods tagsets.ExcelXP options(sheet_name='2004 - 2008');

proc report data=sample.VaccineAE nowd;

column ... ;

define ... ;

rbreak after / summarize style(summary)=[background=#bbbbbb];

run; quit;

* Second worksheet;

ods tagsets.ExcelXP options(sheet_name='2009 - 2013');

14

proc report data=sample.VaccineAE nowd;

column ... ;

define ... ;

rbreak after / summarize style(summary)=[background=#bbbbbb];

run; quit;

ods tagsets.ExcelXP close;

Note that no changes were made to the ODS ExcelXP tagset options that were previously specified. The
results are shown in Figure 8.

Figure 8. ODS ExcelXP Tagset-Generated Workbook with Gray Background in Summary Line

APPLYING AN EXCEL FORMAT TO THE ANALYSIS COLUMNS

Our Excel workbook now closely resembles Figure 1, except that the display formats for the analysis
columns and summary line do not match. Although you might (naturally) want to use SAS formats to
control the Excel display values, it’s better to use Excel formats because they're always honored.

Figure 9 shows the general structure of Excel number formats (Microsoft Corporation 2014). The pound
sign (#) in an Excel format represents a numeric digit, excluding insignificant zeros. A zero (0) displays a
numeric digit, including insignificant zeros. Use zeros in Excel formats when you want to retain leading or
trailing zeros.

Figure 9. Structure of Excel Number Formats

15

Table 2 shows the results of applying the Excel format shown in Figure 9.

Raw Value Formatted Value Comment
.5 0.50 Leading and trailing zeros

5 5.00 Leading and trailing zeros

123 123.00 Trailing zeros

1234 1,234.00 Trailing zeros and thousands separator

-1234 (1,234.00) Leading and trailing zeros, thousands separator, and red ()

0 0.00 Special zero handling

data sales data Special text handling

Table 2. Results of Applying Excel Format Shown in Figure 9

Because all of the values that we need to format are positive numbers, we specify only the first section of
the Excel format. The zeros insure that the formatted values contain a value between 0 and 9 in that
position.

* First worksheet;

ods tagsets.ExcelXP options(sheet_name='2004 - 2008');

proc report data=sample.VaccineAE nowd;

column ... ;

define State2 / display 'State';

define N2004 / analysis 'N' style(column)=[tagattr='format:#,##0'];

define Pct2004 / analysis '(%)' style(column)=[tagattr='format:(0.0)'];

... ;

define N2008 / analysis 'N' style(column)=[tagattr='format:#,##0'];

define Pct2008 / analysis '(%)' style(column)=[tagattr='format:(0.0)'];

rbreak after / summarize style(summary)=[background=#bbbbbb];

run; quit;

* Second worksheet;

ods tagsets.ExcelXP options(sheet_name='2009 - 2013');

proc report data=sample.VaccineAE nowd;

column ... ;

define State2 / display 'State';

define N2009 / analysis 'N' style(column)=[tagattr='format:#,##0'];

define Pct2009 / analysis '(%)' style(column)=[tagattr='format:(0.0)'];

... ;

define N2013 / analysis 'N' style(column)=[tagattr='format:#,##0'];

define Pct2013 / analysis '(%)' style(column)=[tagattr='format:(0.0)'];

rbreak after / summarize style(summary)=[background=#bbbbbb];

run; quit;

16

With all of the code modifications in place, the resulting workbook matches the output shown in Figure 1.

THE FINAL SAS CODE
The final SAS code to create the output of Figure 1 follows:

ods _all_ close;

options topmargin = 0.5 in bottommargin = 0.5 in

 leftmargin = 0.5 in rightmargin = 0.5 in;

ods tagsets.ExcelXP file='VaccineAE-Final.xml' style=Printer;

* "Global" tagset options;

ods tagsets.ExcelXP options(embedded_titles='yes'

 embedded_footnotes='yes'

 pages_fitwidth='1'

 pages_fitheight='1'

 print_header_margin='0'

 print_footer_margin='0'

 center_horizontal='yes'

 center_vertical='yes');

title j=c 'Vaccine Adverse Event Reporting System (VAERS) Report for the

United States';

footnote j=l 'Source: http://vaers.hhs.gov';

* First worksheet;

ods tagsets.ExcelXP options(sheet_name='2004 - 2008');

proc report data=sample.VaccineAE nowd;

column State2 ('2004' N2004 Pct2004)

 ('2005' N2005 Pct2005)

 ('2006' N2006 Pct2006)

 ('2007' N2007 Pct2007)

 ('2008' N2008 Pct2008);

define State2 / display 'State';

define N2004 / analysis 'N' style(column)=[tagattr='format:#,##0'];

define Pct2004 / analysis '(%)' style(column)=[tagattr='format:(0.0)'];

define N2005 / analysis 'N' style(column)=[tagattr='format:#,##0'];

define Pct2005 / analysis '(%)' style(column)=[tagattr='format:(0.0)'];

define N2006 / analysis 'N' style(column)=[tagattr='format:#,##0'];

define Pct2006 / analysis '(%)' style(column)=[tagattr='format:(0.0)'];

define N2007 / analysis 'N' style(column)=[tagattr='format:#,##0'];

define Pct2007 / analysis '(%)' style(column)=[tagattr='format:(0.0)'];

define N2008 / analysis 'N' style(column)=[tagattr='format:#,##0'];

define Pct2008 / analysis '(%)' style(column)=[tagattr='format:(0.0)'];

rbreak after / summarize style(summary)=[background=#bbbbbb];

run; quit;

17

* Second worksheet;

ods tagsets.ExcelXP options(sheet_name='2009 - 2013');

proc report data=sample.VaccineAE nowd;

column State2 ('2009' N2009 Pct2009)

 ('2010' N2010 Pct2010)

 ('2011' N2011 Pct2011)

 ('2012' N2012 Pct2012)

 ('2013' N2013 Pct2013);

define State2 / display 'State';

define N2009 / analysis 'N' style(column)=[tagattr='format:#,##0'];

define Pct2009 / analysis '(%)' style(column)=[tagattr='format:(0.0)'];

define N2010 / analysis 'N' style(column)=[tagattr='format:#,##0'];

define Pct2010 / analysis '(%)' style(column)=[tagattr='format:(0.0)'];

define N2011 / analysis 'N' style(column)=[tagattr='format:#,##0'];

define Pct2011 / analysis '(%)' style(column)=[tagattr='format:(0.0)'];

define N2012 / analysis 'N' style(column)=[tagattr='format:#,##0'];

define Pct2012 / analysis '(%)' style(column)=[tagattr='format:(0.0)'];

define N2013 / analysis 'N' style(column)=[tagattr='format:#,##0'];

define Pct2013 / analysis '(%)' style(column)=[tagattr='format:(0.0)'];

rbreak after / summarize style(summary)=[background=#bbbbbb];

run; quit;

ods tagsets.ExcelXP close;

SAS SERVER TECHNOLOGY
You can deliver dynamically generated SAS output into Excel using the Application Dispatcher or the
SAS

®
 Stored Process Server. The Application Dispatcher is part of SAS/IntrNet

®
 software. The SAS

Stored Process Server is available starting with SAS
®
9 as part of SAS® Integration Technologies, and is

included with server offerings that leverage the SAS Business Analytics infrastructure (for example, SAS
®

BI Server and SAS
®
 Enterprise BI Server).

These products enable you to execute SAS programs from a Web browser or any other client that can
open an HTTP connection to the Application Dispatcher or the SAS Stored Process Server. Both of
these products can run on any platform where SAS is licensed. SAS software does not need to be
installed on the client machine.

The SAS programs that you execute from the browser can contain any combination of DATA step,
procedure, macro, or SCL code. Thus, all of the code that has been shown up to this point can be
executed by both the Application Dispatcher and the SAS Stored Process Server.

Program execution is typically initiated by accessing a URL that points to the SAS server program.
Parameters are passed to the program as name/value pairs in the URL. The SAS server takes these
name/value pairs and constructs SAS macro variables that are available to the SAS program.

Figure 10 shows a Web page that can deliver SAS output directly to Excel, using a Web browser as the
client.

18

Figure 10. Web Page to Drive a SAS/IntrNet Application

Clicking Download to Excel executes a slightly modified version of the SAS code that we have been
working on. The modifications are as follows:

%let RV=%sysfunc(appsrv_header(Content-type,application/vnd.ms-excel));

%let RV=%sysfunc(appsrv_header(Content-disposition,attachment; filename=

"VaccineAE.xml")); * Ignore line wrapping;

ods _all_ close;

options topmargin=0.5 in ... ;

ods tagsets.ExcelXP file=_webout style=Printer;

* Remainder of the "final" SAS code;

ods tagsets.ExcelXP close;

The first APPSRV_HEADER function sets a MIME header that causes the SAS output to be opened by
Excel, instead of being rendered by the Web browser. This statement is required.

The second APPSRV_HEADER function sets a MIME header that causes the filename to be displayed in
the File Download dialog box. As you can see in Figure 11, the filename appears as VaccineAE.xml.
This header might cause problems with some versions of Excel, so be sure to test your applications
before deploying them in a production environment. This statement is optional.

Figure 11. File Download Dialog Box

19

The reserved fileref _WEBOUT is automatically defined by the SAS server and is always used to direct
output from the SAS server to the client. Modify your existing ODS statement to direct the output to this
fileref instead of to an external disk file.

When you click the Download to Excel button on the Web page you are presented with the File
Download dialog box (Figure 11). You can then click Open to immediately open your SAS output using
Excel, or you can click Save.

This is only one example of how you can dynamically deliver SAS output to Excel. For more detailed
information and other examples, see the SAS/IntrNet Application Dispatcher and SAS Stored Process
documentation (SAS Institute Inc. 2013, 2014b), as well as this author's earlier papers (DelGobbo 2002,
2003, 2004).

CONCLUSION
The SAS ExcelXP ODS tagset provides an easy way to export your SAS data to Excel workbooks that
contain multiple worksheets. By using ODS styles, style overrides, and a tagset that complies with the
Microsoft XML Spreadsheet Specification, you can customize the output to achieve your design goals.

APPENDIX

VISUAL BASIC CODE TO CONVERT XML TO NATIVE EXCEL FORMATS

The author is developing a Visual Basic script that converts ExcelXP-generated files to native Excel XLS
or XLSX formats. Contact the author if you would like a copy of this experimental code.

FUTURE DIRECTION

SAS Institute continues to work toward better Microsoft Office integration, and future releases of SAS
software will provide even more robust means of using SAS content with Microsoft Office applications.
Upcoming maintenance releases of SAS 9.4 will include a new ODS destination to create native XLSX
files (including graphics) and a procedure to create native Excel charts.

REFERENCES
DelGobbo, Vincent. 2002. "Techniques for SAS

®
 Enabling Microsoft

®
 Office in a Cross-Platform

Environment". Proceedings of the Twenty-Seventh Annual SAS Users Group International Conference.
Cary, NC: SAS Institute Inc. Available at http://www2.sas.com/proceedings/sugi27/p174-27.pdf.

DelGobbo, Vincent. 2003. "A Beginner’s Guide to Incorporating SAS
®
 Output in Microsoft

®
 Office

Applications". Proceedings of the Twenty-Eighth Annual SAS Users Group International Conference.
Cary, NC: SAS Institute Inc. Available at http://www2.sas.com/proceedings/sugi28/052-28.pdf.

DelGobbo, Vincent. 2004. "From SAS
®
 to Excel via XML".

Available at http://support.sas.com/rnd/papers/sugi29/ExcelXML.pdf.

DelGobbo, Vincent. 2008. "Tips and Tricks for Creating Multi-Sheet Microsoft Excel Workbooks the Easy
Way with SAS

®
". Proceedings of the SAS Global Forum 2008 Conference. Cary, NC: SAS Institute Inc.

Available at http://www2.sas.com/proceedings/forum2008/192-2008.pdf.

DelGobbo, Vincent. 2009. "More Tips and Tricks for Creating Multi-Sheet Microsoft Excel Workbooks the
Easy Way with SAS

®
". Proceedings of the SAS Global Forum 2009 Conference. Cary, NC: SAS Institute

Inc. Available at http://support.sas.com/resources/papers/proceedings09/152-2009.pdf.

DelGobbo, Vincent. 2010. "Traffic Lighting Your Multi-Sheet Microsoft Excel Workbooks the Easy Way
with SAS

®
". Proceedings of the SAS Global Forum 2010 Conference. Cary, NC: SAS Institute Inc.

Available at http://support.sas.com/resources/papers/proceedings10/153-2010.pdf.

DelGobbo, Vincent. 2013. "Some Techniques for Integrating SAS
®
 Output with Microsoft Excel Using

Base SAS
®
". Proceedings of the SAS Global Forum 2013 Conference. Cary, NC: SAS Institute Inc.

Available at http://support.sas.com/resources/papers/proceedings13/143-2013.pdf.

http://www2.sas.com/proceedings/sugi27/p174-27.pdf
http://www2.sas.com/proceedings/sugi28/052-28.pdf
http://support.sas.com/rnd/papers/sugi29/ExcelXML.pdf
http://www2.sas.com/proceedings/forum2008/192-2008.pdf
http://support.sas.com/resources/papers/proceedings09/152-2009.pdf
http://support.sas.com/resources/papers/proceedings10/153-2010.pdf
http://support.sas.com/resources/papers/proceedings13/143-2013.pdf

20

DelGobbo, Vincent. 2014. "Creating Multi-Sheet Microsoft Excel Workbooks with SAS®: The Basics and
Beyond Part 1". Proceedings of the SAS Global Forum 2014 Conference. Cary, NC: SAS Institute Inc.
Available at http://support.sas.com/resources/papers/proceedings14/SAS050-2014.pdf.

Microsoft Corporation. 2001. "XML Spreadsheet Reference".
Available at http://msdn.microsoft.com/en-us/library/aa140066(office.10).aspx.

Microsoft Corporation. 2014. "Number format codes". Available at
https://support.office.com/en-us/article/Number-format-codes-5026bbd6-04bc-48cd-bf33-80f18b4eae68.

Microsoft Corporation. 2015. "When you open a file in Excel 2007, you receive a warning that the file
format differs from the format that the file name extension specifies". Available at
http://support.microsoft.com/kb/948615.

SAS Institute Inc. 2008a. "SAS
®
 9 Reporting Procedure Styles Tip Sheet".

Available at http://support.sas.com/rnd/base/ods/scratch/reporting-styles-tips.pdf.

SAS Institute Inc. 2008b. "Usage Note 32394: Installing and Storing Updated Tagsets for ODS
MARKUP". Available at http://support.sas.com/kb/32/394.html.

SAS Institute Inc. 2009. "Sample 36900: Instructions for viewing all of the style templates that are shipped
with the SAS

®
 System". Available at http://support.sas.com/kb/36/900.html.

SAS Institute Inc. 2013. SAS/IntrNet
®
 9.4: Application Dispatcher. Cary, NC: SAS Institute Inc.

Available at
http://support.sas.com/documentation/cdl/en/dispatch/64895/HTML/default/viewer.htm#p06h82ux8glu1pn
16k9dxw8tjpyz.htm.

SAS Institute Inc. 2014a. SAS
®
 9.4 Output Delivery System: User's Guide, Third Edition. Cary, NC: SAS

Institute Inc. Available at
http://support.sas.com/documentation/cdl/en/odsug/67325/HTML/default/viewer.htm#p0xi2cygmfk0wkn1e
i625zq5r488.htm.

SAS Institute Inc. 2014b. SAS
®
 9.4 Stored Processes: Developer's Guide. Cary, NC: SAS Institute Inc.

Available at
http://support.sas.com/documentation/cdl/en/stpug/67499/HTML/default/viewer.htm#n180km1hadyuton13
gx4bzlqhpwr.htm.

SAS Institute Inc. 2015. "ODS MARKUP Resources".
Available at http://support.sas.com/rnd/base/ods/odsmarkup.

ACKNOWLEDGMENTS
The author would like to thank Chris Barrett of SAS Institute for his valuable contributions to this paper.

RECOMMENDED READING
SAS Institute Inc. 2015. "Vince DelGobbo's ExcelXP Tagset Paper Index". Available at
http://support.sas.com/community/events/sastalks/presentations/ExcelXPPaperIndex.pdf.

http://support.sas.com/resources/papers/proceedings14/SAS050-2014.pdf
http://msdn.microsoft.com/en-us/library/aa140066(office.10).aspx
https://support.office.com/en-us/article/Number-format-codes-5026bbd6-04bc-48cd-bf33-80f18b4eae68
http://support.microsoft.com/kb/948615
http://support.sas.com/rnd/base/ods/scratch/reporting-styles-tips.pdf
http://support.sas.com/kb/32/394.html
http://support.sas.com/kb/36/900.html
http://support.sas.com/documentation/cdl/en/dispatch/64895/HTML/default/viewer.htm#p06h82ux8glu1pn16k9dxw8tjpyz.htm
http://support.sas.com/documentation/cdl/en/dispatch/64895/HTML/default/viewer.htm#p06h82ux8glu1pn16k9dxw8tjpyz.htm
http://support.sas.com/documentation/cdl/en/odsug/67325/HTML/default/viewer.htm#p0xi2cygmfk0wkn1ei625zq5r488.htm
http://support.sas.com/documentation/cdl/en/odsug/67325/HTML/default/viewer.htm#p0xi2cygmfk0wkn1ei625zq5r488.htm
http://support.sas.com/documentation/cdl/en/stpug/67499/HTML/default/viewer.htm#n180km1hadyuton13gx4bzlqhpwr.htm
http://support.sas.com/documentation/cdl/en/stpug/67499/HTML/default/viewer.htm#n180km1hadyuton13gx4bzlqhpwr.htm
http://support.sas.com/rnd/base/ods/odsmarkup
http://support.sas.com/community/events/sastalks/presentations/ExcelXPPaperIndex.pdf

21

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Vincent DelGobbo
SAS Institute Inc.
100 SAS Campus Drive
Cary, NC 27513

sasvcd@SAS.com

http://www.sas.com/reg/gen/corp/867226?page=Resources

If your registered in-house or local SAS users group would like to request this presentation as your
annual SAS presentation (as a seminar, talk, or workshop) at an upcoming meeting, please submit an
online User Group Request Form (from support.sas.com/sasusersupport/usergroups/support) at least
eight weeks in advance.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:sasvcd@SAS.com
http://www.sas.com/reg/gen/corp/867226?page=Resources
http://support.sas.com/sasusersupport/usergroups/support

