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ABSTRACT 

Software quality comprises a combination of both functional and performance requirements that together specify not 
only what software should accomplish, but also how well it should accomplish it. Recoverability—a common 
performance objective—represents the timeliness and efficiency with which software or a system can resume 
functioning following a catastrophic failure. Thus, requirements for high availability software often specify the recovery 
time objective (RTO), or the maximum amount of time that software may be down following an unplanned failure or a 
planned outage. While systems demanding high or near perfect availability will require redundant hardware, network, 
and   additional infrastructure, software too must facilitate rapid recovery. And, in environments in which system or 
hardware redundancy is infeasible, recoverability only can be improved through effective software development 
practices. Because even the most robust code can fail under duress or due to unavoidable or unpredictable 
circumstances, software reliability must incorporate recoverability principles and methods. This text introduces the 
TEACH mnemonic that describes guiding principles that software recovery should be timely, efficient, autonomous, 
constant, and harmless. Moreover, the text introduces the SPICIER mnemonic that describes discrete phases in the 
recovery period, each of which can benefit from and be optimized with TEACH principles. Software failure is 
inevitable but negative impacts can be minimized through SAS® development best practices. 

INTRODUCTION 

Reliability describes a measure of performance against failure, often defined mathematically as the probability (or 
actuality) of error-free operation or mean time to failure (MTTF), thus the amount of time a product functions before it 
fails. Because a software failure typically represents only a need to restart (or occasionally reprogram), software 
reliability often is instead referenced as mean time between failures (MTBF), distinguishing that the software lifespan 
does not terminate when it fails, unlike a burned out lightbulb that becomes useless. Regardless of which 
nomenclature is utilized, reliability should be sought in software design, especially in SAS software that underpins 
critical infrastructure, serves an extensive user base, produces dependent processes or data products, or is intended 
to be enduring. Achieving reliability is the most crucial step in minimizing the annual recovery time that a development 
team cumulatively spends restoring code and functionality following failures—because code that doesn't fail in the 
first place won't need to recover. 

Notwithstanding, even the most robust, reliable, defect-free code will fail on occasion. Environmental, network, 
system, data, and other external issues can cause lapses in connectivity, memory errors, and other failures that result 
in unavoidable program termination. Planned outages, including upgrades and modifications to SAS software, its 
infrastructure, network, and hardware also require halting operational SAS programs. While recoverability reflects the 
ability to restore functionality or availability of a system or software following a failure or planned outage, recovery 
represents the state of restored functionality or availability, and recovery period the time and effort required to restore 
the system or software. As recoverability principles are embraced in software design, the recovery period decreases 
and software reliability correspondingly improves. 

An ideal recovery is timely, efficient, autonomous, constant, and harmless—tightly intertwined principles depicted 
through the TEACH mnemonic. Timeliness reflects the speed with which the recovery occurs, including discovery of 
the failure, how long it takes to restart the code, and how long it takes the code to surpass the point of failure. 
Efficiency demonstrates code that does not require excessive processing power or developer effort, the latter of 
which can be eliminated through autonomous code. Code autonomy reflects code that identifies failure, terminates 
automatically if necessary, and can be restarted with the push of a button without further developer intervention. 
Code constancy demonstrates that a recovery strategy is enduring and thus not an expedient "quick fix" that will need 
to be improved or undone later. Harmless code should both fail and recover without damaging its environment, such 
as causing other processes to fail or producing invalid data products. 

While TEACH depicts recoverability principles that should be applied during software design and development, the 
SPICIER mnemonic identifies specific components of the recovery period, each of which can be optimized through 
development best practices: 

1. Stop the Program if code did not fail safely, because failure does not necessarily denote that code has stopped 

running. 



2. Investigation entails gaining a full understanding of the source, cause, duration, impact, and potential remedies 

of the failure. 
3. Cleanup often can be eliminated through software development best practices, but includes actions such as 

removing or "backing out" faulty data that have entered a permanent data store due to poor quality control. 
4. Internal issues and remedies represent code modifications that must be made following a failure to facilitate 

recovery. 
5. External issues and remedies also represent modifications to code, but on modules that interface with external 

data, such as monitoring its connectivity status, structure, format, content, or quality. 
6. Rerunning code is the final phase in the recovery period and, after especially heinous failures that have crippled 

critical infrastructure, the point at which SAS developers tap that keg and finally celebrate. 

While signaling higher quality software, an investment in recoverability will not be warranted in all situations. 
Production code that runs with no external dependencies in a stable SAS environment likely experiences few failures 
per year, thus reliability would be only marginally improved through decreased recovery periods. SAS code similarly 
that is ad hoc, has no dependencies, is not critical, or is intended to have a brief lifespan also may not benefit 
substantially from adherence to recoverability principles, which often require additional quality assurance, quality 
control, and process tracking mechanisms to implement. However, developers should be aware of recoverability 
objectives and principles and, when appropriate and beneficial to software requirements, be able to build SAS 
software that confidently, completely, and consistently recovers from failure. 

RECOVERABILITY PRINCIPLES 

While these five principles of recoverability are closely intertwined, timeliness is the most measurable attribute and 
thus often acts as a proxy for other principles. Mean time to recovery (MTTR) represents the average amount of time 
that specific software requires to recover from failure over its lifespan or some other defined period. By some 
definitions, recovery is complete when software begins executing again. However, in data analytic development that 
often transforms data from one state to another through serialized extract transform load (ETL) processes, business 
value may not be achieved simply by typing "Run." Thus, recovery also can be defined organizationally as the point 
at which software execution surpasses the point of failure. In this sense, if code failed while extracting the 20

th
 of 25 

tables from an external database, recovery would not be considered complete until the program had been executed 
again and had passed the point in the code of the original failure. This is not to suggest that the initial 19 tables would 
need to be re-extracted, only to say that the 20

th
 table would need to be extracted successfully to constitute recovery. 

Other definitions of recovery are even more stringent and require that dependent data products be valid and 
available. In this sense, a failure that corrupted a critical data set would not be considered remedied until the data 
set—or possibly even dependent reports produced from the data set—had been replaced. 

It becomes clear that recovery must be conceptualized similarly by all stakeholders. Thus, a developer who restarts 
code minutes after a failure and at that point considers recovery to be complete may frustrate a stakeholder who 
instead does not view recovery as complete until he can access reports produced by the failed code.  Especially 
where reliability or recoverability metrics are captured by an organization, the recovery period must be measured and 
recorded through consistent methodology if used to calculate MTTR. Moreover, if stakeholders have established a 
recovery time objective (RTO) as a software requirement, the RTO should be conceptualized through the same 
methodology because the RTO becomes the standard against which MTTR is measured. Everyone must be on the 
same page. 

As a proxy for other recoverability principles, timeliness often is not only utilized to measure MTTR and the entire 
recovery period, but also to measure individual components of the recovery period to identify areas that can most be 
improved. Figure 1 demonstrates a timeline representing the path from failure to functionality through the recovery 
period. By optimizing each of these steps through recoverability principles, the ultimate objective in "coding for 
recovery" is to produce code that programmatically minimizes or bypasses each step entirely. 

 

Figure 1. Recovery Period Steps 

Efficiency can be represented by the effort that a person or process must expend to facilitate software recovery 
measured in relation to the idealized effort required. Thus, a developer could work inefficiently in investigating or 
remedying a failure if he is unfamiliar with the SAS environment, the SAS language, or the specific code. Code that is 
difficult to read or poorly documented also can unnecessarily delay recovery because it is not intuitive and thus more 
difficult to maintain and modify. A failure that requires substantial cleanup of the SAS system because the code 
produced spurious data, metadata, or data products also could be an inefficient use of a developer's time, because 
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that cleanup likely could have been eliminated or occurred automatically were more rigorous software development 
practices enforced. While software failure is never a pleasant experience, through proactive design and development, 
developers can ensure that their time is at least well utilized during the recovery period. 

Software itself also must recover efficiently. If SAS code fails to recognize that an internal failure has occurred and 
the failure goes unnoticed for hours or days, this is an inefficient use of the SAS processor which was effectively 
spinning its wheels without purpose. When the program must be rerun at the close of the recovery period, efficient 
code also should intelligently bypass any unnecessary steps that don't need to be completed. Under ideal conditions, 
restore points have been recorded that demonstrate code modules that have completed successfully, and process 
flow can skip directly to the point of failure. Thus, re-extracting 19 tables that had ingested without error only an hour 
before would be tremendously inefficient. 

Autonomy requires that code recover with minimal or no developer intervention. From automatic detection of the 
initial failure, to effortless cleanup, to code that can be rerun without further modification, autonomy can dramatically 
expedite recovery. Process metrics collected during software failure can demonstrate the type and location of defects 
or errors, especially if they can be compared with baseline metrics that demonstrate previous process success. By 
anticipating and identifying specific error types in exception handling routines, software can often terminate gracefully. 
And, when code does terminate gracefully from an anticipated failure such as a temporarily dropped network 
connection or a memory error, the path to recovery also can be predicted and thus automated because neither 
internal nor external issues will need to be investigated or recoded. And, where new or unanticipated errors occur 
causing failure, code and business rules can be modified to include routines that identify those specific events so that 
the code continues to grow more robust and autonomous over time. 

Constancy reflects stability in code over time including the manner in which code is executed. Thus, it can include the 
initial execution before a failure occurs as well as rerunning code after a failure. Stable code should be dynamic 
enough to intelligently determine how and where to restart after a failure. Thus, rather than highlighting sections of 
code to be run manually or creating quick fixes to be used to jump start code, developers should be able to run the 
same code in its entirety every time. Thus, temporary solutions that can run code today may be timely but, if they 
introduce new defects or technical debt that must be dealt with tomorrow, their added cost may not be worthwhile.  

Harmless code does not negatively affect its environment when it fails and throughout the recovery process, such as 
producing faulty, incomplete, corrupt, or otherwise invalid data, metadata, data products, or output. In order to be 
harmless, code should automatically detect the failure when it occurs and handle it in a predictable, responsible 
manner, because only through predictability comes the assurance that dependent processes and data products are 
not negatively affected. In most cases, it is far more desirable to have data products that are unavailable or delayed 
than those that are dead wrong. The recovery process also should not harm external processes or alter the 
environment unfavorably. Thus, if a developer modifies SAS library names in a production environment as an 
expedient solution to rerun code that has failed (because it referenced library names in the development 
environment), this could cause unrelated processes to fail. Code bandages may be appropriate under extraordinary 
circumstances, but when those bandages lack quality or display commensurately less quality than software 
requirements specify, wounds quickly can fester and even spread to previously unaffected infrastructure. 

1. STOP PROGRAM 

Failure comes in all shapes and sizes but does not necessarily denote program termination or even that errors were 
encountered during execution. Failure can occur not only when code produces warnings or errors or terminates 
abruptly, but also when it enters a deadlock, infinite loop, or continues to execute albeit producing invalid data or 
output. Thus, a common goal of exception handling routines is to channelize these disparate failure outcomes to a 
path in which processing continues, often called the “happy path,” and a path in which processing fails gracefully, 
often denoted as the “fail safe” path. When code does not fail safe, infinite loops, syntax errors, or faulty business 
logic can be encountered that produce invalid data or results, thus decreasing or eliminating production value. Worse 
are the cases in which developers or analysts are unsure of whether a process completed correctly, and thus are 
forced to endure a fishing expedition to validate a data product or other results. 

Although all production code should fail gracefully when errors are encountered, if an unanticipated error is 
encountered for the first time, code may fail in an unsafe or unpredictable manner. In these cases, if code is still 
executing but errors have been detected, the code should be terminated manually. For example, if an ETL program 
that performs daily data ingestion requires tables to have 40 fields but on Monday a table is encountered that only 
has 37 fields, the process flow should be robust enough to automatically recognize and resolve this disparity. The 
specific resolution would be controlled by business rules, but might include immediate program termination with 
notification to stakeholders, as well as preventing dependent processes from executing. If the system is not robust 
and does not detect the 37-feld discrepancy, later code could continue to execute and create invalid results, even if 
no actual errors were produced. Thus, while code often may stop after encountering a failure, if it does not, it should 
be stopped through automatic or manual means. 



Timely, efficient, and autonomous termination often can be achieved through exception handling routines that detect 
runtime errors and provide graceful program termination. For example, the following SAS output demonstrates an 
error that is produced when the file Ghost does not exist. 

data temp; 

 set ghost; 

ERROR: File WORK.GHOST.DATA does not exist. 

run; 

 

NOTE: The SAS System stopped processing this step because of errors. 

WARNING: The data set WORK.TEMP may be incomplete. When this step was stopped there 

were 0 observations and 0 variables. 

WARNING: Data set WORK.TEMP was not replaced because this step was stopped. 

%put &SYSCC; 

1012 

The automatic SAS macro variable SYSCC reflects the value of the highest error encountered during processing, 
thus 1012 in the above example. Testing SYSCC after each procedure, DATA step, or other module offers one way 
to programmatically determine whether a runtime error occurred and can be utilized to dynamically alter program flow 
thereafter. In a separate text, the author demonstrates exception handling methods that detect error and other 
unwanted program states and redirect process flow toward program resumption or graceful termination.

i
 

Program failures, however, are not always signaled by accompanying runtime errors. If the following code is run after 
the above code, it runs without producing an error but is still considered to have failed. 

data temp2; 

 set temp; 

run; 

 

NOTE: There were 0 observations read from the data set WORK.TEMP. 

NOTE: The data set WORK.TEMP2 has 0 observations and 0 variables. 

It turns out that despite encountering an error, the first DATA step nevertheless creates the data set Temp which has 
zero observations and zero variables. Thus, the second DATA step executes without warning or error, despite having 
invalid input (i.e., a null data set.) Thus, in testing for conditions that should direct a program to abort, code must 
examine more than warning or error codes and must validate that business rules and prerequisite conditions are 
enforced. The following code first tests to ensure that the data set contains at least one observation and, if that 
requirement is not met, the %RETURN statement causes the macro to abort. 

%macro validate(dsn=); 

data _null_; 

 call symput('nobs',nobs); 

 stop; 

 set &dsn nobs=nobs; 

run; 

%if %eval(&nobs=0) %then %do; 

 %put NO OBSERVATIONS!; 

 %return; 

 %end; 

%mend; 

 

%validate(dsn=work.temp); 

Despite diligence in software exception management, on occasion code still will need to be terminated manually. 
Programs and in fact an entire SAS server can crawl or stall if SAS processes have consumed too many resources, 
thus memory-hogging code may need to be terminated and either restarted or reengineered. At other times, a 
developer may realize that an operational process has started creating errant output, such as HTML reports that are 
invalid or blank, indicative of some internal process failure. These errors often can occur when data integrity 
constraints are omitted and erroneous or unwanted data enter a process flow unfiltered. For example, if report 
production necessitates that a categorical text field have only five discrete values, the inclusion of additional values 
might not produce runtime errors, but could corrupt calculations and other data processes or reporting functions. 

Terminating code manually reinforces the reality that software can fail inexplicably on any line of code. The hapless 
developer who trips over a cable and disconnects his machine from the server could do so while any line of code is 
executing. Recoverability requires developers to responsibly espouse this mindset and ask themselves after every 
line of code, "What will happen if my code fails here?" This mindset reflects that code should always fail safe in a 

harmless, predictable manner. This aspect is discussed more fully in the Cleanup section below, because code that 
fails safe and is harmless will not require cleanup, thus this agonizing step in the recovery process can be omitted. 



2. INVESTIGATION 

Where program termination has resulted from a scheduled outage due to maintenance or other program modification, 
this step won't be necessary because no unknown exists. But in cases in which a failure has occurred in production 
code, analysts, developers, management, and other stakeholders will be clamoring not only for immediate restoration 
but also for answers. From a risk management perspective, higher level stakeholders often are not concerned with 
great technical detail, but rather with more substantive facts surrounding the failure: 

- Was the failure discovered immediately?  
- Was it discovered through automated means or manually?  
- What was the cost or damage of the failure?  
- Was the failure internally or externally caused?  
- Was the failure anticipated, in that it exploited a previously identified vulnerability?  
- Was the cause of the failure remedied? 
- Could this specific type of failure occur again? 
- Did this failure uncover additional vulnerabilities that should be remedied? 

Log files are a recommended best practice for production code because they can help validate program success 
through a baseline (i.e., clean) log as well as facilitate the identification of runtime or logic errors. Hopefully the source 
of the failure is captured in the log file and through continuous quality improvement (CQI), developers are able to 
refactor the code to be slightly more robust, thus obviating the possibility of at least that specific error from occurring 

in the future. In other cases, the log file may exist but may not contain sufficient information to debug code. This also 
occurs when errors in business rules or logic may not be perceived immediately, thus relevant log files may have 
been deleted before they could be analyzed. In these latter cases, the code may require extensive debugging and 
test runs to reproduce and recapture the failure with sufficient information to understand the underlying defect. 

While log files can be cumbersome, and are often the only way to demonstrate the presence of new errors occurring 
for the first time, they are not the only tool at the developer's disposal to facilitate investigation. A more proactive 
approach is to capture successful and unsuccessful process completion metrics in control tables that effectively 
monitor the state of software as it executes. In the above example, the macro %VALIDATE only wrote output to the 
log alerting developers to the null data set. Because in reality exception handling should instead dynamically alter 
process flow to route around the error, this exception could have been recorded in a control table, allowing data-
driven processing to catch and handle the error. Moreover, in recording the type, location, and time of error in a 
control table, as well as other relevant attributes, the control table can become the “black box” to which developers 
reliably turn when disaster strikes a process flow. 

Maintenance of a risk register is another best practice for production code that is deployed operationally. The register 
proactively identifies known defects, faulty logic, and other weaknesses in code that could potentially cause program 
failure, either through a runtime error or through production of invalid data or data products. Developers often 
manage the register, recording pertinent details about defects, such as the conditions that would cause code to fail, 
the likelihood of discovery of the failure, the negative impact (i.e., cost) that a specific failure would have, a brief 
description of an option or options to remedy the defect, and a number quantifying and prioritizing the severity of the 
defect in relation to other defects. The risk register can be viewed as a measure of technical debt because it 
demonstrates all known functional and performance deficiencies that exist in operational code. It also can be utilized 
to demonstrate the robustness of software to stakeholders, because it identifies specific factors or events—internal 
and external—that will cause software to fail. In so doing, decision makers can choose either to accept the risks of 
faulty code or mitigate or eliminate these risks through refactoring and reengineering. 

After a failure, stakeholders may want to know whether the cause was anticipated (i.e., notated in the risk register) 
and might choose to elevate the prioritization of the defect that caused it. And, if the defect was not previously 
notated or anticipated, it should be added to the risk register and prioritized against other known defects. This risk 
management methodology prevents developers from espousing the unhealthy pattern of overcorrection, in which 
available resources suddenly shift toward the cause of the most recent failure. Thus, unless the most recent failure 
truly is prohibiting functional recovery, its remediation should be considered against other existing technical debt on 
the risk register, rather than in isolation. This formal prioritization of risks helps ensure that the greatest threats to 
system or software reliability are tackled first. 

Efficiency in investigation is greatly improved by savvy SAS developers who are intimately familiar with the code base 
and organizational infrastructure. Because they already have a working understanding of process flows, 
dependencies, requirements, and limitations, they can more intuitively discern what might have broken and what 
might have caused it. These developers also may have designed and engineered the original code, and thus may be 
highly motivated to demonstrate that external (not internal) factors felled “their” program. But especially in cases in 
which non-native developers are responsible for investigating the failure of legacy code, program organization, 
documentation, and standardization will facilitate more efficient and effective understanding and later modification. 



3. CLEANUP 

After investigation of a failure, the logical next step is either to rerun the code or to refactor or reengineer it if defects 
were discovered and prioritized for immediate completion. Especially in cases in which no defect exists and the code 
terminated due to unavoidable external circumstances, such as temporary network connection failure, the ideal 
recovery pattern is to restart the program without further intervention. Push-button simplicity can be thwarted, 
however, if code failure produces wreckage in the form of invalid or ambiguous data sets, metadata, control tables, 
reports, or other data products. The principle that recovery be harmless dictates that wreckage not be produced in the 
operational environment, thus the site of failed software should not resemble an accident scene, with bits of bumpers, 
broken glass, and the fetid stench of motor oil and transmission fluid seeping into the asphalt. Moreover, if developers 
are required to expend energy retrofitting or refurbishing the production environment following a failure, the objectives 
of timeliness, efficiency, and autonomy also will suffer. 

A common path to undesirable wreckage results when invalid data enter a data process flow due to a lack of data 
integrity constraints and ultimately poison a permanent data store and its metadata. For example, consider the 
transactional permanent data set Food.Food_Truck with the categorical variable Food_Item that should contain 
values of only burrito or taco. Failure to enforce data integrity on ingested transactional updates could result in invalid 
data populating and polluting permanent data. These invalid observations would need to be backed out, likely through 
a manual process, and re-ingested once the appropriate quality control gate had been emplaced. Associated 
metadata that represented the quantity and nature of the failed transactional update also would need to be manually 
corrected to ensure that the transactional update was not counted twice. Note that in this case, despite no runtime 
errors having been produced, the process flow still would be considered to have failed because faulty data would 
have been ingested into the permanent data store. The inclusion of quality control gates, especially those that 
enforce the integrity of third-party data structure, format, content, and quality are critical to eliminating painful cleanup 
that must occur when invalid data are irresponsibly ingested. 

Sometimes the design of SAS code creates ambiguous results that obfuscate the point from which code execution 
should resume following a failure. This often occurs in long process flows that repetitively modify permanent data sets 
through successive transformations. The following code simulates this confusion in a multistage ETL process flow in 
which successive transformation processes are demonstrated, all of which modify the permanent data set 
Food.Food_Truck. 

data food.food_truck; /* represents initial ingestion */ 

 infile datalines delimiter=','; 

 length food_item $20; 

 input food_item $; 

 datalines; 

burrito 

Burrito 

Tacos 

taco 

; 

run; 

 

data food.food_truck; /* represents first transformation */ 

 set food.food_truck; 

 food_item=lowcase(food_item); 

run; 

 

data food.food_truck; /* represents second transformation */ 

 set food.food_truck; 

 if food_item in('burrito','burritos') then food_item='burrito'; 

 if food_item in('taco','tacos') then food_item='taco'; 

run; 

The above code executes without any errors but, if the code does crash (due to external issues), an ambiguity must 
be resolved because the permanent data set Food.Food_Truck will have been created but will not be complete. In 
fact, in an actual ETL process flow that embodies this repetitive data set naming convention, a dozen or more 
disparate modules each could have overwritten the same permanent data set, thus causing exceptional confusion 
about the state of that data following a failure. Worse yet, if this permanent data set were to feed dependent 
processes or users who were waiting for its completion, those processes or analysts might detect that 
Food.Food_Truck existed but not be aware that it was invalid due to the process failure. And, if those dependent 
processes executed without further data set validation, cascading failures could erupt and cripple the infrastructure. 



Some developers do prefer the above repetitive naming convention for a couple reasons. Firstly, in complex data 
process flows, clutter can be reduced by maintaining only a few data sets that are overwritten repetitively. However, 
in production code, temporary data sets should not be too distracting because code is executed in a consistent and 
automated manner. Secondly, storage limitations in some environments may prohibit fifteen copies—albeit 
temporary—of a data set from being produced as a process flow executes. Where storage space is limited, repetitive 
data set naming may be the only viable solution to handling large files, but caution must be exercised because no 
data backup or restore points will exist in the event that data become corrupted in a later transformation. 

A preferred methodology is to maintain intermediate views of a data flow through permanent—not temporary—data 
sets that demonstrate incremental progress. The obvious advantage is that following many failures, data recovery 
can begin from these “restore points” that demonstrate the point of last known successful completion, rather than 
from the beginning of the process flow. Restore points also allow developers to forego the painful process of log 
parsing, data diving, and the creation of one-time code patches to facilitate recovery, thus dramatically facilitating 
timely, efficient, and autonomous recovery. The improved code now only runs the TRANS macro if INGEST 
completes without error, and produces intermediate permanent data sets to aid in process validation and recovery. 

data food.control; /* create control table */ 

 infile datalines delimiter=','; 

 length module_no 8 module $20 dt 8; 

 input module_no module $; 

 format dt datetime19.; 

 datalines; 

1,INGEST 

2,TRANS1 

; 

run; 

 

data food.ingest; /* represents initial ingestion */ 

 infile datalines delimiter=','; 

 length food_item $20; 

 input food_item $; 

 datalines; 

burrito 

Burrito 

Tacos 

taco 

; 

run; 

%macro ingest; 

%if %eval(&SYSERR=0) %then %do; /* test ingest module */ 

 data food.control; 

  set food.control; 

  if module="&SYSMACRONAME" then dt=datetime(); 

 run; 

 %end; 

%else %abort; 

%mend; 

 

%ingest; 

 

%macro trans; 

data food.food_truck; /* represents transformation */ 

 set food.ingest; 

 food_item=lowcase(food_item); 

run; 

%if %eval(&SYSERR=0) %then %do; 

 data food.control; 

  set food.control; 

  if module="&SYSMACRONAME" then dt=datetime(); 

 run; 

 %end; 

%else %abort; 

%mend; 

%trans; 



In this example, testing the value of the SAS automatic macro variable SYSERR demonstrates whether a warning or 
error occurred and, if none has, the control table is updated with the date and time of completion, thus validating the 
process. In an actual ETL scenario, the ingestion module could be a complicated data pull that actually takes several 
hours to complete. Thus, if code fails, developers are able to pinpoint the last known point of success by accessing 
the control table (manually or programmatically) and recovery will be able to start from that point. Moreover, 
dependent processes or users who rely on the data set Food.Food_Truck only need to access the control table 
Food.Control to verify that the data set (and its prerequisite processes) have completed without warning or error. A 
more complete example utilizing a control table with automatic restore points is demonstrated in the Rerun section. 

In actual implementation, because control tables operate as an information bridge between the ETL code that is 
executing and the processes (or SAS users) that are waiting for the code to complete, caution must be exercised to 
ensure that two parties do not attempt to simultaneously access the control table. Thus, while a control table is being 
updated by the ETL process, the table will be exclusively locked so that other sessions will not be able to access it. 
And, correspondingly, for the split-second that users or processes are interrogating a control table to gain process 
metrics, a shared lock will exist that prohibits the ETL process from modifying the table. In a separate text, the author 
demonstrates use of the LOCKITDOWN macro, which eliminates the possibility of data collision errors in a multi-user 
environment, by requiring all processes to test data set availability before attempting access.

ii
 All control tables used 

in multi-user environments should be secured with LOCKITDOWN or similar lock control methodology. 

The above code also does not redirect program flow once a failure has occurred. In a more realistic exception 
handling scenario, rather than simply aborting the program, use of %RETURN could be implemented to terminate the 
immediate macro while capturing the error and propagating it (through inheritance) to other processes. In this 
manner, processes that depended on the failed module would be prevented from starting, but other unrelated 
processes would be allowed to continue, thus squeezing the most value from the code, despite the failure state. 
Preventing dependent processes from executing after detection of a failure is one of the most critical steps taken 
toward eliminating unnecessary wreckage that will require cleanup. 

4. INTERNAL ISSUES AND MODIFICATION 

Once code has failed and stopped, the cause and a potential remedy have been investigated, and any necessary 
cleanup has occurred, the next step often is simply to execute the code again. This straightforward scenario occurs 
when a hapless SAS developer has tripped over and unplugged a network cable, causing brief alarm as code begins 
to fail unexpectedly, and later jubilation as the cable is plugged in without further incident. Other straightforward 
scenarios can include failures caused by memory or resource errors. For example, when a junior analyst Cartesian 
joins two billion-record data sets to each other, the SAS server may gurgle amid troubled, agonal respirations, but 
likely will stall before completing the absurd task. In these scenarios, terminating the offending process manually 
usually will allow business to continue undaunted with no further modifications to code or the SAS infrastructure. 

But if defects have been identified in the code, or if management or developers have decided that the reliability of the 
software or system needs to be improved, immediate modifications will be warranted. In the most exigent 
circumstances, hardware, network, or SAS code modifications may be required before recovery can be achieved, 
thus developers may be under the gun by management and other stakeholders. In some cases, less significant 
defects may only require subtle code refactoring, thus improving performance while maintaining equivalent 
functionality. In other words, the software will do the same thing—just better—after developers complete the facelift. 

One example of a performance enhancement involves another hapless SAS developer who noted that his code 
always ran the first time he executed it, but failed consistently thereafter, thus requiring him to terminate the SAS 
session after each run. The problem was that global macro variables created in the first execution were persisting into 
subsequent executions, thus causing cross-contamination and failure. Thus, when %GLOBAL or %LOCAL 
statements are utilized to initialize macro variables, they will initialize variables to null values if the macro variables do 
not exist but, if a macro variable already exists, these statements do nothing. This is illustrated in the following code 
sample. 

%macro test; 

%global var; 

%do i=1 %to 3; 

 %let var = &var &i; 

 %end; 

%put &var; 

%mend; 

 

%test; 

The first time the code is executed, it correctly prints "1 2 3". However, when executed a second time from the same 
SAS session, it prints "1 2 3 1 2 3" because the original value of &VAR persists, despite the %GLOBAL declaration. 



Performance can be improved by adding a line of code that utilizes %SYMEXIST to first test the existence of the 
variable &VAR and to reinitialize it to null if necessary. 

%macro test; 

%if %symexist(var) %then %let var=; 

%else %global var; 

%do i=1 %to 3; 

 %let var = &var &i; 

 %end; 

%put &var; 

%mend; 

 

%test; 

The revised code now is more robust and can be rerun without having to terminate the SAS session and resume. 
Other examples of internal issues that must be remedied can be much more extensive, such as when a control table 
or other data-driven methodology is implemented to foster more dynamic, data-driven process control. 
Implementation of quality assurance quality control measures can be a huge undertaking and, in fact, the lines of 
code representing performance enhancements may equal or even surpass the amount of code fulfilling the actual 
functional requirements. Thus, the risk of not implementing these controls must be assessed in relation to the 
anticipated benefit and cost of their inclusion.  

5. EXTERNAL ISSUES AND MODIFICATION 

Sometimes the cause of a failure may be external, such as a failed connection to an external database administered 
by a third party. In this case, the hapless developer can't just plug in the cable, and instead has to begin making 
phone calls to attempt to ascertain the cause of the failure and its anticipated duration. Thus, in many cases when an 
external cause is identified during investigation, all a development team can do is sit around and wait. This also can 
occur when some component within the SAS server or infrastructure fails but developers lack the administrative 
permissions or expertise to remedy the problem. SAS administrators can quickly find themselves single-threaded in 
these situations as they struggle alone to bring a system back online, also emphasizing the need to identify and 
eliminate single points of failure in personnel that can cause delays during the recovery period. 

But when connectivity to an external data source has been lost, developers still may be able to take steps to retrofit 
their code if higher levels of robustness and reliability are desired. For example, if the code failed due to a 
connectivity issue, but continued attempting to process dependent DATA steps, this opportunity allows developers 
the chance to implement exception handling routines that immediately recognize the failure and reroute processing, 
either to unrelated processes or to program termination. Another best practice is to maintain a SAS module that only 
tests connectivity of the third-party data source and thus can confirm before attempting a data pull whether 
connectivity is live. And, if connectivity is lost, developers can reuse this same SAS module to repetitively test the 
connection programmatically so code can resume the second connectivity is regained. This is a far more efficient and 
autonomous solution than a developer manually testing the connection every 20 minutes until success is achieved. 

Sometimes an external connection initially will have worked but fails midway through an extraction process. In a 
production system, metrics about all successful and unsuccessful data pulls hopefully have been compiled and 
saved, thus these metadata can be used to guide the program upon resumption directly back to the point of failure. 
Thus, if a web services pull fails during the extraction of 1,000 XML documents, only those records that were not 
pulled should be queried when the code is reinitiated, substantially reducing the recovery period. 

Third-party data are especially prone to causing failure because their structure, format, content, and quality lie outside 
the responsibility and control of the development team. This underscores the importance of erecting control gates 
immediately after data ingestion to validate all data attributes. Reprising the food truck example from above, if data 
values that include enchilada and chimichanga are sneaking into SAS data flows and polluting the results, 
introduction of a single line of code can remove values that are discovered that lie outside the data schema. 

data food.food_truck; /* represents transformation */ 

 set food.food_truck; 

 if food_item in('burrito','burritos') then food_item='burrito'; 

 if food_item in('taco','tacos') then food_item='taco'; 

 if food_item not in ('taco','burrito') then delete; /* Control Gate */ 

run; 

In an actual control gate, the quality control mechanism should report to developers and users that enchiladas and 
chimichangas are being denied access, so that business rules can be inspected and potentially modified either to 
explicitly include or exclude these tasty observations. In this example, however, the DELETE statement serves to 
eliminate potential contamination caused by these observations, while other business rules might instead specify a 



replacement value be installed. In a separate text, the author demonstrates how to enforce data constraints 
dynamically through external schemas that model and validate data through exception reporting.

iii
 Thus, through 

dynamic coding, software should remain flexible to its environment while providing feedback to stakeholders. 

6. RERUN PROGRAM 

Once any necessary modifications to code, hardware, or other infrastructure have been made, the SAS program 
should be tested, validated in the production environment, and finally executed. Because the cause of the failure was 
identified and remedied (or, at the very least, evaluated and included in the risk register to be prioritized for future 
completion), in an ideal scenario, the developer presses a button or schedules his job and confidently walks away. 
Often, however, execution is neither this straightforward nor autonomous, and complications can arise when the code 
either has not failed safe or when restore points do not exist to specify where to resume operation. 

When SAS code fails in an end-user development environment, developers often make a quick fix, re-attempt the 
offending module, and then run the remaining code from that point. End-user developers are well placed to flexibly 
make these modifications on the fly because they are, by definition, the only users of the code. While this "code and 
fix" mentality is appropriate for end-user development, robust operational environments that host critical infrastructure 
should espouse software development best practices. Thus, a more robust solution is to engineer SAS software that 
intelligently determines where it should begin executing. This professional design allows SAS practitioners other than 
the original developers to execute the code—including during both normal operation and after a failure has occurred. 

For example, if a data pull fails when pulling the 50
th

 of 60 tables from an external database, upon resumption, the 
code should be able to identify that 49 tables already have been extracted, and thus only extract the remaining 
eleven tables. Hapless developers—the same bunch who trip over their network cables—might be tempted to modify 
the code with a quick-fix that only pulls the remaining eleven tables. While timely, this manual solution would be 
inefficient because it would require additional development work, inconstant because the code would need to be 
modified again when the next full data pull was required, and would lack autonomy because the developer would 
have inserted himself into the recovery process. A more autonomous yet less timely solution would be to run the 
entire process and attempt to extract all 60 tables. Yet this duplication of effort would be neither timely nor efficient, 
and where connectivity issues might exist (because a network failure already had occurred), code should get in, get 
the data, and get out as quickly as possible. Moreover, in organizations that measure MTTR as time from the initial 
failure to the point at which code is later run and surpasses that failure point, this latter strategy can drastically slow 
the recovery period by delaying availability and functionality. 

Thus, a superior solution is to design modular code that intelligently identifies where it has failed and succeeded, and 
records process metrics in a control table that can be used both to drive processing under normal circumstances as 
well as under exceptional circumstances, including during and following catastrophic failure. Through these best 
practices, timely, efficient, autonomous, constant, and harmless recovery can be achieved. While the example in the 
above Cleanup section provides an introduction to the methodology and benefits of control tables, the following 
example provides more detailed information. For additional reference and examples, the use of control tables in data-
driven and concurrent processing models is demonstrated in a separate text by the author.

iv
 

The following sections of code demonstrate the %BUILD_CONTROL macro that creates the control table if it does 
not exist. This also improves autonomy because if the control table is ever accidentally deleted or becomes 
corrupted, it can be deleted and it will regenerate automatically. Note that the %SYSFUNC macro function only tests 
for the existence of the control table, so if another data set already exists with the same file name, the code as 
currently written will fail. The %UPDATE_CONTROL macro is responsible for updating the control table with the date 
of completion for each module that completes without error. 

%macro build_control(); 

%if %sysfunc(exist(controller))=0 %then %do; 

 data controller; 

  length process $40 date_complete 8; 

  format date_complete date10.; 

  if ^missing(process);  

 run; 

 %end; 

%mend; 

 

%macro update_control(process=); 

data control_update; 

 length process $40 date_complete 8; 

 format date_complete date10.; 

 process="&process"; 



 date_complete=date();  

run; 

proc append base=controller data=control_update; 

run; 

%mend; 

The primary business rules are located in the %NEED macro, which specifies that a process should not be executed 
if it has already been executed on the same day. The %NEED macro is called immediately before each module in the 
ETL process to determine if that module needs to be executed or if can be skipped. Thus, if code failed after 
successfully completing one module, upon recovery, that first module automatically would be skipped. And, if the 
code is executing for the first time of the day under normal circumstances, all modules will be required so all modules 
will be executed. This logic exemplifies constancy, because it allows the same code to be executed both under 
normal circumstances as well as following program failure. 

%macro need(process=); 

%global need; 

%let need=YES; 

%let now=%sysfunc(date()); 

data _null_; 

 set controller; 

 if strip(upcase(process))="%upcase(&process)" and date_complete=&now then call 

symput('need','NO'); 

run; 

%mend; 

Two modules, %INGEST and %PRINT, are included here as representations of much larger modules that would exist 
in an actual ETL process flow. Most importantly, the automatic macro variable SYSERR tests module completion 
status and, only if no warnings or errors were encountered, the %UPDATE_CONTROL macro is called to record this 
successful completion in the control table. Note that in an actual infrastructure, additional information about process 
failures likely would be collected during this process and passed to the control table. In addition, failure of a 
prerequisite process (such as %INGEST) would necessitate that dependent processes (such as %PRINT) not initiate, 
but for demonstration purposes, this added business logic is omitted. Thus, while this code does not fail safe, it does 
eliminate redundant processing that often occurs during the recovery period. 

%macro ingest(); 

%let process=&SYSMACRONAME; 

data ingested; 

 set incoming_data; 

run; 

%if &SYSERR=0 %then %update_control(process=&process); 

%mend; 

 

%macro print(); 

%let process=&SYSMACRONAME; 

proc print data=ingested; 

run; 

%if &SYSERR=0 %then %update_control(process=&process); 

%mend; 

The %ETL macro represents the engine that drives processing, by first building the control table if necessary and by 
subsequently testing the need for each module before calling it. In an actual scenario, this code might be scheduled 
to run once a day, thus ingesting and processing new transactional data sets. To prevent the code from inefficiently 
performing redundant operations, successful execution of individual modules is tracked via the control table. And, if 
one of the modules does fail during execution, prerequisite processes are known to have completed, and data-driven 
processing will immediately direct execution toward the correct module. 

%macro etl(); 

%build_control; 

%need(process=ingest); 

%if &need=YES %then %ingest; 

%need(process=print); 

%if &need=YES %then %print; 

%mend; 

 

%etl; 



CONCLUSION 

Recoverability represents an often overlooked component in the quest for reliability in data analytic development. 
While SAS developers should strive first and foremost to develop fault-tolerant, defect-free code that resists failure or 
which fails gracefully when necessary, even the most robust, reliable code can be toppled by external or unavoidable 
circumstances. Design and development with a recoverability mindset can ensure that code recovers in a timely, 
efficient, autonomous, constant, and harmless manner. And, only by addressing aspects of both reliability and 
recoverability can SAS developers maximize the availability, functionality, and performance of their software. 
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