
 1

Paper BB-16-2015

Cleaning Data with Just a Handful of SAS® Functions
Ben Cochran, The Bedford Group, Raleigh, NC

ABSTRACT:
A function is a routine that returns a value based on its arguments. Hundreds of functions are available
through SAS and they can be used to do a number of tasks. This paper looks specifically at ways that you
can use functions to clean data. Functions are also used widely to manipulate data. This paper will look at
ways to manipulate dirt right out of the data. After a brief introduction, this paper is divided into six sections:
each looking at a main function, but also included will be a discussion as to how to use several functions to
get the job (cleaning data) done that allows users to create their own formats. That tool is the FORMAT
procedure.

INTRODUCTION:
Functions are very powerful routines that can be used in a number of places in SAS. While this paper looks
at using them in the DATA step, it is the author's hope that enough detail is shown so that users can apply
their knowledge and skills to see how they can be used in PROC steps as well. (Functions can be used in
several procedures, most notably PROC SQL, but they can also be used in WHERE statements in other
procedures as well. The typical syntax is:

Figure 1.

Arguments:

 are generally separated by commas,
 can be variables,
 can be expressions,
 can be constants,
 can be other functions.

This paper is divided into six sections with each one emphasizing a function. Each section will also have
other functions that play minor roles. The six sections are:

1. ELIMINATING LEADING ZEROS:
Sometimes you may have character variables that start with numbers. When these numbers start with
leading zeros, some users have found that this may present problems when moving data from SAS to other
kinds of data like spreadsheets, for example. The following example shows a DATA step that can remove
leading zeros.

Figure 2.

 function (argument...)

 2

Here a CARDS statement is used primarily so you can see what the data looks like before being read.
After the INPUT statement, we see our first function: the INDEXC at work. The INDEXC function
looks at the first argument and returns the starting location of any of the values in the second argument.
Notice the second argument contains a string of numbers.... but zero is missing. So, what the INDEXC
function will tell us is the starting location of a non-zero and stores that value in a variable called Non_0. The
value of Non_0 is used in the second argument of the SUBSTR function. The SUBSTR function returns a
substring of the first argument. The second argument is the starting location of the substring. In this case,
where the non-zero starts. The PROC PRINT output shows how this works.

Figure 3.

Note: the two assignment statements in the DATA step could have been writen as one, as follows:

 New_Number = substr (Number, indexc (Number, '123456789'));

If leading zeros are unwanted, then they are the same as dirty data.

2. THE LENGTH FUNCTION:
Sometimes data comes at us as one long character string and we need to manipulate it. In this case, we
want to create two variables from it. In this case, we want to create CITY and STATE from the data shown
here.

Figure 4.

In this data, we see that some values of CITY contain as many as five 'words'. The value of STATE takes
up the last 2 positions of CITY_STATE. How do we write a DATA step to split CITY_STATE into CITY and
STATE when STATE starts in different positions within CITY?

 3

Figure 5.

The first assignment statement uses the LENGTH function to get the length of the value of CITY_STATE
and stores it in a variable called LEN.

The second assignment statement uses the SCAN function to get the rightmost 'word' from CITY_STATE
and stores it in a variable called STATE.

The third assignment statement creates CITY and uses the value of the variable LEN created in the first
assignment statement. In this case, a subtraction expression is used as the third argument for the SUBSTR
function.

Opening a the viewtable window on the dataset shows the results.

Figure 6.

3. THE TRANSLATE FUNCTION:
Sometimes dirty data comes at us with characters values that should be numbers. The most common
examples of this is when a lower case 'L' is found in a numeric value instead of a 1; and the letter 'o' found
in a string of digits instead of 0. The STREET_ADDRESS in the data below illustrates this situation.

Figure 7.

 4

The TRANSLATE function is used in the DATA step below. The typical form of the TRANSLATE function
is:

Argument 1 is the character value that will be translated. Argument 2 is the value or list of values that will
be created. Argument 3 is the 'from this letter' value. Argument 2 and 3 can be a list of values as seen in
the DATA step below.

Figure 8.

First, the street numbers are isolated and put into the variable NUMBERS. Then the TRANSLATE function is
used to convert any one of these letters: ‘Oo’ to the digit ‘0’ (zero), and any of these letters: ‘Ll’ to the digit ‘1’.
The next step is to rebuild STREET_ADDRESS with all numbers. The DATA Step below is an expansion
of the above DATA step. The statements starting with the arrow are new.

Figure 9.

Opennng the Viewtable window shows the results of the above DATA Step. named INCOME in
the code below.

 Figure 10.

 translate (character value , go to, from)

 5

4. THE ATTRN FUNCTION WITH THE MODTE ARGUMENT:
The ATTRN function returns information about a numeric attribute of an open SAS data set. The typical
syntax is:

Selected values of ATTRIBUTE-NAME are: any, modte, nobs, nlobs, nvars, etc.

For example, use the ATTRN function to find out how many rows and columns are in a data set.

Figure 11.

Many users want to know how old, or fresh, is the data. Use the ATTRN function to see how old the dirt is
that is in the data.

 attrn (dsid, attribute - namen)

 6

Figure 12 and 13.
5. THE PROPCASE FUNCTION:
The PROPCASE function ‘shifts’ a character value to the proper case. The typical syntax is:

where :
 argument is a character variable or expression

 delimiter specifies one or more delimiters that are enclosed in quotation marks. The default
 delimiters are blank, forward slash, hyphen, open parenthesis, period, and tab.

* Tip: If you use this argument, then the default delimiters, including the blank, are no longer in effect.

Sometimes data is dirty and is NOT in the correct case. Notice the values of Street_Address in
the data below:

Figure 14.

Use a DATA step with the PROPCASE and TRANWRD functions to clean the data seen above.

Figures 15 and 16.

Notice the 'clean' values of STREE_ADDRESS.

 propcase (argument < , delimeter(s) >)

 7

6. THE COMPRESS FUNCTION:
The COMPRESS function returns a character string with specified characters removed from the original
string. The typical syntax of this function is:

where

 source specifies a character constant, variable, or expression from which specified characters
 will be removed.

 characters specifies a character constant, variable, or expression that initializes a list of characters.

 modifier by default, the characters in this list are removed from the source argument. If you
 specify the K modifier in the third argument, then only the characters in this list are kept in
 the result. Specifies a character constant, variable, or expression in which each
 non-blank character modifies the action of the COMPRESS function. Blanks are ignored.
 The following characters can be used as modifiers:

You can use the COMPRESS function to perform a fuzzy merge. To illustrate how the COMPRESS function
works, the DATA steps below shows how to remove periods, spaces, and vowels from the first argument.

Figure 17.

The output looks like this...

Figure 18.

 compress (source < characters > <, modifier(s) >)

 8

As the output illustrates, no matter how NAME is spelled, the COMPRESS function creates CHECK with the
same spelling across all observations.

CONCLUSION
Functions are very powerful routines that can be used to do a number of things in SAS... including cleaning
data.

Many more examples will be given during the presentation of this paper.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

The author can be reached at:
Ben Cochran
The Bedford Group
3224 Bedford Avenue
Raleigh, NC 27607
(919) 741-0370
bencochran@nc.rr.com

