
Paper BB-11-2015

Do we need Macros?
An Essay on the Theory of Application Development

Ronald J. Fehd, Theoretical Programmer, Stakana Analytics
SAS-L’s Macro Maven

Abstract Description : This paper examines the theoretical steps of applications develop-
ment (ApDev) of routines and subroutines. It compares and contrasts
the benefits of using the %include statement versus macros. It exam-
ines the methods of calling subroutines, e.g., sql, call execute and
macro loops.

Purpose : The purpose of this paper is to highlight the benefits of using macros
to support unit and integration testing, and searching for and finding
issues during maintenance.

Audience : managers and project designers, programmers of all levels

Keywords : compile, execute, step boundaries, macro definitions, macro vari-
ables, global symbol table, reuse of compiled statements

In this paper Introduction 2

How SAS works . 3

Theory and Decisions of Macro Usage in Applications Develop-
ment 5

How to Develop Routines and Subroutines 6

Summary 9

Bibliography 10

1

Introduction

This section has two topics.Overview

• learning

• definitions

• layers of a program

While learning a new computer proramming language we need to pay at-learning
tention to these categories of ideas.

• control

• functions

• loops

• variables

• syntax

This is a list of words used in this article.definitions

function : return a value;
in SAS R© software a value is a token, and is less than a statement

module : calls routines and subroutines
to process input and produce output;
often called ’main’

program : a set of statements
subprogram: a subset of a program

routine : a program or subprogram;
performs one or more tasks, calls subroutines

subroutine : performs a single task, called by modules or routines

2

How SAS works

This section provides both a practical and theoretical explanation of howOverview
SAS and the macro language work together.

• programs have subprograms, steps

• program has layers

• loading Global Symbol Table (GST)

• startup: configuration and autoexec

A program consists of pieces, some theoretical, some practical.programs have
subprograms, steps HIPO:

hierarchical
programs contain subprograms input

process
output

SAS programs contain steps data, proc, run

steps have two aspects compile data structure
execute algorithm produces result

A program may be read from top to bottom; but it is also important to visu-program has layers
alize the various layers of program assets as they occur.

• Global Symbol Table

• %include statement subprogram

• macro language compile variables: %let mvar=...;
definitions: %macro ... %mend;

execution variable references: &mvar
macro calls: %do this(data=...)

• SAS

3

In SAS documentation the symbol table is always referred to as either theloading Global
Symbol Table global or local macro variable symbol table.

In this article the Global Symbol Table (GST) refers to this list of sets of
GST variable names available to programs.

• environment variables

• location names: filerefs and librefs used in options

• macro

– variables: system- or user-defined

– definitions: location of compiled code

• options location names for reuse

• running text: titles, footnotes

The verb ’load’ is used because any name in a set can only be assigned orNote:
its value retrieved and the last assignment is the value available.

Loading of the Global Symbol Table occurs in two files: one or more con-startup: configuration
and autoexec figuration files, and optionally an autoexec file. Default names of these files

are sasv9.cfg and autoexec.sas.

config : configuration files and command-line

• environment variables: macro autocall folders

• startup-only options: one third of options

autoexec : location names, options for %includes, macros

• autocall
filename project ’.’;
filename site mac ’...’;
options mautosource

sasautos = (project site mac sasautos);

• compiled and stored
libname libmacro ’..\sas7bcat’;
options mstored sasmstore=libmacro;

4

Theory and Decisions of Macro Usage in Applications Development

This section discusses the main reasons to use macros in applications.Overview

• optimization

• strategy

• tactics

SAS software and its macro language provide extra facilities to improveoptimization
programs.

• autocall: automatic search for reusable macros

• compiled and stored macro definitions in catalog

• testing: unit and integration
options for debugging
remote control during testing

For the big picture, either macros or %includes can provide answers tostrategy
these choices.

• large table-top rule: 10 pages,
50 lines/page = 500 lines

• reuse: used often, compiled once

• guarantee

• hide complexity

• centralization, standardization

These are the primary reasons to convert programs to macros.tactics

conditional execution: %if additional code
or branching

loops: %do
functions: %sysevalf evaluation of real numbers

%sysfunc access to data step functions

In many cases macro definitions are a simple way to encapsulate loops
and function calls that require elaborate data step code.

5

How to Develop Routines and Subroutines

This section provides a quick overview of how to build a simple subroutineOverview
from working programs through parameterized %includes to a macro. It
shows how to test each type of program.

• hard-code

• soft-code

• split in two

• make macro

• making lists

• call execute of %includes

• calling macros

• sql constant text

Find two programs that use similar statements.hard-code

1 proc freq data = sashelp.class;
2 tables age;

1 proc freq data = sashelp.shoes;
2 tables region;

Identify the parameters; use SAS keywords as parameter names.soft-code

1 %let data = sashelp.shoes;
2 %let var = region;
3 proc freq data = &data;
4 tables &var;

6

Split the soft-coded program into two part: the caller and the subroutine.split in two

sub-program-1-test.sas
1 %let data = sashelp.shoes;
2 %let var = region;
3 %include ’sub-program-1.sas’/source2;

sub-program-1.sas
1 %put trace: sub-program-1 beginning;
2 *leave mvars as reminder of parameters;
3 *let data = sashelp.shoes;
4 *let var = region;
5 %put echo: &=data &=var;
6 proc freq data = &data;
7 tables &var / noprint
8 out = out_freq;
9 run;

10 %put trace: sub-program-1 ending;

Convert the subroutine to a macro and copy the caller program and changemake macro
from %include to macro call.

sub-program-2-test.sas
options mprint source2;
%sub_program_2(data = sashelp.class

,var = sex)

sub program 2.sas
%MACRO sub_program_2

(data = sashelp.shoes
,var = region
,out_data = out_freq
,testing = 0);

%let testing = %eval(not(0 eq &testing)
or %sysfunc(getoption(source2)) eq SOURCE2);

%put trace: &sysmacroname begining;
PROC freq data = &data;

tables &var / noprint
out = &out_data;

%if &testing %then %do;
proc sql; describe table &syslast;

quit;
%end;

run;
%put trace: &sysmacroname ending;
%mend sub_program_2;

7

Repetition can be managed, not by manual typing of parameters and callingmaking lists
program names, but by using SAS software to create a control data set, a
list, where the values in columns in each row are a set of parameters for
a subroutine. The contents and sql procedures can be used to create
lists. This program uses the contents procedure to make a list of variable
names.

make-list-vars-contents.sas
PROC contents data = &in_data noprint

out = list_variables
(keep = name type);

run;

The call execute routine can be used to read a list and call parameter-call execute of
%includes ized %includes.

proc-freq.sas
PROC freq data = &in_data;

tables &name /list;

demo-cx-include.sas
%let in_data = sashelp.class;
options source2;
%include project(make-list-vars-contents);
%let cx_data = list_variables(keep = name);
%let cx_include = ’proc-freq.sas’/source2;
%include site_inc(cx-inclu)/nosource2;

The call-macro routine can be used to read a list and call macros.calling macros

procfreq.sas
%macro procfreq(data =

,name =
,type =);

PROC freq data = &data;
tables &name /list;

run;
%mend;

demo-call-macro.sas
%let in_data = sashelp.class;
options mprint source2;
%include project(make-list-vars-contents);
%callmacr(data = list_variables

,macro_parms = %nrstr(data=&in_data)
,macro_name = procfreq)

The sql procedure can be used to read a list and call either parameterizedsql constant text
%includes or macros.

See Fehd [6] for example programs.

8

Summary

The question was ”Do we need macros?”.Conclusion

The Reframe: Do we need %includes or macros to reuse programs?

• autoexec needed for either, for location names of folders

• use %includes with macro variables as parameters until you need:

– additional code within subprogram

– macro functions or loops

• macro language

– variables passing values across step boundaries

– autocall need filerefs for options

– compiled and stored need librefs for options

Suggested Reading

macro basics : Fehd [10], Autoexec Companion; Carpenter [1], ways to create macro
variables; First and Ronk [12], programming with macro variables

testing, tracing : Fehd [3], Writing Testing-Aware Programs;
Fehd [4], Using Sysfunc and Ifc;
Fehd [2], using global macro variables to trace calls

list processing : Fehd and Carpenter [11], List Processing Basics;
Fehd [6], Using Sql for List Processing;
Fehd [5], List Processing Routine Call-Execute-an-Include;
Fehd [9], Macro Call-Macro: using a control data set to call macros

%do loops : Fehd [8], Macro Loops with Dates

opinion : Henderson [13], Macro Programming Best Practices;
Fehd [7], Macro Design Ideas

Ronald J. Fehd mailto:Ron.Fehd.macro.maven@gmail.comContact Information:
http://www.sascommunity.org/wiki/Ronald_J._Fehd

education: B.S. Computer Science, U/Hawaii, 1986
SAS User Group conference attendee since 1989

experience: programmer: 30+ years
author: 40+ SUG papers
sas.community.org wiki: 400+ pages

SAS-L: author: 7,000+ messages to SAS-L since 1997

About the author:

SAS and all other SAS Institute Inc. product or service names are registered trademarks orTrademarks
trademarks of SAS Institute Inc. in the USA and other countries. R© indicates USA registration.
Other brand and product names are trademarks of their respective companies.

9

BibliographyReferences
[1] Arthur L. Carpenter. Five ways to create macro variables: A short introduction to the macro language. In SESUG, 2005.

URL http://analytics.ncsu.edu/sesug/2005/HW03_05.PDF. 12 pp.; call symput, %do, %global, %let, %local, ods,
parameters in a macro definition, sql select into, sysparm, %window.

[2] Ronald Fehd. Journeymen’s tools: Two macros — ProgList and PutMvars — to show calling sequence and parameters of
routines. In Proceedings of the 30th Annual SAS R© Users Group International Conference, 2005. URL http://www2.sas.
com/proceedings/sugi30/004-30.pdf. Applications Development, 8 pp.; debugging, parameterized %includes, testing,
tracing.

[3] Ronald J. Fehd. Writing testing-aware programs that self-report when testing options are true. In NorthEast SAS Users Group
Annual Conference Proceedings, 2007. URL http://www.nesug.org/Proceedings/nesug07/cc/cc12.pdf. Coders’
Corner, 20 pp.; topics: options used while testing: echoauto, mprint, source2, verbose; variable testing in data step or macros;
call execute; references.

[4] Ronald J. Fehd. Using functions Sysfunc and Ifc to conditionally execute statements in open code. In SAS Global Forum Annual
Conference Proceedings, 2009. URL http://support.sas.com/resources/papers/proceedings09/054-2009.pdf.
Coders Corner, 10 pp.; topics: combining functions ifc, nrstr, sysfunc; assertions for testing: existence of catalog, data, file, or
fileref; references.

[5] Ronald J. Fehd. List processing routine CallXinc: Calling parameterized include programs using a data set as list of parameters.
In Proceedings of the Western Users of SAS Software Annual Conference, 2009. URL www.lexjansen.com/wuss/2009/
app/APP-Fehd2.pdf. Applications Development, 20 pp.; call execute, data review, data structure, dynamic programming, list
processing, parameterized includes, examples.

[6] Ronald J. Fehd. How to use proc SQL select into for list processing. In South Central SAS Users Group Annual Conference
Proceedings, 2010. URL http://analytics.ncsu.edu/sesug/2010/HOW06.Fehd.pdf. Hands On Workshop, 40 pp.;
topics: writing constant text, and macro calls, using macro %do loops; references.

[7] Ronald J. Fehd. Macro design ideas: Theory, template, practice. In MidWest SAS Users Group Annual Conference Proceed-
ings, 2013. URL http://www.mwsug.org/proceedings/2013/00/MWSUG-2013-0002.pdf. 21 pp.; topics: logic, quality
assurance, testing, style guide, documentation, bibliography.

[8] Ronald J. Fehd. Writing macro do loops with dates from then to when. In MidWest SAS Users Group Annual Conference Pro-
ceedings, 2013. URL http://www.mwsug.org/proceedings/2013/00/MWSUG-2013-S115.pdf. 20 pp.; topics: dates
are integers, formats and functions to convert date references to integers, calculations, do and %do statements; interval incre-
menting (intnx): intervals and shift-index; month, putn, %sysevalf, %sysfunc, today, day-of-the-week (weekday), year; macro
dateloop, bibliography.

[9] Ronald J. Fehd. List processing macro call-macro. In Proceedings of the Western Users of SAS Software Annual Confer-
ence, 2014. URL http://www.lexjansen.com/wuss/2014/cc/97.pdf. Coders Corner, 19 pp.; using %sysfunc with SCL
functions to read a list, a control data set, and for each observation, call a macro with variable names and values as named
parameters.

[10] Ronald J. Fehd. An autoexec companion, allocating location names during startup. In MidWest SAS Users Group Annual
Conference Proceedings, 2015. Beyond Basics, 15 pp.

[11] Ronald J. Fehd and Art Carpenter. List processing basics: Creating and using lists of macro variables. In SAS Global Forum
Annual Conference Proceedings, 2007. URL http://www2.sas.com/proceedings/forum2007/113-2007.pdf. Hands
On Workshop, 20 pp.; comparison of methods: making and iterating macro arrays, scanning macro variable, writing calls to macro
variable, write to file then include, call execute; using macro function nrstr in call execute argument; 11 examples, bibliography.

[12] Steven First and Katie Ronk. SAS(R) macro variables and simple macro programs. In SUGI-30, 2005. URL http://www2.
sas.com/proceedings/sugi30/130-30.pdf. 15 pp.; overview of how macro processor works, use of macro options during
debugging and testing, use of conditionals (%if) and loops (%do), example macro application, using macro variables to pass
information to later steps.

[13] Editor D. Henderson. Macro programming best practices: Styles, guidelines and conventions. In sas community.org
Wikipedia, 2012. URL http://www.sascommunity.org/wiki/Macro_Programming_Best_Practices:_Styles,
_Guidelines_and_Conventions_Including_the_Rationale_Behind_Them. peer discussion.

Do only what is necessary to convey what is essential. Carefully eliminate elements
that distract from the essential whole, elements that obstruct and obscure.. . . Clutter,
bulk, and erudition confuse perception and stifle comprehession, whereas simplicity
allows clear and direct attention. — Richard Powell

10

