
1

Paper BB-07 - 2015

Controlling Colors by Name;
Selecting, Ordering, and Using Colors for Your Viewing Pleasure

Arthur L. Carpenter
California Occidental Consultants, Anchorage, AK

ABSTRACT
Within SAS® literally millions of colors are available for use in our charts, graphs, and reports. We can name these colors
using techniques which include color wheels, RGB (Red, Green, Blue) HEX codes, and HLS (Hue, Lightness, Saturation)
HEX codes. But sometimes I just want to use a color by name. When I want purple, I want to be able to ask for purple
not CX703070 or H03C5066. But am I limiting myself to just one purple? What about light purple or pinkish purple. Do
those colors have names or must I use the codes? It turns out that they do have names. Names that we can use.
Names that we can select, names that we can order, names that we can use to build our graphs and reports.

This paper will show you how to gather color names and manipulate them so that you can take advantage of your
favorite purple; be it ‘purple’, ‘grayish purple’, ‘vivid purple’, or ‘pale purplish blue’.

KEYWORDS
Color-naming Schemes, ARRAY, SAS Registry, PROC REGISTRY, PROC FSLIST

INTRODUCTION
If you want to know virtually anything about the colors used by SAS, you will want to explore Technical Support
document TS-688. This document carefully describes the valid color-naming schemes that are available in SAS, and gives
examples of each type. The naming schemes include:

• RGB (red green blue)
• CMYK (cyan magenta yellow black)
• HLS (hue lightness saturation)
• HSV (hue saturation brightness), also called HSB
• Gray scale
• SAS color names (from the SAS Registry)
• SAS Color Naming System (CNS)

Table 1 Examples of specifying colors taken from TS-688

Color-Naming Scheme Example

RGB COLORS=(cx98FB98 cxDDA0DD cxFFDAB9 cxDB7093 cxB0E0E6)

CMYK COLORS=("FF00FF00" "00FFFF00" "FFFFFF00")

HLS COLORS=(H14055FF H0F060FF H0B485FF H07880FF)

HSV COLORS=(V0F055FF v010FFFF v03BFFFF v12C55E8)

Gray Scale COLORS=(GRAY4F GRAY6D GRAY8A GRAYC3)

SAS Registry Colors COLORS=(palegreen plum peachpuff palevioletred powderblue)

2

CNS Color Names COLORS=("very light purplish blue"
"light vivid green" "medium strong yellow"
"dark grayish green")

This paper describes how to obtain and use just one of these color list types – the SAS Registry Colors. This color naming
scheme selects and names a hundred and fifty or so of the millions of available colors. These are the colors (like BLUE
and RED) that you can use by name in your color lists in SAS/GRAPH and ODS.

The basic steps of this process will include:

1. Retrieve the list of color names from the SAS Registry
2. Store the list of names in a text file
3. Manipulate the list by changing the order of the colors and by removing unwanted colors
4. Convert the manipulated color list into a SAS data set
5. Make use of the color list

RETRIEVING AND STORING THE COLOR LIST
The color list is stored in the SAS Registry and you can extract this list from the registry by using PROC REGISTRY.
➊ name a text file that will receive the list of colors
➋ unless you have created a color list in SASUSER this
option is probably not necessary
➌ names the registry key of interest

Not that you necessarily need to do so, but the resulting text file can be viewed in a number of ways. If you are running

SAS interactively (such as through the Display Manager), one of
the easier is through the use of the FSLIST procedure. In this
usage the list of colors will be written to the FSLIST window
where it can be viewed. The text file shown here contains not
only the color name, but the hex color representation as well.
Since we are only interested in the color name in this application
a DATA step will be used to eliminate all but the color names.

We can separate the list of colors by reading in and parsing each
text line. If we notice that each color has a corresponding hex
code with the hex code and color name separated by an equal

sign, we can eliminate the lines without colors.

proc registry export= "colornames.txt" ➊
 usesashelp ➋
 startat='COLORNAMES' ➌;

 run;

data colors;
 infile 'colornames.txt' ➍
 dlm='=' dsd truncover;
 length colorname $35.;
 input colorname $ otherstuff $;
 if otherstuff=:'hex'; ➎
 put colorname; ➏
 run;

proc fslist file= "colornames.txt" ;
 run ;

#--- File updated at 08JUN2015 08:45:08
#--- Exporting SASHELP registry starting
at key [COLORNAMES]

[COLORNAMES]
"Active"="HTML"

[COLORNAMES\HTML]
"AliceBlue"= hex: F0,F8,FF
"AntiqueWhite"= hex: FA,EB,D7
"Aqua"= hex: 00,FF,FF
"Aquamarine"= hex: 7F,FD,D4
"Azure"= hex: F0,FF,FF
"Beige"= hex: F5,F5,DC
"Bisque"= hex: FF,E4,C4

3

➍ The DLM and DSD INFILE options are used to control how the file is read into the DATA step.
➎ Only the data lines with a hex color code are used.
➏ Optionally the list of colors can also written to the LOG.

A PROC PRINT of the first few colors in this data set is shown here.

Although the list of available colors can now be used by name, further manipulation of the list is
needed to make the use of the list practical.

MANIPULATING THE COLOR LIST
In the application for which this color list was developed, the user needed to be able to see and manipulate the color list
manually. They needed the ability include or reorder the color list so that their application would take advantage of only
certain colors and in a prescribed order. The manipulation of the color list was to be a onetime manual operation,
however it turned out that continual adjustments were required, and the process for color selection and ordering had to
be made as easy as possible. We experimented with several approaches. I am going to show you alternate approaches
here, so that you can choose which will work best for you.

Using a CSV File
A CSV text file can be edited using either Excel® or a text editor. In this approach the

list of colors in
WORK.COLORS is
exported to a CSV file
using a simple PROC
EXPORT step. In this
PROC EXPORT example

the CSV file is located in the \TEMP directory.

Once the CSV file has been created it can be opened and manipulated using Excel
(shown here) or through the use of a text editor such as NOTEPAD. Initially the
colors are sorted alphabetically, however since we also need to be able to control the
availability of a color as well as the order, individual colors can be deleted or the
order of the colors can be changed.

Using the EXCELXP Tagset to View the Colors
Color selection and visualization is easier if the user can actually see the colors in use. Since the final application is to be
displayed in
Excel, the EXCLXP
tagset can be
used to both
export the colors
to Excel as well as
to visualize the
colors as they will
appear in the
final table.

proc export data= work.colors
 outfile= "c:\temp\colors.csv"
 dbms=csv replace;
 putnames=yes;
run;

ods tagsets.excelxp file='c:\temp\colors.xls';
* Show colors in use;
proc report data=work.colors nowd;
 column colorname colorname=clr; ➊
 define colorname/ 'Color Name';
 define clr / 'Color';
 compute clr /char length=35; ➋
 ➌ call define(_col_,'style','style={background='||colorname||'}');
 endcomp;
run;
ods tagsets.excelxp close;

4

PROC REPORT is used to display both the name of the color, and the color itself through the use of the CALL DEFINE.

➊ An alias for COLORNAME is established with the name CLR.
➋ The style attributes (in this case the background color) will be established in a compute block.
➌ The CALL DEFINE routine is used to establish the background color for this cell of CLR by using the current value of the
color name.

After even some minor manipulation of the color order, it is apparent that
some colors are too similar to each other to be useful (at least for this
application). You can also see that BLACK is not a good color choice as a
background color when the foreground color is also BLACK.

Because the human eye cannot distinguish many more than one or two dozen
colors, and since the list starts with 150 colors, there are plenty of colors to
choose from to create a pallett with sufficient variation and contrast.

Editing the List Directly in the Enhanced Editor
Because the list originally exists as a text file, the list itself can be copied
directly into a DATA step for
editing. Ultimately we are going
to need the modified list in a SAS
data set anyway, so we can save
a step by doing the editing of the
color list within the Program
Editor.

For demonstration purposes, only a few of the colors in the list are shown
in this DATA step. Eventually when the list is used, we will want to be able
to maintain the new color ordering supplied by the user edits. A PROC
REPORT step that is essentially the same as the one shown above can be
used to show the selected colors. The color list selection shown in the
DATA step to the right is the one used in the remaining examples.

CONVERTING THE COLOR LIST INTO A SAS DATA SET
This step is not needed if the list is manipulated directly within the DATA step. However if you choose to use Excel to
manipulate the list of colors, you will need to convert either the CSV file or the Excel file into a SAS data set. A straight
forward PROC IMPORT can be used in both instances.

data colors;
infile cards truncover;
input colorname $35.;
datalines;
RoyalBlue
AliceBlue
Yellow
Green
Aquamarine
Bisque
BlueViolet
IndianRed
run;

proc import out = CSVcolors
 file= "c:\temp\colors.csv"
 dbms=csv replace;
 getnames=yes;
run;

proc import out = XLScolors
 file= "c:\temp\colors.xls"
 dbms=excel replace;
 getnames=yes;
run;

5

USING THE COLOR LIST
Now that the color list is in a SAS data set, we can use this list in a number of ways. Typically I find it easiest to use this
list to build a format and then to apply the format using traffic lighting techniques. Formats are built from a data set by
creating a specialized data set that can be used as a control file by PROC FORMAT. This control file can have up to a
couple of dozen specific variables (PROC FORMAT expects specific variable names), however there are only three that
are required and the examples that follow only use four of these specialized variables.

Basing the Colors on Ranks
The colors were saved in a specific order and in this example we are going to use that order to associate colors with the
rank of a level of a classification variable.

➊ The four variables needed by PROC
FORMAT are kept in the data set.
➋ The color name is assigned to the
LABEL variable. This is the value that
we will map into.
➌ The format name is specified in the
variable FMTNAME. Since this name is
constant, a RETAIN statement is used.
➍ The data value that is to be mapped
from is stored in the START variable.
This will be the rank value in this
example.
➎ Values that are not otherwise
covered (there should not be any) are
mapped to the color white, which is

often the default for a number of ODS styles.
➏ The control data set is passed to PROC FORMAT using the CNTLIN= option. PROC FORMAT then builds the format
defined in the data set (RNKCOLOR.).

In the example that follows I would like to rank REGION by total sales. The complication is that I want the color in the

report to be based on the rank of the region, but I want the
regions themselves to be specified in alphabetical order. The
SUMMARY and RANK procedures are used to summarize the
data.

The data set to be reported (RNKTOT) has a column
containing the value of the rank (RANKTOTAL), which we will
use to tie to the RNKCOLOR. format that was created in the
previous PROC FORMAT step.

data controlcolor(keep=start label fmtname hlo); ➊
 set colors(rename=(colorname=label)) end=eof; ➋
 retain fmtname 'RnkColor'; ➌
 start = _n_; ➍
 output controlcolor;
 if eof then do; ➎
 hlo='o';
 start=' ';
 label='white';
 output controlcolor;
 end;
 run;
proc format cntlin=controlcolor; ➏
 run;

proc summary data=sashelp.shoes nway;
 class region;
 var sales;
 output out=totalsales sum=total;
 run;
proc rank data=totalsales
 out = rnktot;
 var total;
 ranks ranktotal;
 run;

6

PROC REPORT will again be used with the CALL DEFINE routine to build the style attribute for the background color,
however this time a format is used to select the background color.

➐ The PUT function is used to translate the rank value in RANKTOTAL to a color by using the RNKCOLOR. format.

The resulting table will have known and preselected colors for each of the ranks in the table, regardless of the order of
the regions.

title 'Ranked Total Sales';
proc report data=rnktot;
 column region total ranktotal;
 define region / order;
 define total / format=dollar10.;
 define ranktotal / display;
 compute ranktotal;
 call define(_row_,
 'style',
 'style={background='||put(ranktotal,rnkcolor40.)||'}'); ➐
 endcomp;
 run;

7

Associating the Colors with Levels of a Classification Variable
You may want to associate specific colors with specific values of a classification variable. Using the same data as in the
previous example I now want the same color to be associated with the same region throughout all of my reports. Again
a format will be built, however this time the colors will be tied to specific levels of a classification variable. This allows us
to always have the same color associated with say ‘South America’ regardless of what other regions are in the report.

For this example we want to tie a specific color to a specific value of
REGION. The first step is to build a list of the unique values of REGION, and
this can be easily done in a simple PROC SQL step. This list of unique values
will then be paired with the list of unique colors. By default the list
generated by SQL will be sorted alphabetically, so the first region will be
associated with the first color in our color list.

We again build a format using a control data set,
however this time we merge the unique region
values with the unique colors. The merge itself
is performed with two SET statements. This
allows us to detect the last value of REGION (we
are assuming that we have more colors than
regions).

This time we want to summarize using PROC
TABULATE so the background color attribute is
assigned using the STYLE= option in the
CLASSLEV statement. A portion of resulting
report shows that the region values have
received the correct colors. Want different
colors? All you have to do is reorder the colors
in the color list and rebuild the format.

proc sql noprint;
create table unique as
 select distinct region
 from sashelp.shoes;
quit;

data controlcolor(keep=start label fmtname hlo);
 set unique(rename=(region=start)) end=eof;
 set colors(rename=(colorname=label));
 retain fmtname '$RegColor';
 output controlcolor;
 if eof then do;
 hlo='o';
 start=' ';
 label='white';
 output controlcolor;
 stop;
 end;
 run;
proc format cntlin=controlcolor;
 run;

8

Associating the Colors with Values in the Table
When the colors are to be tied to specific ranges of values the process is similar, however the DATA step that creates the
format control data set is slightly more complicated.

The breakdown of the sales ranges can be specified in a data
set with variables that note the lower and upper bounds of the
ranges.
 START lower bound of the range
 END upper bound of the range
 EEXCL make the upper bound of the range exclusive
 HLO Used with a range value contains a keyword
 HIGH, LOW, OTHER

Notice that even though we are building a numeric format, the
range variables (START and END) are character. The type of
these two variables to not matter to PROC FORMAT and in this
case, since the END variable contains a HIGH, it is necessary.

Once the data set containing the ranges has been built, it can be merged with the colors data to create the control file.

Because exclusive ranges are
being created, more
variables have been added
to the control file. The
variable TYPE is not really
needed in this example, as it
is designating the
SALESCOLOR. format to be
numeric. This variable
allows you to create
character formats without
specifying the $ in the
format name during the
building process.

In our TABULATE example
we want to use traffic

lighting techniques to highlight sales ranges
using colors. You can see that the second
level ($100,000 to <$250,000) matches to
the color named ‘AliceBlue’. For the
default (SASWEB) style used here, this may
not be a distinctive enough color.
Fortunately if we want to adjust the colors
used, all we need to do is go back and edit
our color list and recreate the formats.

data ranges;
 infile datalines truncover;
 input start $ end $ eexcl $ hlo $;
 datalines;
 0 100000 Y
 100000 250000 Y
 250000 500000 Y
 500000 1000000 Y
1000000 2000000 Y
2000000 high N H
run;

data controlcolor(keep=start end label eexcl fmtname hlo type);
 set ranges end=eof;
 set colors(rename=(colorname=label));
 retain fmtname 'SalesColor' type 'N';
 output controlcolor;
 if eof then do;
 hlo='o';
 start=' ';
 end=' ';
 eexcl='N';
 label='white';
 output controlcolor;
 stop;
 end;
 run;
proc format cntlin=controlcolor;
 run;

9

SUMMARY
It is possible to retrieve the list of standard color names that SAS stores in the SAS Registry, and then to use these names
to build user defined lists. These lists can then be used to create formats that can in turn be used to standardize your
reports and tables. Now when you need a color, you can call it by name.

ABOUT THE AUTHOR
Art Carpenter’s publications list includes; five books, two chapters in Reporting from the Field, and numerous papers and
posters presented at SAS Global Forum, SUGI, PharmaSUG, WUSS, and other regional conferences. Art has been using
SAS since 1977 and has served in various leadership positions in local, regional, and national user groups.

Art is a SAS Certified Advanced Professional Programmer, and through California Occidental
Consultants he teaches SAS courses and provides contract SAS programming support nationwide.

Recent publications are listed on my sasCommunity.org Presentation Index page. SAS programs
associated with this paper can be found at:
http://sascommunity.org/wiki/Presentations:ArtCarpenter_Papers_and_Presentations

AUTHOR CONTACT
Arthur L. Carpenter
California Occidental Consultants
10606 Ketch Circle
Anchorage, AK 99515

(907) 865-9167
art@caloxy.com
www.caloxy.com

ACKNOWLEDGEMENTS
When I needed to figure out how to find and extract the colors that SAS uses by name, Peter Crawford at Crawford
Software Consultancy Ltd, knew that they were in the SAS Registry, and he showed me how to use PROC REGISTRY to
find and access the list of colors.

REFERENCES
Papers
More on creating user defined formats can be found in:
Carpenter, Arthur L., 2003, “Building and Using User Defined Formats”, Proceedings of the 11th Annual Western Users of
SAS Software, Inc. Users Group Conference, Cary, NC: SAS Institute Inc. Also in the proceedings of the Twenty-ninth
SAS User Group International Conference (SUGI), 2004, Cary, NC: SAS Institute Inc., also in the proceedings of the Mid
West SAS User Group Conference (MWSUG), 2005, Cary, NC: SAS Institute Inc. Also presented at the 16th Annual
Western Users of SAS Software, Inc. Users Group Conference (WUSS), Universal City, CA in 2008.

Use of the techniques in this paper are further described in:
Carpenter, Arthur L., 2015, “Color, Rank, Count, Name; Controlling it all in PROC REPORT”, presented at the 2015
MWSUG conference.

http://sascommunity.org/wiki/Presentations:ArtCarpenter_Papers_and_Presentations
http://www2.sas.com/proceedings/sugi29/236-29.pdf
http://www2.sas.com/proceedings/sugi29/236-29.pdf

10

Support Documents
Technical Support document TS-688
https://support.sas.com/techsup/technote/ts688/ts688.html#predefined

Color naming schemes
http://support.sas.com/documentation/cdl/en/graphref/63022/HTML/default/viewer.htm#colors-specify-color.htm

TRADEMARK INFORMATION
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries.

® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

https://support.sas.com/techsup/technote/ts688/ts688.html%23predefined
http://support.sas.com/documentation/cdl/en/graphref/63022/HTML/default/viewer.htm%23colors-specify-color.htm

