
1

Paper BB-03-2015

Just passing through… Or are you?

Determine when SQL Pass-Through occurs to optimize your queries

Misty Johnson, State of Wisconsin Department of Health Services, Madison, WI

ABSTRACT

SAS/ACCESS
®
 has two recommended methods for accessing data within a relational database management system

(DBMS), namely, the SAS/ACCESS LIBNAME interface engine and the Structured Query Language (SQL) Pass-
Through Facility. This paper describes the use of the open database connectivity (ODBC) LIBNAME engine with 9.3
SAS code that does and does not invoke implicit SQL pass-through and its effect on run time. Also described is the
use of the system options DEBUG and SASTRACE to determine if implicit SQL pass-through occurred, what triggers
implicit SQL pass-through and the potential time savings. Knowledge of these methods, their triggers, and tracking
options enables the intermediate SAS programmer to select the most efficient coding strategy.

INTRODUCTION

SAS/ACCESS is a licensed product separate from base SAS that enables the user to communicate easily with a
DBMS (Plemmons, 2010). SAS/ACCESS has two components: the SQL pass-through facility and the LIBNAME
interface engine. The first component, the SQL pass-through facility, may be invoked in an explicit or implicit fashion.
Explicit pass-through is invoked with a CONNECT statement within a PROC SQL statement. Explicit pass-through
allows the user to write code in the SQL dialect native to the DBMS. Implicit pass-through is invoked by use of a
SAS/ACCESS LIBNAME and SAS code that triggers implicit SQL pass-through.

The second component of the SAS/ACCESS software, the LIBNAME interface engine, enables the user to create a
transparent interface to the DBMS, allowing the user to refer to the data source with a two-level filename. The
LIBNAME engine, specific to the DBMS, also determines which queries can successfully be “passed through” to the
DBMS for processing, thus saving time and resources. A SAS/ACCESS LIBNAME can be used to communicate with
a DBMS without invoking implicit pass-through, thus processing the query completely on SAS. Implicit SQL pass-
through only occurs when it’s triggered by an aggregate function or certain keywords, like DISTINCT.

Use of implicit SQL pass-through to process the query on the DBMS may be more efficient than processing in SAS;
however, one must first have the knowledge of coding that invokes implicit SQL pass-through to achieve it. A broad
overview of the ODBC LIBNAME engine within SAS/ACCESS, ODBC triggers of implicit pass-through, how to
determine if implicit SQL pass-through occurred, and potential time-savings of implicit pass-through are the objectives
of this paper.

BACKGROUND: SQL PASS-THROUGH FACILITY

The SQL pass-through facility allows SAS/ACCESS to send queries directly to the DBMS for processing. Most
programmers are aware of the explicit method of the SQL pass-through facility and its, perhaps, “daunting” coding
structure. Explicit pass-through can only be achieved within a PROC SQL statement. The explicit pass-through
facility is triggered by the CONNECT statement within the SQL procedure as shown below.

LIBNAME OLD 'L:\BFS\CARSVOUCHERS';

PROC SQL;

 CONNECT TO ODBC (DATASRC=FMS_PROD USER=&SYSUSERID. DBPROMPT=YES);

 CREATE TABLE OLD.TABLE2 AS

 SELECT *

 FROM CONNECTION TO ODBC

 /* THIS CODE PROCESSED ON DBMS */

(SELECT DISTINCT Contract_Year AS year, Profile_ID AS profid, Appn AS app, Proj AS

prj, Resp AS ra

 FROM DBO.VOUCHER_CODING

 WHERE CONTRACT_YEAR IN ('14','15','16','17'));

 /* END CODE PROCESSED ON DBMS */

DISCONNECT FROM ODBC;

QUIT;

The code above first establishes a library reference, “OLD”, to a permanent file location. Next, the SQL procedure is
invoked, but the first row of code is the CONNECT statement that explicitly tells SAS to establish a connection to a

2

DBMS, the DBMS engine to use, “ODBC”, and the connection options to use. Since this code will create a
permanent table, the next line of coding is the CREATE TABLE clause, followed by the familiar SELECT and FROM
clauses. However, instead of a table name in the FROM clause, we see a “CONNECTION TO” and the DBMS name,
“ODBC”. The inner query describes the query processed on the DBMS. The outer query selects all columns from
this query, and the result is written to the permanent table “TABLE2” in the library named “OLD”.

This query is explicitly sent to the DMBS for processing, is pretty efficient, but it requires more coding than the
LIBNAME interface method.

THE LIBNAME ENGINE INTERFACE IN SAS/ACCESS

The LIBNAME statement in Base SAS allows the user to communicate directly with various other data sources on the
local machine or network. The LIBNAME statement allows the user to communicate directly with a data source as a
SAS Library. Within SAS/ACCESS, the LIBNAME gains an engine which is specific to the DBMS you wish to
communicate with, such as ODBC, DB2, Oracle, etc. This engine within the LIBNAME statement allows the user to
not only communicate with a DBMS as if it were a SAS Library, but it also optimizes queries by determining if the
query can be sent to the DBMS for faster processing. DBMS connection options may be specified for the user in the
LIBNAME statement or the user can be prompted for this information. Below is an example of a simple LIBNAME
statement using the ODBC engine within SAS/ACCESS.

LIBNAME CARSSQ ODBC DATASRC=FMS_PROD SCHEMA=DBO DBPROMPT=YES;

The name given to this LIBREF above is “CARSSQ”. This LIBREF could be any name, as long as it conforms to the
SAS naming conventions for librefs of: no more than 8 characters, must start with a letter or underscore, and
contains only numbers, letters or underscores. The DBMS connection options DATASRC and SCHEMA are
specified in the LIBNAME; these are the database and schema name within the DBMS that you are establishing the
connection. The database name, FMS_PROD, contains an underscore, which is allowed. However, if your database
name contains anything non-standard, such as a hyphen, it must be quoted as a name literal. The connection option
DBPROMPT is set to YES, to prompt the user for the name of the database, schema, username and password when
the LIBNAME statement is processed.

Once the LIBNAME statement has been successfully processed by SAS, you can see the tables within the DBMS
connection to in the Explorer window of PC SAS as if it were a simple file location. You can easily right-click on any
table in the DBMS to see the table and variable attributes just as you would with a regular file library.

Figure 1. DBMS connection in the explorer window.

You can use any SAS statements you wish with a DBMS LIBREF, such as a DATA step or various procedures.
However, the coding structure you choose can impact where SAS does its processing; and where the data is
processed can greatly impact your run time.

WHERE DOES PROCESSING OCCUR?

When you submit SAS statements using a SAS/ACCESS LIBNAME engine interface to a DMBS, the query will be
run within the SAS session or on the DBMS, depending upon the code you’ve written. The DBMS-specific engine in
the SAS/ACCESS LIBNAME statement reviews each query to determine if part or all of it can be sent directly to the
DBMS for processing to save time and resources. If the query is run in SAS, it must download the entire table from
the DBMS to complete the query; however, if the query can be passed to the DBMS for processing, the DBMS only
reads observations necessary for the query, thus maximizing efficiency and minimizing run time. If the query qualifies
for processing on the DBMS, SAS/ACCESS translates the query to SQL statements native to the DBMS, submits the
query to the DBMS for processing, and sends the results back to SAS; this is known as an implicit SQL pass-through.
Using the pass-through facility in the implicit fashion allows the programmer to write code in SAS, instead of the
native DBMS SQL, and in much less coding steps than explicit SQL pass-through. However, the programmer must
be aware of what SAS code will trigger implicit SQL pass-through to maximize the chances of passing their query to
the DBMS.

3

WHAT TRIGGERS IMPLICIT SQL PASS-THROUGH?

Implicit pass-through is triggered by certain key words and aggregate functions in PROC SQL, specific to the DBMS.
Refer to the SAS/ACCESS documentation specific to your DBMS application for further details.

Implicit pass-through triggers for ODBC include (reference: Selecting a SAS/ACCESS method):

PROC SQL:

 DISTINCT

 JOIN

 UNION

 COMPUTED

 Aggregate functions (SUM, MAX, etc)

DATA Step:

 WHERE clause

There are certain conditions that will prohibit implicit pass-through, they are:

 Generated SQL syntax not accepted by the DBMS

 Multiple, separate librefs

 Most data set options

 SAS functions in the SELECT clause

 Use of the DIRECT SQL = LIBNAME option

Once you know the triggers of implicit SQL pass-through for your DBMS, you can write code that will cause the
SAS/ACCESS engine to attempt the implicit SQL pass-through. But how does one know if implicit pass-through
occurred?

DBMS_SELECT & SASTRACE SYSTEM OPTIONS

The system option DEBUG=DBMS_SELECT will help you determine if implicit SQL pass-through occurred. This
handy debugging system option shows you the SELECT clause generated by the SAS/ACCESS LIBNAME engine
that was attempted to be passed through to the DBMS for processing.

SASTRACE is another useful system option. SASTRACE=’,,,d’ will show you all the SQL statements generated by
the LIBNAME engine that were attempted to be passed to the DBMS. Remember, when using SASTRACE that you
must also declare where you want SAS to write these statements, such as the log: SASTRACELOC=SASLOG. It is
also recommended that you use the NOSTSUFFIX option when using SAS trace to suppress information of limited
use.

Both DEBUG and SASTRACE show the user helpful information in determining what SQL was generated by the
SAS/ACCESS LIBNAME engine, but it also shows some prepare and execute statements that need a little practice
interpreting. Let’s look at some examples of code that processed on SAS and the DBMS with implicit SQL pass-
through to see the feedback from these system options and the effect where processing occurred on run time.

QUERY PROCESSED ON SAS

This SAS code uses a SAS/ACCESS LIBNAME to create a permanent SAS table with data from a table within a
DBMS, but this code does NOT achieve implicit pass-through because there is no trigger.

OPTIONS DEBUG=DBMS_SELECT SASTRACE=',,,d' SASTRACELOC=SASLOG NOSTSUFFIX;

LIBNAME OLD 'L:\BFSPROC\CARSVOUCHERS';

LIBNAME CARSSQ ODBC DATASRC=FMS_PROD SCHEMA=DBO USER=&SYSUSERID. DBPROMPT=YES;

PROC SQL;

 CREATE TABLE old.TABLE2 AS

 SELECT Contract_Year AS year, Profile_ID AS profid, Appn AS app,

 Proj AS prj, Resp AS ra, Pcnt AS perct

 FROM CARSSQ.VOUCHER_CODING as Codetable

 WHERE CONTRACT_YEAR IN ('14','15','16','17');

QUIT;

Here is the abbreviated log generated from running this code:

4

9 LIBNAME CARSSQ ODBC DATASRC=FMS_PROD SCHEMA=DBO USER=&SYSUSERID. DBPROMPT=YES;

NOTE: Libref CARSSQ was successfully assigned as follows:

 Engine: ODBC

11 <PROC SQL statements here>

ODBC: AUTOCOMMIT is NO for connection 0

ODBC: AUTOCOMMIT turned ON for connection id 0

DBMS_SELECT: SELECT * FROM "DBO"."VOUCHER_CODING"

ODBC_1: Prepared: on connection 0

SELECT * FROM "DBO"."VOUCHER_CODING"

DBMS_SELECT: SELECT "Contract_Year", "Profile_ID", "Appn", "Proj", "Resp", "Pcnt FROM

"DBO"."VOUCHER_CODING" WHERE (("Contract_Year" IN ('14','15','16','17')))

ODBC_2: Prepared: on connection 0

SELECT "Contract_Year", "Profile_ID", "Appn", "Proj", "Resp", "Pcnt" FROM

"DBO"."VOUCHER_CODING" WHERE (("Contract_Year" IN ('14','15','16','17')))

ODBC_3: Executed: on connection 0

Prepared statement ODBC_2

NOTE: Table OLD.TABLE2 created, with 2406 rows and 13 columns

17 QUIT;

NOTE: PROCEDURE SQL used (Total process time):

 real time 11.12 seconds

 cpu time 0.18 seconds

Narrative:

The note following Line 9 tells us that it successfully established a SAS/ACCESS LIBNAME with an ODBC engine.
Feedback from the SASTRACE is highlighted in blue and that of DEBUG=DBMS_SELECT is highlighted in green.
The first two lines of feedback from SASTRACE show the call to the DBMS from the ODBC engine to secure the
connection.

Next, we see an initial call to the DBMS using a SELECT all clause. The last two messages are from SASTRACE
and are prefixed with the engine name, ODBC, and highlighted in blue. The ODBC LIBNAME engine generated a
SQL statement and attempted to pass it through to the DBMS. However, since we see no positive affirmation that
implicit SQL pass-through occurred, we can assume that the query was processed on SAS. SAS ran the query and
created the permanent SAS table “OLD.TABLE2” in about 11 seconds.

QUERY PROCESSED ON THE DBMS

The keyword DISTINCT will fetch rows with unique values for all the variables in the SELECT clause. Recognizing
the fact that the keyword DISTINCT could be added to this query without changing the results and also knowing that
this keyword is a pass-through trigger for ODBC, can greatly improve the run time for this code. Here is the code and
log after adding the keyword DISTINCT to the SELECT clause:

OPTIONS DEBUG=DBMS_SELECT SASTRACE=',,,d' SASTRACELOC=SASLOG NOSTSUFFIX;

LIBNAME OLD 'L:\BFSPROC\CARSVOUCHERS';

LIBNAME CARSSQ ODBC DATASRC=FMS_PROD SCHEMA=DBO USER=&SYSUSERID. DBPROMPT=YES;

PROC SQL;

 CREATE TABLE old.TABLE2 AS

 SELECT DISTINCT Contract_Year AS year, Profile_ID AS profid, Appn AS app,

 Proj AS prj, Resp AS ra, Pcnt AS perct

 FROM CARSSQ.VOUCHER_CODING as Codetable

 WHERE CONTRACT_YEAR IN ('14','15','16','17');

QUIT;

Here is the abbreviated log generated from running this code:

5

9 LIBNAME CARSSQ ODBC DATASRC=FMS_PROD SCHEMA=DBO USER=&SYSUSERID. DBPROMPT=YES;

NOTE: Libref CARSSQ was successfully assigned as follows:

 Engine: ODBC

10

11 <PROC SQL statements here>

ODBC: AUTOCOMMIT is NO for connection 0

ODBC: AUTOCOMMIT turned ON for connection id 0

DBMS_SELECT: SELECT * FROM "DBO"."VOUCHER_CODING"

ODBC_1: Prepared: on connection 0

SELECT * FROM "DBO"."VOUCHER_CODING"

ODBC: AUTOCOMMIT is NO for connection 1

ODBC: AUTOCOMMIT turned ON for connection id 1

DBMS_SELECT: select distinct Codetable."year", Codetable."profid", Codetable."app",

Codetable."prj", Codetable."ra", Codetable."perct" from "DBO"."VOUCHER_CODING" Codetable where

(Codetable."Contract_Year" in ('14','15','16','17'))) Codetable

ODBC_2: Prepared: on connection 1

 select distinct Codetable."year", Codetable."profid", Codetable."app", Codetable."prj",

Codetable."ra", Codetable."perct" from (select Codetable."Contract_Year" as "year",

Codetable."Profile_ID" as "profid", Codetable."Appn" as "app", Codetable."Proj" as "prj",

Codetable."Resp" as "ra", Codetable."Pcnt" as "perct" from "DBO"."VOUCHER_CODING" Codetable

where (Codetable."Contract_Year" in ('14','15','16','17'))) Codetable

DEBUG: SQL Implicit Passthru stmt has been prepared successfully.

ODBC_3: Executed: on connection 1

Prepared statement ODBC_2

DEBUG: SQL Implicit Passthru stmt used for fetching data.

ACCESS ENGINE: SQL statement was passed to the DBMS for fetching data.

NOTE: Table OLD.TABLE2 created, with 2406 rows and 13 columns.

17 QUIT;

NOTE: PROCEDURE SQL used (Total process time):

 real time 5.80 seconds

 cpu time 0.21 seconds

Narrative:

The note following Line 9 tells us that it successfully established a SAS/ACCESS LIBNAME with an ODBC engine.
Feedback from the SASTRACE is highlighted in blue and that of DEBUG=DBMS_SELECT is highlighted in green.
The first two lines of feedback from SASTRACE show the call to the DBMS from the ODBC engine to secure the
connection.

We again see an initial call to the DBMS using a SELECT all clause. This time, we notice that the LIBNAME engine
opens another connection and both DBMS_SELECT and SASTRACE generate a more specific SQL statement to
attempt implicit SQL pass-through. The SQL statement was accepted to be processed on the DBMS via implicit
pass-through, and we receive positive affirmation of this from both SASTRACE and DEBUG options. It then ran the
query on the DBMS and sent the results back to SAS. Notice that the same table was created, in almost half the
time! The permanent SAS table “OLD.TABLE2” was created in less than 6 seconds.

FORCE THE PROCESSING ON SAS

The use of the keyword DISTINCT enabled SAS to make the table faster that without it and doesn’t show a clear
comparison to the initial query processed on SAS. So, to demonstrate the effect of the ability of SAS to use the
SAS/ACCESS LIBNAME to pass the query through to the DBMS for processing, let’s run the same query and disable
the implicit pass-through ability with the PROC SQL option NOIPASSTHRU:

OPTIONS DEBUG=DBMS_SELECT SASTRACE=',,,d' SASTRACELOC=SASLOG NOSTSUFFIX;

6

LIBNAME OLD 'L:\BFSPROC\CARSVOUCHERS';

LIBNAME CARSSQ ODBC DATASRC=FMS_PROD SCHEMA=DBO USER=&SYSUSERID. DBPROMPT=YES;

PROC SQL NOIPASSTHRU;

 CREATE TABLE old.TABLE2 AS

 SELECT DISTINCT Contract_Year AS year, Profile_ID AS profid, Appn AS app,

 Proj AS prj, Resp AS ra, Pcnt AS perct

 FROM CARSSQ.VOUCHER_CODING as Codetable

 WHERE CONTRACT_YEAR IN ('14','15','16','17');

QUIT;

Here is the abbreviated log produced:

9 LIBNAME CARSSQ ODBC DATASRC=FMS_PROD SCHEMA=DBO USER=&SYSUSERID. DBPROMPT=YES;

NOTE: Libref CARSSQ was successfully assigned as follows:

 Engine: ODBC

10

11 <PROC SQL statements here>;

ODBC: AUTOCOMMIT is NO for connection 0

ODBC: AUTOCOMMIT turned ON for connection id 0

DBMS_SELECT: SELECT * FROM "DBO"."VOUCHER_CODING"

ODBC_1: Prepared: on connection 0

SELECT * FROM "DBO"."VOUCHER_CODING"

DBMS_SELECT: SELECT "Contract_Year", "Profile_ID", "Appn", "Proj", "Resp", "Pcnt"

FROM "DBO"."VOUCHER_CODING" WHERE (("Contract_Year" IN ('14','15','16','17')))

ODBC_2: Prepared: on connection 0

SELECT "Contract_Year", "Profile_ID", "Appn", "Proj", "Resp", "Pcnt"

FROM "DBO"."VOUCHER_CODING" WHERE (("Contract_Year" IN ('14','15','16','17')))

ODBC_3: Executed: on connection 0

Prepared statement ODBC_2

NOTE: Table OLD.TABLE2 created, with 2406 rows and 13 columns.

24 QUIT;

NOTE: PROCEDURE SQL used (Total process time):

 real time 9.28 seconds

 cpu time 0.25 seconds

Narrative:

This log looks very similar to that of the first query, which did not contain a trigger to achieve implicit SQL pass-
through. Feedback from SASTRACE, highlighted in blue, shows the initial connection and the initial SELECT all
clause prepared. Feedback from DEBUG=DBMS_SELECT, highlighted in green, also demonstrates the initial
SELECT all clause, and a more specific SQL statement generated to attempt to be passed through to the DBMS.
However, we see no notification that implicit pass-through occurred, as we expected with the use of the
NOIPASSTHRU option. This query was ran on SAS and took just over 9 seconds to run. This query was able to run
faster with the DISTINCT keyword, but not as fast as the query that was processed on the DBMS.

7

EFFECT IMPLICIT SQL PASS-THROUGH ON RUN TIME

Notice in all three benchmarking runs, we’ve created the same table of 2406 observations and 13 variables. Use of
the keyword DISTINCT improved the run time by 2 seconds over the code without it, but the real efficiency comes
with processing the query on the DBMS instead of SAS.

Method Processing
Location

Real Time (seconds)

No distinct, no implicit pass-through SAS 11.1

Distinct, no implicit pass-through SAS 9.3

Distinct, implicit pass-through DBMS 5.8

Table 1. Effect of processing location on run time.

SUMMARY

Where your data is processed can greatly impact run time. Processing data on the DBMS instead of in SAS is more
efficient in most cases. Achieving implicit SQL pass-through with use of a SAS/ACCESS LIBNAME engine interface
is a relatively easy way to pass queries to the DBMS, as long as you understand the coding triggers specific to your
DBMS. System options DEBUG and SASTRACE offer valuable information to determine if implicit pass-through
occurred. Knowing the implicit SQL pass-through triggers for your DBMS will enable you to optimize your queries by
writing queries that will be processed on the DBMS with greater efficiency than SAS can typically provide.

REFERENCES

 Plemmons, Howard. 2010. What’s New in SAS/ACCESS
®
. SAS Global Forum 2010. Available at

http://support.sas.com/resources/papers/proceedings10/302-2010.pdf

 SAS Institute Inc. The LIBNAME Statement for Relational Databases. DBPROMPT= LIBNAME Option.
Available at
http://support.sas.com/documentation/cdl/en/acreldb/65247/HTML/default/viewer.htm#p0bu3zsz1a08ton1msxdx
1jo45np.htm

 SAS Institute Inc. Usage Note 207: New DEBUG Options for SAS/ACCESS Interfaces for Version 7+. Available
at http://support.sas.com/kb/00/207.html

 SAS Institute Inc. Usage Note 6850: DEBUG=DBMS_SELECT returns the SELECT clause passed to a
relational DBMS. Available at http://support.sas.com/kb/6/850.html

 SAS Institute Inc. 2008. Tactics for Pushing SQL to the Relational Databases. Available at
http://support.sas.com/resources/papers/TacticsForPushingSQLtoRelationalDatabases.pdf

 SAS Institute Inc. 2011. SAS
®
 Certification Prep Guide: Base Programming for SAS

®
9, Third Edition. 44. Cary,

NC: SAS Institute Inc.

 SAS Institute Inc. 2014. SAS/ACCESS® 9.4 for Relational Databases: Reference, Sixth Edition. Cary, NC: SAS
Institute Inc. Available at http://support.sas.com/documentation/cdl/en/acreldb/67589/PDF/default/acreldb.pdf

ACKNOWLEDGMENTS

The author acknowledges Dr. LeRoy Bessler for inspiration on the paper topic, as well as Bruce Lund and Robin
High, Beyond the Basic SAS Section Chairs, for acceptance of this paper.

RECOMMENDED READING

 Tactics for Pushing SQL to the Relational Databases

 SAS/ACCESS documentation

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Misty Johnson

http://support.sas.com/resources/papers/proceedings10/302-2010.pdf
http://support.sas.com/documentation/cdl/en/acreldb/65247/HTML/default/viewer.htm#p0bu3zsz1a08ton1msxdx1jo45np.htm
http://support.sas.com/documentation/cdl/en/acreldb/65247/HTML/default/viewer.htm#p0bu3zsz1a08ton1msxdx1jo45np.htm
http://support.sas.com/kb/00/207.html
http://support.sas.com/kb/6/850.html
http://support.sas.com/resources/papers/TacticsForPushingSQLtoRelationalDatabases.pdf
http://support.sas.com/documentation/cdl/en/acreldb/67589/PDF/default/acreldb.pdf

8

Enterprise: State of WI Department of Health Services
E-mail: mistyA.johnson@wi.gov
Web: www.linkedin.com/in/MistyJohnson4

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:mistyA.johnson@wi.gov
http://www.linkedin.com/in/MistyJohnson4

