Paper SA-14-2014

An Introduction to the Mighty DATASETS Procedure
Ben Cochran, The Bedford Group, Raleigh, NC

ABSTRACT

On occasions, a SAS user might find themselves in the position where they need to do a number of things to a SAS
dataset, like copying it or renaming it or even deleting it. All of these tasks, and many more can be done with the
incredible DATASETS procedure. The purpose of this paper is to show a step by step approach to accomplishing
these tasks.

INTRODUCTION
The DATASETS procedure is a utility procedure that manages your SAS files. With the DATASETS procedure you
can do the following:

copy SAS files from one location to another.

rename SAS files,

repair SAS files,

delete SAS files,

list a SAS library’s content,

list the attributes of a SAS data set,

append SAS datasets,

modify attributes of SAS data sets and variables within the data set,
create and manage audit files for SAS data sets.

LK T T T

The typical syntax of the DATASETS procedure is:

PROC DATASETS << option —1 <... option —n >>>;

AGE current-name related-SAS-file-1
< current-name related-SAS-file-n> ;
APPEND BASE= SAS-dataset
DATA= SAS-dataset ;
AUDIT SAS-file < SAS-password) < GENNUM = integer > ) > ;
CHANGE old-name-1 = new-name-1
< old-name-n = new-name-n > ;

CONTENTS < option-1 < option-n >>;

COPY OUT = SAS-file
IN = SAS-file
EXCLUDE SAS-file < SAS-file-n >
SELECT SAS-file < SAS-file-n >;

DELETE SAS-file-1 < SAS-file-n >;

MODIFY SAS-file < option-1 < ... option-n > ;
ATTRIB variable list(s) attribute lists(s) ;
FORMAT variable-1 format-1 ;

IC CREATE < constraint-name = > constraint ;
IC DELETE constraint-name-1 < constraint-name-n >| _ALL_ ;
INDEX CREATE index-specification < options >;
INDEX DELETE index-1 <index-n >| _ALL_ ;
INFORMAT variable-1 <informat-1>;
LABEL variable-1 =< ‘label-1' > ;
RENAME old-name = new-name ;

REBUILD SAS-file < options >;

REPAIR SAS-file-1 < SAS-file-n >;

SAVE SAS-file-1 < SAS-file-n >;

run ;

Figure 1. — Proc DATASETS Syntax.



Example 1

WORK library.

Use the DATASETS procedure to copy the CLASS dataset from the SASHELP library to the

116
117
118
119
120

NOTE :
NOTE :
NOTE :
NOTE :

=] Log - (Untitled)

proc datasets 1lib=sashelp
copy out=work;
select class;

quit,;

nolist;

Copying SASHELP.CLASS to WOBK.CLASS (memtype=DATA).

There were 19 observationz read from the data set SASHELP.CLASS.
The data set WORBK.CLASS has 19 obserwvationz and 5 wvariables.

PROCEDURE DATASETS used [(Total process time):

real time 0.03 =
cpu time 0.03 =

econds
econds

Figure 2. Copying a data set.

The NOLIST option on the PROC statement suppresses information on the contents of the SASHELP library.

information is not desired, it makes the SAS/Log less cluttered.

Example 2: Use the DATASETS procedure to remove all labels and formats from the WORK.CLASS dataset .
the CONTENTS procedure to see the initial attributes. Use the CONTENTS statement in the DATASETS procedure

to verify the removal of the labels and the formats from all variables.

If this

Use

modify class ;

attrnib _all_ label=""
attrib _all_ format =
contents data = class;

'
2

'
2

run;

- proc contents data = work.class;
run;

-proc datasets lib =work memtype =data nolist ;

Figure 3. Removing attributes.

The output from the CONTENTS procedure shows the original labels.

Ailphabetic List of Variablez and Attributes

# Variable Tvpe
3 fAGE Hum
4 HE IGHT Hum
1 NAME Char
2 SEX Char
Y HE IGHT Hum

Len

==l == == = =]

Label

fige in years
Height in inches
First Hame
Gender

Height in pounds

Figure 4. Partial Proc CONTENTS output.



The DATASETS Procedure
Data Set Hame WORK .CLASS Obzervations 13
Member Type DATA VYariables 5
Engine va Indexes 0
Created Friday, June 13, 2014 11:10:40 AM Obszervation Length 40
Last Modified Friday, June 13, 2014 11:16:18 aAM Deleted Observations 0
Protection Compresszed NO
Data Set Tvpe Sorted NO

Figure 5. Partial Proc DATASETS output.

The effects of the CONTENTS statement in the DATASETS procedure shows no labels (or formats).

Ailphabetic List of Yariablez and Attribute=s
# Variable Tvpe Len
3 AGE Mum g
4 HEIGHT Hum H]
1 MAME Char H]
z SEX Char 1
L HMEIGHT Mum g

Figure 6. Partial Proc DATASETS output.

Example 3: Using the MOVE option on the COPY statement removes the data set from the original library

proc datasets lib=work;
copy out = sas_3 move;
select catalog_sales;
quit;

Figure 7. The MOVE option.
First, this step copies the CATALOG_SALES data set from the WORK library to the SAS_3 library. Once the copy is

successfully made, the MOVE option deletes the data set from the WORK library. If the CATALOG_SALES data
set already exists in the SAS_3 library, it will be overwritten by the above step.

Example 4: Use the DATASETS procedure to append the work.class data set to the SASHELP.CLASS data set.

159 proc datazets library=work nolist;
160 append base=work.class data==zashelp.class;
161 run;

OTE: fAppending SASHELFP .CLASS to WORK .CLASS.

OTE: There were 19 obszerwvations read from the data set SASHELP.CLASS.
OTE: 19 obserwvations added.

OTE: The data =et WORK.CLASS ha=s 38 observations and 5 variables.

Figure 8. The APPEND statement.



At the conclusion of this step, there are still NO labels on the variables. This is because the WORK.CLASS was listed
as the BASE dataset. If the SASHELP.CLASS was listed as the BASE dataset, the variables would have labels.

Example 5: Modify the Proc DATASETS step by adding a DELETE statement to the step with the APPEND
statement. After the concatenation of the data sets is complete, the data set named in the DELETE statement is
may no longer be needed.

242
243 proc datasets libraryv=work nolist;
244 append base=class_1 data=class_2 ;

MOTE: Appending WOBK .CLASS_ 2 to WORK.CLASS_1.

MOTE: There were 19 ob=serwvations read from the data set WORK.CLASS_2.
MOTE: 19 observationz added.

HOTE: The data =et WOBRK.CLAS5_1 has 395 observationz and 5 variables.
245 delete clazs_?2;

246 quit;

MOTE: Deleting WOBK.CLASS_? (memtype=DaTa).

HOTE: PROCEDURE DATASETS used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

Figure 9. The DELETE statement.

Example 6: Use the DATASETS procedure to create and delete indexes. The general form of the syntax is:

proc datasets library = X
modify ;
index delete :
index create / X
quit;

Figure 8. General syntax for creating and deleting indexes.

Example 6b: Specifically use the DATASETS procedure to create a simple index on an existing SAS data set
(sas_3.catalog_sales) using STORE as the key variable.

proc datasets lib = sas_3;
modify catalog_sales;
index create store / nomiss;
quit;

Figure 9. Specific syntax for creating an index.

Notice that the NOLIST option is NOT used. The SAS log on the next page shows some of the information that is
displayed by default. The contents of the SAS_3 library are displayed in the SAS log..



L81 proc datazets lib==zas_3;
----- Directory==—-=-
Libref: 5Aa5_3
Engine: L
Physical Hame: C:%Ben‘courses2001%5A5_3'material
File Name: C:“Ben'courses2001'5A5_3'material
# Hame Hemtyvpe File Size Last Modified
1 CATALOG_SALES DATA 113910784 08APRZ002:18:26:09
2 5A5_3 CATALOG 119808 0BAPRZ002:18:23:29
3 STORE_50 DATA 2679808 03APRZ002:22:21:50
4 STORE_S0V VIEHW 5120 03APRZ002:23:04:49
Lag2 modify catalog_sales;
L83 index create store/nomiss;
HOTE: Simple index store has been defined.
L84 quit;
NOTE : PROCEDURE DATASETS used:
real time 14.78 =econds
cpu time £.5% =seconds

Figure 10. The SAS Log.

Example 6¢c: Use the DATASETS procedure to create a composite index on an existing SAS data set
(sas_3.catalog_sales) using STORE and YEAR as the key variables.

proc datasets lib = sas_3 nolist;

modify catalog_sales;

index create Store_Year = ( Store Year )/ nomiss;
quit;

Figure 11. Creating a composite index.

In this example, the name of the index is STORE_YEAR and it is build on the two variables, STORE and YEAR.

EFFICIENT SAS PROGRAMMING

One way that you can write efficient SAS code is to use the DATASETS procedure to do some ‘house keeping’ tasks
such as renaming variables.

Example 7a: Use the DATA step to INEFFICIENTLY rename a variable. Notice the amount of time it took the
DATA step to run. (real time — 30.4 seconds, cpu time — 2.43 seconds).

1 data catalog_sales;

2 zet mas_3.catalog_sales;

3 rename acct_id = acct_number ;
<4 run;

MOTE: There were 1279147 observations read from the data =set SAS5_3.CATALOG_SALES.
HOTE: The data =et WOBK.CATALOG_SALES has 1279147 observations and 19 variable=s.
HOTE: DaTA statement used (Total process time):

real time 30.04 seconds

cpu time 2.43 seconds

Figure 11. Renaming a variable using the DATA step.



Example 7b: Use the DATASETS procedure to EFFICIENTLY rename a variable.

proc datasets library = work;

modify catalog_sales;

rename sales_mon = sales_month;
quit;

Figure 12. Using the DATASETS procedure to rename a variable.

Look at the SAS log below. Notice the amount of time it took the DATASETS procedure to run. (real time -0.1
seconds, cpu time —0.01 seconds).

A look at the SAS log reveals how quickly the above step runs.

E] Log - (Untitled) E]@I

17 proc datasets 1ibrary=work;
Directory
Libref HORK
Engine va
Physical Hame C:%DOCUME™1'Owner'LOCALS™ 1" Temp'\SAS Temporary Files'_TD2100
File Name C:“DOCUME™ 1" 0wner ', LOCALS™ 1" Tenp'5AS Temporary Files' TD2100
Hember
# HMHame Tvpe File Size Last Modified
1 CATALODG_SALES DATA 205472768 265ep06:20:18:18
18 modify catalog_sales;
19 rename sales_mon = sales_month;
MOTE: Renaming variable zales_mon to =zales_month.
20 quit;
HOTE: MODIFY was success=ful for WOBK.CATALDG_SALES.DATA.
NOTE: PROCEDURE DATASETS used (Total process time):
real time 0.01 seconds |
cpu time 0.01 seconds |
w

Figure 13. The SAS Log.

CONCLUSION
This paper illustrates some of the more useful tasks that can be done by the DATASETS procedure. Not only can
one do many things with the DATASETS procedure, but it can perform them efficiently as well.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

The author can be reached at:

Ben Cochran
The Bedford Group

3224 Bedford Avenue a
Raleigh, NC 27607 SAS ‘?‘"'H“m
(919) 741-0370 Affiliate Member

bencochran@nc.rr.com




