
1 

Paper SA-14-2014 

An Introduction to the Mighty DATASETS Procedure   
Ben Cochran, The Bedford Group, Raleigh, NC 

 
 
ABSTRACT 
On occasions, a SAS user might find themselves in the position where they need to do a number of things to a SAS 
dataset, like copying it or renaming it or even deleting it.  All of these tasks, and many more can be done with the 
incredible DATASETS procedure.  The purpose of this paper is to show a step by step approach to accomplishing 
these tasks.  
 
INTRODUCTION 
The DATASETS procedure is a utility procedure that manages your SAS files. With the DATASETS procedure you 
can do the following:    
 

 copy SAS files from one location to another.              
 rename SAS files,  
 repair SAS files, 
 delete SAS files,  
 list a SAS library’s content,  
 list the attributes of a SAS data set, 
 append SAS datasets, 
 modify attributes of SAS data sets and variables within the data set,  
 create and manage audit files for SAS data sets.                

 
 
The typical syntax of the DATASETS procedure is:                   

 
 
 
 
 
 
 
Figure 1.  –  Proc DATASETS Syntax.  
 

  PROC DATASETS << option – 1  <… option – n >>> ;   
 

 AGE  current-name  related-SAS-file-1   
        < current-name related-SAS-file-n> ;  
 APPEND BASE= SAS-dataset 
                  DATA= SAS-dataset ;   
 AUDIT  SAS-file < SAS-password) < GENNUM = integer > ) > ;   
 CHANGE  old-name-1 = new-name-1  
                   < old-name-n = new-name-n > ;  
 CONTENTS  < option-1 < option-n >> ;  
 COPY OUT = SAS-file     
             IN =  SAS-file  
             EXCLUDE  SAS-file < SAS-file-n > 
             SELECT   SAS-file  <  SAS-file-n > ;   
 DELETE  SAS-file-1  <  SAS-file-n > ;  
 MODIFY SAS-file < option-1  < … option-n  >   ;  
  ATTRIB   variable list(s) attribute lists(s) ;   
  FORMAT variable-1  format-1  ;   
  IC CREATE  < constraint-name = >  constraint ;        
 IC DELETE   constraint-name-1  < constraint-name-n > |  _ALL_  ;  
       INDEX CREATE   index-specification  < options > ;  
       INDEX DELETE    index-1  < index-n > |  _ALL_  ;      
       INFORMAT  variable-1  < informat-1 > ; 
       LABEL  variable-1 = < ‘label-1’ >  ;   
       RENAME  old-name = new-name ;  
 REBUILD  SAS-file  <  options > ;   
 REPAIR   SAS-file-1  <  SAS-file-n > ;  
 SAVE   SAS-file-1  < SAS-file-n > ; 
 

run ;     



2 

 
Example 1:    Use the DATASETS procedure to copy the CLASS dataset  from the SASHELP library to the 
WORK library.        
 

 
  
Figure 2.  Copying a data set.    
 
 
The NOLIST option on the PROC statement suppresses information on the contents of the SASHELP library.   If this 
information is not desired, it makes the SAS/Log less cluttered.   
 
 
Example 2:  Use the DATASETS procedure to remove all labels and formats from the WORK.CLASS dataset .    Use 
the CONTENTS procedure to see the initial attributes.   Use the CONTENTS statement in the DATASETS procedure 
to verify the removal of the labels and the formats from all variables.  
 

 
Figure 3.  Removing attributes.    
 
 
The output from the CONTENTS procedure shows the original labels. 
   

 
Figure 4.  Partial Proc CONTENTS output. 



3 

 
Figure 5.  Partial Proc DATASETS output.  
 
 
The effects of the CONTENTS statement in the DATASETS procedure shows no labels (or formats).  
 

 
Figure 6.  Partial Proc DATASETS output.    
 
 
 
 
Example 3:  Using the MOVE option on the COPY statement removes the data set from the original library 

 
 
Figure 7.   The MOVE option. 
 
First, this step copies the CATALOG_SALES data set from the WORK library to the SAS_3 library.  Once the copy is 
successfully made, the  MOVE  option deletes the data set from the WORK library.  If the CATALOG_SALES  data 
set  already exists in the SAS_3 library,  it will be overwritten by the above step.    
  

 
 
Example 4:  Use the DATASETS procedure to append the work.class data set to the SASHELP.CLASS data set.  
 

 
Figure 8.  The APPEND statement.   
 

proc datasets lib=work;  
     copy out = sas_3  move;  
     select  catalog_sales;  
quit; 



4 

At the conclusion of this step, there are still NO labels on the variables.  This is because the WORK.CLASS was listed 
as the BASE dataset.   If the SASHELP.CLASS was listed as the BASE dataset, the variables would have labels.   
 
 
 
Example 5:  Modify the Proc  DATASETS step by adding a DELETE statement to the step with the APPEND 
statement.   After the concatenation of the data sets is complete,  the data set named in the DELETE statement is 
may no longer be needed.   
  

 
 
Figure 9.   The DELETE statement.  
 
 
 
Example 6:   Use the DATASETS procedure to create and delete indexes.   The general form of the syntax is:  
 

.  
Figure 8.   General syntax for creating and deleting indexes.  
 
 
 
Example 6b:  Specifically use the DATASETS procedure to create a simple index on an existing SAS data set 
(sas_3.catalog_sales) using STORE as the key variable.  
 

 
 
Figure 9.  Specific syntax for creating an index.   
 
Notice that the NOLIST option is NOT used.  The SAS log on the next page shows some of the information that is 
displayed by default.  The contents of the SAS_3 library are displayed in the SAS log..             
 

proc datasets library = libref ;  
     modify dataset ; 
         index delete index – name ; 
         index create index – specification / options ;       
quit; 

proc datasets lib = sas_3; 
    modify catalog_sales; 
    index create store / nomiss; 
quit; 



5 

 
 
Figure 10.  The SAS Log. 
 
 
Example 6c:  Use the DATASETS procedure to create a composite index on an existing SAS data set 
(sas_3.catalog_sales) using STORE  and  YEAR as the key variables.  
 

 
Figure 11.  Creating a composite index.  
 
In this example, the name of the index is STORE_YEAR and it is build on the two variables, STORE and YEAR.  
 
 
EFFICIENT SAS PROGRAMMING    
 
One way that you can write efficient SAS code is to use the DATASETS procedure to do some ‘house keeping’ tasks 
such as renaming variables.   
 
 
Example 7a:  Use the DATA step to INEFFICIENTLY rename a variable.  Notice the amount of time it took the 
DATA step to run.   (real time – 30.4 seconds,   cpu time – 2.43 seconds). 
 

 
  
Figure 11.   Renaming a variable using the DATA step.     
 
 

proc datasets lib = sas_3  nolist; 
    modify catalog_sales; 
    index create Store_Year = ( Store  Year ) / nomiss; 
quit; 



6 

Example 7b:  Use the DATASETS procedure to EFFICIENTLY rename a variable.  
 
 
 
 
 
 
 
 
Figure 12.  Using the DATASETS procedure to rename a variable. 
 
 
Look at the SAS log below.  Notice the amount of time it took the DATASETS procedure to run.   (real time –0.1 
seconds,   cpu time – 0.01 seconds). 
 
A look at the SAS log reveals how quickly the above step runs.  
 

 
 
Figure 13.  The SAS Log.  
 
 
 
 
CONCLUSION 
This paper illustrates some of the more useful tasks that can be done by the DATASETS procedure.  Not only can 
one do many things with the DATASETS procedure, but it can perform them efficiently as well.       
 
 
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS  
Institute Inc. in the USA and other countries.  ® indicates USA registration.  
  
Other brand and product names are trademarks of their respective companies.  
 
 
The author can be reached at:  
Ben Cochran 
The Bedford Group  
3224 Bedford Avenue 
Raleigh, NC 27607  
(919) 741-0370  
bencochran@nc.rr.com  
 
 
 

proc datasets library = work; 
    modify catalog_sales; 
    rename  sales_mon = sales_month;  
quit; 


