
1

Paper BB-17-2014

Why Aren’t Exception Handling Routines Routine? Toward Reliably Robust

Code through Increased Quality Standards in Base SAS

Troy Martin Hughes

ABSTRACT

A familiar adage in firefighting—If you can predict it, you can prevent it—rings true in many circles of accident

prevention, including software development. If you can predict that a fire, however unlikely, someday might rage

through a structure, it’s prudent to install smoke detectors to facilitate its rapid discovery. Moreover, the combination

of smoke detectors, fire alarms, sprinklers, fire retardant building materials, and rapid intervention may not prevent a

fire from starting, but they can prevent it from spreading and facilitate its immediate and sometimes automatic

extinction. Thus, as fire codes have grown to incorporate increasingly more restrictions and regulations and as fire

suppression gear, tools, and tactics have continued to advance, even the harrowing business of firefighting has

become more reliable, efficient, and predictable. As operational SAS data processes mature over time, they too

should evolve to detect, respond to, and overcome dynamic environmental challenges. Erroneous data, invalid user

input, disparate operating systems, network failures, memory errors, and other challenges can surprise users and

cripple critical infrastructure. Exception handling describes both the identification of and response to adverse,

unexpected, or untimely events that can cause process or program failure, as well as anticipated events or

environmental attributes that must be handled dynamically through prescribed, predetermined channels. Rapid

suppression and automatic return to functioning is the hopeful end state but, when catastrophic events do occur,

exception handling routines can terminate a process or program gracefully while providing meaningful execution and

environmental metrics to developers both for remediation and future model refinement. This text introduces fault-

tolerant Base SAS exception handling routines that facilitate robust, reliable, and responsible software design.

INTRODUCTION

Exception handling is so ubiquitous within software applications that it often may be overlooked and, in many cases,

seamless programmatic adaptation without user alert or intervention is the objective. In other instances, a user may

be alerted to the exception but functionality is not impacted. For example, when a user scrolls through the “Recent

Documents” tab in Microsoft Word and selects a document to open, under normal conditions, the document opens

without hiccup. The application has responded to an event—the user’s selection—and opens the selected document.

But under exceptional conditions—for example, if the document has been moved or deleted—the application cannot

locate the ghost document, displays an error message, but continues otherwise undaunted. The exception—the

unavailability of the document—is “caught” (or detected) and subsequently “handled” (or processed) and the user is

alerted without significant interference or detriment. Exceptions attributed to user input should be anticipated and

articulated through business rules and exception handling routines. Thus, in robust applications, a user’s actions—

however menacing, malicious, or aberrant—never should result in abrupt termination of the application.

Events, however, describe not only user actions and inputs but also hardware, systems, network, and environmental

states and attributes. While the occurrence of adverse events inherently may be unpredictable, their existence

typically should not elude or surprise developers. As the complexity and dynamism of a software's objective and

operational environment increase, so too must that software's ability to respond flexibly to environmental and other

factors. For example, in an organization in which SAS programs run on both Windows and UNIX machines, and in

both development and production environments, the identification and handling of SAS automatic macro variables

can ensure that code flexibly adapts to these respective environments without user awareness. Moreover, if warnings

or errors are detected during program execution, reliable software will attempt to circumnavigate incidents to return to

normal functioning. And, when process or program functioning still cannot be restored, exception handling routines

can facilitate graceful termination to ensure dependent processes and data are not corrupted by preceding failures.

2

Data analytics development often differs from traditional software development because it relies less on user action

and input and more on the ingestion, transformation, and analysis of diverse data sets. Because of this disparity,

exception handling routines often are utilized in complex extract transform load (ETL) infrastructures to provide

quality assurance methods for data processes, and quality control mechanisms that validate data products and

solutions. Exceptional data—falling outside the expected type, scope, completeness, quantity, quality, or frequency—

just as easily as user or environmental factors can cause data flows to fail when quality assurance and quality control

methods are not emplaced.

Because the Base SAS language does not support inherent exception handling functions, a disparity exists between

SAS and many object-oriented programming (OOP) and third generation languages (3GLs) that adroitly and natively

handle exceptions. Java and Python, for example, seamlessly integrate exception handling routines that dynamically

alter program flow and which are more readable and intuitive than similar routines that must be hacked in SAS. Given

these SAS functional limitations, concepts such as "asking forgiveness not permission"—commonplace in and

advantaging OOP languages—simply do not exist in SAS. Moreover, because SAS exception handling often

convolutes already complex code, SAS literature and examples often omit this critical conduit to quality because of

the confusion it introduces. Notwithstanding these limitations, critical SAS infrastructures warrant exception handling

routines to deliver responsible, reliable, robust solutions that are flexible and fault tolerant.

To be clear, SAS programs that are simple, straightforward, exist in static environments, and are intended for a

limited distribution and duration may not require reliability or robustness. In these instances, exception handling might

unnecessarily delay project completion or increase costs, while providing neither immediate nor enduring business

value to the customer. However, SAS software supporting critical components, enduring projects, diverse

environments, dependent processes, or a large user base should adopt commensurately high quality standards that

can benefit from exception handling routines that not only can detect smoke, but often put out the fire.

TOWARD QUALITY

Software quality often is assessed in regard to the combination of functional requirements and performance

requirements. Functional requirements specify capabilities that software must demonstrate and describe what

software does, such as ingesting data into an ETL process to support data analytics. Performance requirements—

also known as non-functional requirements—demonstrate not what software does but rather how and how well it

does it. For example, is the ETL process reliable? Is it robust enough to recover from memory errors? Can the

application be ported from a Windows to a UNIX environment? Is the software easily maintained and modified when

defects are discovered or changes are necessary? Thus, software may be functionally sound, but if it cannot perform

reliably or is easily thwarted by environmental and other factors, it may require timely and costly upgrades or be

abandoned for higher quality software.

One of the most basic performance requirements is that software be reliable. In other words, does it function

accurately without failure and, if it fails, with what frequency? Because software failure often can be caused by user,

data, system, or environmental injects or attributes, robustness assesses the ability of software to navigate through

dynamic or unpredictable environments. A third common performance requirement is efficiency and, especially in the

era of big data, customers are eager to implement solutions that rapidly process voluminous data to deliver tactical

business intelligence and data-driven decisions. Portability, a fourth requirement, depicts the degree to which

software can be used on different systems or in different environments. While these four attributes represent only a

fraction of all performance requirements, each can benefit from exception handling routines discussed and

demonstrated in this text.

Quality software does not, however, imply rogue inclusion of all performance attributes. Rather, the inclusion or

exclusion of specific performance attributes should be defined in project scope in relation to specific software

objectives, the intended user base, anticipated risks, and the expected functional environment. Thus, SAS developers

need to understand whether they are building a Miata or a Mercedes, and all stakeholders should maintain a unified

vision of software quality and performance. And, after all, quality is not free in the zero sum game of software

development. The addition of performance requirements can add complexity, increase cost, delay development, or

3

even cause a team to forfeit or deprioritize the delivery of certain functional requirements. Notwithstanding, only

through the combination of both functional and performance requirements can quality software be delivered.

EXCEPTION HANDLING – FORGIVENESS VERSUS PERMISSION

Many OOP languages include inherent exception handling functions that facilitate code functioning, flow, and

readability. An extremely abridged introduction to the Python Try-Except handling follows and demonstrates this

functionality. A single line of Python code, for example, will produce an error because the variable X has not been

defined.

print(X)

The generated error reads: “NameError: name ‘X’ is not defined.” This is undesirable because it causes the program

to terminate with an error. The error can be avoided through three mechanisms, including: business rules to ensure

that X is always defined, asking permission to print before execution is attempted, or asking forgiveness after

execution is attempted. Thus, permission equates to error prevention through tests that determine all requirements

have been met a priori, while forgiveness represents detection methods that provide notification that an error has

occurred. Asking permission yields the following Python statement, which prints the value of X if the variable exists.

if ‘X’ in locals():

 print(X)

else:

 print(‘Variable not defined’)

The code is straightforward in this example, but in actual software that encompasses dozens of variables and

complex business logic, convoluted if-then-else decision trees can obfuscate readability and make code maintenance

difficult. Moreover, in asking permission, the developer often must test for specific rather than general faults. Imagine,

for example, the additional overhead incurred by having successive conditional logic statements that additionally

must test the type or structure of X or its value. Thus, a preferred method in software development often is to ask for

forgiveness rather than permission, as demonstrated in the following example.

try:

 print(X)

except NameError:

 print(‘Variable not defined’)

Asking for forgiveness through the Try-Except structure instructs Python to attempt to print X but, if that statement

fails, process flow switches to the Except statement and displays a warning message rather than producing an error.

If the print statement succeeds, however, the Except block is skipped and process flow continues. In actual code,

rather than simply displaying a message, the Except block could contain instructions that request the user to define

the value of X, transfer process control elsewhere, write to an error log, or any number of other options. And, because

a single Try-Except block can contain limitless statements that are tested and executed in sequence, at the first sign

of trouble, process flow is switched safely to the Except block, improving both functionality and readability of code.

In Base SAS, exception handling typically occurs by asking for permission. The equivalent request to evaluate the

existence of X before printing it is demonstrated below in SAS macro statements.

%macro test;

 %if %symexist(X) %then %put &X;

 %else %put Variable not defined;

%mend;

%test;

In SAS, just as in Python, asking for permission is simple in straightforward conditional logic statements. However, as

business rules, anticipated risks, and the number of other attributes that must be tested increase, the complexity

4

quickly can produce unwieldy, inscrutable code. In nested conditional logic, SAS developers have the option of

utilizing either the much disparaged %GOTO statement to transfer process control or the nested %IF-%THEN-

%ELSE statements. SAS unfortunately has no equivalent functionality to ask for permission, but this can be

approximated by testing the SAS automatic macro variable &SYSCC. Displaying the “current condition” of the SAS

environment, &SYSCC will be “0” after successful execution, “4” after a warning code, or a higher number if runtime

errors were encountered. The following code represents an attempt to ask for forgiveness in SAS.

%put SYSCC BEFORE: &SYSCC;

%put &X;

%put SYSCC AFTER: &SYSCC;

This code produces the following output to the SAS log:

%put SYSCC BEFORE: &SYSCC;

SYSCC BEFORE: 0

%put &X;

WARNING: Apparent symbolic reference X not resolved.

&X

%put SYSCC AFTER: &SYSCC;

SYSCC AFTER: 4

By testing the value of &SYSCC at the end of the code or after every boundary step (i.e., RUN or QUIT statement) or

macro statement, code can respond dynamically if a runtime warning or error was encountered. Because &SYSCC is

a read-write variable, its value can be reset manually after encountering a warning or error with the %LET SYSCC=0

statement. This test is extremely useful to test final disposition—successful or failed—of a macro or module of code,

but will not indicate where the warning or error occurred. Unlike the versatility of Try-Except blocks, multiple tests of

&SYSCC are required to redirect SAS process flow immediately after an error occurred, because the SAS default

option NOERRORABEND causes subsequent SAS processes to execute even after an error is encountered.

Although the ERRORABEND system option will cause execution to terminate immediately, the &SYSCC code in this

example is "4" and represents a warning that would not be affected by activating the ERRORABEND option.

The following example highlights the repetitive post hoc testing required after every boundary step in SAS code that

asks forgiveness, demonstrating the functional limitations and redundancies when implemented in SAS. Moreover,

because a macro wrapper is required to conditionally execute SAS Data steps and procedures and because

individual %GOTO statements are required to redirect process flow, readability of code quickly is diminished.

%macro test;

data x (keep=id var1);

 set temp1;

run;

%if &SYSCC>0 %then %goto err;

data y (keep=id var2);

 set temp2;

run;

%if &SYSCC>0 %then %goto err;

data merged;

 merge x y;

by id;

 run;

%if &SYSCC>0 %then %goto err;

%err: %put An error occurred;

%mend;

5

The SAS automatic macro variable &SYSERR also has utility for exception handling, as it returns the numeric

warning or error code from the most recent procedure or Data step. But, because the value resets after each

boundary step, &SYSERR must be implemented immediately after a RUN or QUIT statement. Moreover, because

macro code does not trigger boundaries, macro errors will not be reported. Consider the following code that highlights

an initial erroneous data step, a subsequent successful data step, and a final erroneous macro function.

%put SYSERR &SYSERR;

data x;

 set y; /* does not exist */

run;

%put SYSERR &SYSERR;

data x;

run;

%put SYSERR &SYSERR;

%gobble /* macro gobble does not exist */

%put SYSERR &SYSERR;

This code produces the following results, which demonstrate &SYSERR correctly identifies the error caused by the

missing Y data set. However, &SYSERR fails to identify that the macro %GOBBLE does not exist.

%put SYSERR &SYSERR;

SYSERR 0

data x;

 set y; /* does not exist */

ERROR: File WORK.Y.DATA does not exist.

run;

NOTE: The SAS System stopped processing this step because of errors.

WARNING: The data set WORK.X may be incomplete. When this step was stopped there

were 0 observations and 0 variables.

WARNING: Data set WORK.X was not replaced because this step was stopped.

NOTE: DATA statement used (Total process time):

 real time 0.03 seconds

 cpu time 0.05 seconds

 %put SYSERR &SYSERR;

 SYSERR 1012

 data x;

 run;

 NOTE: The data set WORK.X has 1 observations and 0 variables.

 NOTE: DATA statement used (Total process time):

 real time 0.02 seconds

 cpu time 0.04 seconds

 %put SYSERR &SYSERR;

 SYSERR 0

 %gobble /* macro gobble does not exist */

 _

 180

 WARNING: Apparent invocation of macro GOBBLE not resolved.

 ERROR 180-322: Statement is not valid or it is used out of proper order.

 %put SYSERR &SYSERR;

6

 SYSERR 0

The automatic macro variable &SQLRC represents the process return code for the SQL procedure, similar to the

&SYSERR macro variable in Data steps and SAS procedures. Because the SQL procedure can contain numerous

statements before the QUIT statement is encountered, a successful statement that completes without errors will

change the value of %SQLRC to 0 (i.e., no error), even if the prior statement contained runtime errors within the

same procedure. Due to this functionality, an evaluation of &SQLRC would need to occur after each statement within

the SQL procedure if multiple statements exist. A more efficient yet less specific solution is to use the automatic

macro variable &SQLEXITCODE that contains the highest error value encountered during the entire SQL procedure.

Other automatic macro variables that detect errors and warnings include &SYSERRORTEXT and

&SYSWARNINGTEXT. However, because both variables are read-only and because they do not reset even after

program termination, their use should occur only with extreme caution. For example, if code is first run that contains

warnings and errors, and code is subsequently run in the same SAS session that does not contain warnings or errors,

the last warning and error encountered in the first program will persist if either of these macro variables is referenced

during the second program. Because of this idiosyncrasy, incorrect interpretation of the meaning of these macro

variables can lead to either false positive or false negative return codes being reported.

Thus, regardless of which method is attempted to ask for forgiveness in SAS, functional limitations are encountered.

Whereas Python catches an error and immediately redirects process flow to an Except block, SAS produces an

actual error. This triggers the error to be recorded in the SAS log and, when executed inside Enterprise Guide, an

undesirable red X will appear on the code node icon. Moreover, if the ERRORABEND system option is selected, the

program will terminate even before the code has had a chance to detect errors. For all these reasons, while

forgiveness remains the preferred method in most languages to accomplish exception handling, in Base SAS,

permission often will need to be asked. And, in the most robust systems, post hoc testing of &SYSCC or

&SQLEXITCODE automatic macro variables should be implemented to further validate process success.

EXCEPTION HANDLING – IS BIGGER ALWAYS BETTER?

Exception handling should be applied commensurately to the intended degree of quality as well as function, intent,

and scope of software, but is bigger handling always better? The primary goal of exception handling is to improve the

responsiveness of software by making it more flexible or adaptable. Examples of exception handling utilizing SAS,

however, often do little to alter program flow or add functionality or capabilities, but rather provide user feedback on

runtime status via the log. In many cases, while this additional information may assist the developers during

development to build more fault-tolerant code, it doesn't actually add quality to the software because the user gains

no benefit from these unseen messages. Especially in end-user development environments in which developers

represent the sole users of their programs, gratuitous exception handling unfortunately flourishes. Consider the

following example, which highlights the error received when a data set that does not exist (test.states) is referenced.

data x;

 set test.states;

ERROR: File TEST.STATES.DATA does not exist.

run;

A simple macro wrapper can test for library and data set existence before attempted access in the data step. While

both tests in this example could be completed in a single statement, they are separated to give an idea of the kind of

nested logic common in actual data processes.

%macro testdata;

 %if %sysfunc(libref(test))=0 %then %do;

 %if %sysfunc(exist(test.states)) %then %do;

7

 data x;

 set test.states;

 run;

 %end;

 %else %put Data Set does not exist;

 %end;

 %else %put Library does not exist;

%mend;

While the addition of this macro code does prevent the above error, additional functionality is not gained by the user

because the end result remains consistent: the data set X was not generated. Therefore, in the above example, a

simple post hoc check of the macro variable &SYSCC would have been sufficient and would have eliminated the

gratuitous exception handling. Or, better yet, simply let the native SAS error suffice and add no exception handling

routines whatsoever. The revised example below demonstrates a more dynamic attempt to a priori determine if the

data set is valid.

macro testdata(lib=, dsn=);

 %global err;

 %let err=library or data set does not exist;

 %if (%sysfunc(libref(&lib))=0 and %sysfunc(exist(&lib..&dsn))^=0) %then %let

err=;

%mend;

%macro wrapper;

%testdata (lib=test, dsn=states);

%if %length(&err)=0 %then %do;

 data x;

 set test.states;

 run;

 %end;

%mend;

%wrapper;

Notwithstanding this improvement to the flexibility of the code, it still provides no additional value to the user, because

the data set X is not created. Thus, as omission of test.states represents a catastrophic exception that must be

handled, at this point exception handling can either signal to terminate the process or the program. The following

code modifies the macro %WRAPPER and, by demonstrating the process flow more contextually, finally highlights

the first true performance improvements—robustness and resilience. The code now skips data sets that do not exist,

thus allowing subsequent data sets in the &FILELIST macro variable to be processed in a fault-tolerant fashion.

%macro wrapper;

%let filelist=states cities counties;

%let i=1;

%do %while(%length(%scan(&filelist,&i))>1);

 %let fil=%scan(&filelist,&i);

 %testdata (lib=test, dsn=&fil);

 %if %length(&err)=0 %then %do;

 data x;

 set test.states;

 run;

 %end;

 %let i=%eval(&i+1);

 %end;

%mend;

8

%wrapper;

SAS developers should be cautioned that while exception handling can be utilized to relay warning and error

messages to the SAS log, the true advantage of exception handling is its ability to alter program flow during

execution. Thus, before embarking on an exception handling crusade, developers should determine for each project

the specific added functionality or performance that proposed exception handling routines will provide. Those

benefits, once enumerated, should be compared against the anticipated added cost, time, or complexity required for

exception handling implementation to determine if their inclusion is warranted. Thus, the increased use of exception

handling can—but does not always—denote increased business value or higher quality software.

EXCEPTION HANDLING TO MONITOR ENVIRONMENTAL STATE

Portability describes software's ability to function across diverse environments, such as on both Windows and UNIX

operating systems. Although the majority of Base SAS language is portable between these operating environments,

some functional or language components differ. For example, the SLEEP function operates in Windows, but must be

replaced with the CALL SLEEP function in UNIX environments. The following macro code excerpt demonstrates the

ability to interpret the automatic macro variable &SYSSCP that denotes the type of operating system, and to respond

by conditionally executing the respective appropriate SLEEP function.

%if &SYSSCP=WIN %then %let sleeping=%sysfunc(sleep(10));

%else %if &sys=UNIX %then %do;

 data _null_;

 call sleep(10,1);

 run;

 %end;

%end;

Another environmental difference that often exists is the distinction between development and production

environments. SAS practitioners may design, develop, test, and validate code on one system, after which only

validated code is transferred to a separate production system. Although the operating systems may be functionally

identical, differences may exist between disparate systems such as directory structures, file names, or the type and

nature of runtime log and error reporting. The &SYSSITE automatic macro variable reflects the SAS site number for

each SAS license and, by testing this number, code conditionally can execute in either testing or production

environments. By implementing flexible, conditional logic, developers can maintain single version source code

applicable to all environments, thus obviating the error-prone method of maintaining disparate development and

production code bases. The following example demonstrates a conditionally defined SAS library, thus facilitating one

version of code to be maintained and executed across diverse development and production environments.

%if &SYSSITE=1234512345 %then %do; /* development environment */

 libname final '/folders/dev/';

 %end;

%else %if &SYSSITE=5555599999 %then %do; /* production environment */

 libname final '/folders/prod/';

 %end;

Some environmental errors—such as memory errors—can be detected through quality assurance routines and

resolved through a variety of mechanisms. A SORT procedure that causes an out of memory error might be resolved

by stopping other SAS sessions that are hogging resources and subsequently restarting the offending program. While

appropriate by laissez faire development standards, this manual approach would be neither pragmatic for nor

possible in a production environment. A responsible solution should automatically terminate processes dependent on

the failed SORT procedure. A more creative solution might, after detecting the memory error on the SORT procedure,

immediately initiate a user-created macro %SAFESORT that iteratively performs sorts of subsets and later joins the

results. Such a macro might take significantly longer to execute, given its additional complexity, but nevertheless

9

would run without memory errors unlike the out-of-the-box SORT procedure. And, despite its longer runtime, the

automated detection and immediate response would create a much more efficient, end-to-end process flow.

Other environmental states or errors, however, require an even broader perspective. One comprehensive solution

implements the SYSTASK statement to execute exception handling within a high quality, production-grade

environment
i
. This facilitates the implementation of post hoc testing for process success based on return codes that

are generated from separate batch jobs. Even environmental errors such as a process timeout can be captured by

enclosing processes within the SYSTASK wrapper for execution. Notwithstanding, some SAS or systems errors will

defy even identification utilizing SAS. For example, when the SAS server becomes comatose and crashes, no

amount of exception handling routines can identify or resolve this issue because the scripts are written on a system

that has stopped functioning. In these extreme but hopefully rare circumstances, two possible solutions exist for

catastrophic exception detection. Some systems implement a ping that executes a SAS script to test system health at

regular intervals, the results of which can be ported to a BI interface, dashboard, or other dynamic report. In this type

of system, absence of ping results will demonstrate that the system has stopped functioning. A second automated

method employs scripts external to the SAS environment that regularly interrogate health of the SAS server or its

data sets. Each method provides the assurance that server failure will be detected as an exception through routinized

methods rather than through ad hoc discovery as analysts email their administrator asking "Is the server down?"

EXCEPTION HANDLING TO MONITOR FILE STATE

Testing to determine library and data set existence already has been demonstrated and, as discussed, should be

implemented only when performance is improved, for example, by creating fault-tolerant process flows. Thus, in

those instances in which data set absence signals certain defeat, native SAS error reporting may be a better solution

than complex exception handling routines. Data availability, however, implies not only that a data set exists but also

that it can be accessed. If a data set is being created by one process, other processes or users attempting to access

that data set will fail because an exclusive lock is held by the first process. A single locked data set can cripple a

complex data infrastructure but, by installing processes that test for data set availability before attempted use,

process continuity can be maintained. The macro %LOCKITDOWN
ii
 was created by the author and tests data set

availability by identifying file locks and, after encountering a lock, repeatedly testing until access can be gained or the

process times out. The %LOCKITDOWN macro is not described in detail in this text but its use in modifying process

flow through exception handling routines is presented below in which the lock status is tested every 5 seconds for

300 seconds or until access is gained.

%include '/folders/myfolders/lockitdown.sas';

%macro test;

 %LOCKITDOWN(lockfile=test.states, sec=5, max=300);

 %if %length(&lockerr)=0 %then %do; /* thus, if data set is available */

 data x;

 set test.states;

 run;

 %end;

 %else %put ERROR;

%mend;

%test;

SAS literature is full of examples that depict the benefits of combining related input/output (I/O) tests into modular,

reusable macros that simultaneously can test the existence, availability, or appropriateness (i.e., naming conventions)

of SAS libraries, data sets, or external files. One example, the Validator
iii
, demonstrates exception handling routines

that support a number of dynamic situations, including validating SAS data sets. By combining similar functionality,

macro reuse is maximized because the macro is generalizable to diverse purposes and projects. As long as each

macro contains a return code that demonstrates its success, failure, and possibly other process metrics, these

modular pieces easily can be linked together for process validation efforts. An automated dashboard developed by

the author dynamically and comprehensively monitors both file states and data structures of all permanent data sets

10

within a SAS server. By iteratively pinging data sets in a continuous manner, this smoke detector signals to users and

developers if a data set is locked for an unexpected amount of time or if structural components of the data set have

been unexpectedly modified.
iv
 Integrated systems such as this that maintain a pulse on the SAS environment can

provide invaluable feedback, including immediate recognition of process or product failure.

EXCEPTION HANDLING TO MONITOR DATA STRUCTURE

The preceding examples of exception handling have demonstrated quality assurance routines that flexibly respond to

errors, environmental attributes, and other injects to facilitate robust program execution. Quality control measures,

conversely, monitor and validate products to ensure that they meet stated functional objectives and quality standards.

In data analytic development environments, common products include data products such as data sets or analytic

reports that are generated by ETL processes or derivative analysis. Validation of a data product can demonstrate to

an analyst that a data set is accurate and ready to be incorporated into analyses. It also can signal to dependent

processes that the data set is ready to be parsed, transformed, or integrated into a data store or infrastructure.

Because data often are ingested from unreliable third-party sources, data validation methods can be executed not

only on data sets that are created by SAS process flows, but also on those that are ingested. Thus, in production-

grade SAS environments, data quality validation can occur at any point throughout the process flow, on ingested,

intermediate, and output data sets.

Data structure validation describes the validation of data set metadata, including everything that can be known about

an empty data set. This includes the name, number, type, and format of fields, as well as whether indexes, sorting

algorithms, data constraints, descriptions, labels, or other attributes are present. Transactional data sources are a

common candidate for data structure validation because transactional updates typically are received with

standardized frequency and format. Thus, if a data set historically received with eight fields suddenly has ten, some

alert to stakeholders is warranted because this variance should be investigated if not expunged.

One method to identify or test metadata is through the CONTENTS procedure, which produces a 41-attribute

description of each field in a data set. The following example exports this metadata into a temporary data set (Temp)

for manual viewing or validation through automated means.

proc contents data=test.states details out=temp;

run;

A second method is to utilize the SQL procedure to extract metadata from the sashelp.vcolumn dictionary table,

which produces an 18-attribute data set that describes each field in one or multiple data sets. The advantage of the

SQL procedure is it can be optimized for faster performance with the WHERE clause.

proc sql;

 create table first as select * from sashelp.vcolumn

 where libname="TEST" and memname="STATES";

quit;

run;

A third method is to access metadata through SAS I/O functions, such as VARNAME or VARTYPE. The primary

advantage of this method is that access can be achieved entirely through macro coding with use of the %SYSFUNC

macro function. For example, the following code prints the field name and type (e.g, character or numeric) for the first

field in the data set test.states, all of which could be imbedded within a Data step if necessary.

%macro test;

 %let dsid=%sysfunc(open(test.states));

 %let varname=%sysfunc(varname(&dsid,1));

 %let vartpe=%sysfunc(vartype(&dsid,1));

 %put &varname &vartype;

%mend;

11

Regardless of which method is utilized to extract metadata, the common objective is to compare all attributes of a

newly ingested or newly created data set against its baseline—i.e., the metadata expected and known to be correct.

One way to accomplish this is to maintain a library (baseline) of empty data sets, for example, containing the data set

baseline.states having zero observations but all other file attributes. To validate future data sets that are either

created or received, a developer only would need to compare each new data set against its respective baseline.

The following exception handling routine extracts metadata from baseline.states, extracts metadata from a newly

created data set test.states, and compares these using the COMPARE procedure. Note that the fields representing

library name, member name, number of observations, create date, and modify date must be removed because these

inherently will differ between baseline and comparison data sets. Because the OUTNOEQUAL option only outputs

observations when discrepancies exist, if the data set structures do match, the temporary data set Validate will have

zero observations. Utilizing this logic, the macro %TEST attempts to validate the data set test.states and, if

successful, prints a notification. In an actual production environment, this log entry would be replaced with further

validation methods, business rules, or process flows that could proceed with freshly validated confidence.

%macro validate (dsn1=, dsn2=);

 %global err;

 %let err=;

 proc contents data=&dsn1 details out=temp1 (drop=libname memname nobs

 crdate modate) noprint;

 run;

 proc contents data=&dsn2 details out=temp2 (drop=libname memname nobs

 crdate modate) noprint;

 run;

 proc compare data=temp1 compare=temp2 noprint out=validate outnoequal;

 run;

 proc sql noprint;

 select count(*) into :nobs

 from work.validate;

 quit;

 run;

 %if &nobs>0 %then %let err=does not validate;

%mend;

%macro test;

 %validate (dsn1=baseline.states, dsn2=test.states);

 %if %length(&err)=0 %then %put Validation Complete;

%mend;

%test;

EXCEPTION HANDLING TO MONITOR DATA QUALITY

Exception handling and all other methods that suffuse quality into software culminate with data quality. Because data,

data products, data solutions, and data-driven decisions lie at the heart of data analytic development, data quality is

discussed thoroughly throughout SAS literature. Whereas environmental, system, software, user, and other errors or

attributes that must be handled in robust software can be done so through largely standardized methods that are

generalizable across projects and even organizations, data quality must be enforced through sometimes complex

business rules that are largely endemic to a field, organization, project, or data set. Thus, the additional complexity

and need to understand both the industry-specific business rules as well as their technical implementation can make

data quality exception handling an exceptionally taxing experience.

Not only are the rules tougher to enforce, but the crime may be much more difficult to recognize. In process validation

or data structure validation, often a runtime error is produced when exception handling fails. Once the error is

12

discovered, typically the exception handling routines can be modified (i.e., improved) and the process can be run with

the assurance that at least that error will not occur again. With data quality validation, however, logic rather than

runtime errors often are produced, thus test data cases represent one method to validate known injects through a

process to ensure that output conforms to expectations. Data constraints, control charts, and other statistical tests

also help validate output against expected norms, and can elucidate faulty business rules and logic that produce

invalid results.

Because SAS literature is so replete with methodologies to clean and validate data, only one example is provided

here. It highlights, however, the common requirement to validate values of a categorical variable against a known set

of discrete values. Where data constraints have not been enforced during data entry or collection, a common first

task is the standardization of values that bins acronyms, abbreviations, and other spelling variations into cleaned

fields. Thus, when values are encountered that lie outside the set of expected categorical values, exception handling

routines can alert stakeholders or either delete or modify a value, observation, or data set to preserve its integrity.

In the following example, the data set chem_data includes seizures of homemade explosive (HME) precursor

material found in Afghanistan and recorded in an open-ended character field. Because of the lack of data constraints

during data input, widely disparate spelling variations exist in the Chem field, some of which have been

accommodated by the standardization model depicted in the conditional logic. But, because the value

“aluminumnumnum” is not included in the binning algorithms, a quality control report should identify this outlier rather

than ingesting it into the data set. Later, an analyst might decide that this value should in fact be binned as

"aluminum" but, for now, it remains excluded from the data until the chemical data model has been updated.

data chem_data;

 infile datalines delimiter=',';

 length RecNo $20 Province $ 40 Chem $50;

 input RecNo $ Province $ Chem $;

 datalines;

1,Zabul,ammonium nitrate

2,Kandahar,ammonium nitrate

3,Helmand,calcium ammonium nitrate

4,Ghazni,calcium ammonium nitrate

4,Ghazni,ammmonium nitrate

4,Ghazni,potassium chlorate

5,Zabul,ammonium nitrate crystals

6,Kandahar,aluminumnumnum

;

run;

data chem_data_cleaned;

 set chem_data;

length Chem_cleaned $50;

 if Chem in ('ammonium nitrate','ammmonium nitrate','ammonium nitrate crystals')

 then Chem_cleaned='ammonium nitrate';

 else if Chem in ('calcium ammonium nitrate')

 then Chem_cleaned='calcium ammonium nitrate';

 else if Chem in ('potassium chlorate')

 then Chem_cleaned='potasssium chlorate';

 else Chem_cleaned='UNKNOWN!!!';

run;

In this example, the exceptional event that is being handled is the incidence of the new value “aluminumnumnum”

that does not appear in the current data model and which must be evaluated. A separate text by the author

demonstrates a dynamic, macro-based implementation of categorical variable binning and standardization, followed

by quality control validation and exception reporting for data that are not found within the data model.
v

13

THE DREADED LOG – WHAT IS IT GOOD FOR?

The SAS log, while critical to the development environment, is the least useful process metric in a production-grade

environment. During software development, the log is useful for design feedback, debugging, optimization, and

validation of business rules and other logic. However, once software is operationally deployed to a user base, these

benefits cease and reliance on the SAS log in a production environment only will act to reinforce poor development

practices. Consider that when a user opens Google Chrome and navigates to a Gmail account, no log is created or, if

it is, the log is internal and unavailable to the end user. SAS software developers should code with the same fierce

confidence and technical prowess when developing high-end data analytic programs. In a production environment,

exception handling should be utilized both to prevent and detect errors, rather than relying upon too-little-too-late post

hoc log analysis. There is no magical warning or error that appears solely in the SAS log that cannot be detected

during program execution through competent exception handling. Not one.

In an ad hoc environment in which end-user developers are tactically coding short-term solutions that don't require

significant quality or performance attributes, the log is the perfect place to validate process completion. But, as

software becomes more dynamic, distributed, depended upon, and enduring, reliance on the log for this validation

should be avoided. In a SAS production environment, thus, the log is good for one and only one thing: continuous

quality improvement (CQI.) No one gets it right the first try. Just when a developer believes he's conceptualized

everything possible that could cause code failure, something will fail and a new fault will have been discovered. In

these instances, hopefully an error is generated to the log, the log has been saved, the log file is parsed quickly

through automated processes, and the developer is able to utilize this information to recreate the conditions under

which the error occurred. In most situations, similar errors can be prevented or detected through additional exception

handling routines, thus making the code more reliable, robust, and enduring than before the fault was uncovered.

A best practice is thus to save log results for all production processes. Numerous SAS white papers detail extensive

methods that automatically parse SAS logs, immediately identifying salient information such as unexpected warnings

or errors. The vast majority of production logs should contain no unexpected warnings or errors and these clean logs

can be deleted immediately by the log parser. But, on those rare occasions in which a production process fails

unexpectedly, the existence of a log that has captured the event can ensure that developers engineer future

processes that proactively handle and thus prevent recurrences of that specific failure.

CONCLUSION

Exception handling represents a common quality assurance method used in software development to facilitate the

smooth execution of software despite environmental, system, user, and other adverse or unexpected events.

Moreover, exception handling provides developers the means to build higher quality software that espouses

performance requirements such as reliability, robustness, efficiency, portability, and modularity. Although Base SAS

unfortunately has no inherent exception handling functions, this functionality nevertheless can be implemented

through savvy design and creative solutions that maximize the use of SAS macro language, SAS automatic macro

variables, and I/O functions. While not all SAS code necessitates performance enhancements like exception

handling, all SAS developers should understand its benefits and functionality, and insist on its use in complex

software projects that support critical infrastructure in diverse environments for distributed user bases.

REFERENCES

i
 Cogswell, Denis. 2005. More than Batch – A Production SAS® Framework. SUGI 30.

ii
 Hughes, Troy Martin. 2014. From a One-Horse to a One-Stoplight Town: A Base SAS Solution to

Preventing Data Access Collisions through the Detection and Deployment of Shared and Exclusive File
Locks. Western Users of SAS Software (WUSS).

iii
 Wilson, Steven A. 2011. The Validator: A Macro to Validate Parameters. SAS Global Forum.

14

iv
 Hughes, Troy Martin. 2014. Will You Smell Smoke When Your Data Are on Fire? The SAS Smoke

Detector: Installing a Scalable Quality Control Dashboard for Transactional and Persistent Data. Midwest
SAS Users Group (MWSUG).

v
 Hughes, Troy Martin. 2013. Binning Bombs When You’re Not a Bomb Maker: A Code-Free Methodology

to Standardize, Categorize, and Denormalize Categorical Data Through Taxonomical Control Tables.
Southeast SAS Users Group (SESUG).

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Troy Martin Hughes
E-mail: troymartinhughes@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

