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ABSTRACT 

This paper discusses the selection and transformation of continuous predictor variables for the fitting of binary logistic 
models.  The paper has two parts:  (1) A procedure and associated SAS® macro is presented which can screen 
hundreds of predictor variables and 10 transformations of these variables to determine their predictive power for a 
logistic regression.  The SAS macro passes the training data set twice to prepare the transformations and one more 
time through PROC TTEST.  (2) SAS macros are discussed which conduct the FSP (function selection procedure) for 
logistic regression by P. Royston and W. Sauerbrei. 

INTRODUCTION 

The setting for this discussion is direct marketing or credit scoring or other applications of binary logistic regression 
where sample sizes for model building are large (perhaps exceeding 1000 observations for each target value) and 
the emphasis is on building predictive models to be used for scoring future observations.  In this setting: 

The preparation of predictors for binary logistic regression includes the following phases: 

 Screening predictors to detect predictive power 

 Transforming the predictors to maximize the predictive power 

 Other phases (not discussed) include finding interaction of predictors and elimination of collinear predictors 
 

Predictors fall into three broad categories: 

(1) Nominal and ordinal 
(2) Counts 
(3) Continuous 

 
An effective and widely used transformation for nominal and ordinal predictors is weight-of-evidence (WOE) coding.  
WOE is also often applied to count predictors.  Optimal binning before WOE transformation is a key requirement.
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But sometimes the routine use of binning of continuous predictors followed by WOE coding in direct marketing or 
credit scoring may over-fit and complicate these predictive models.  Specifically, when a functional form can be 
accurately identified for a continuous predictor, the application of binning and WOE coding will lose predictive power.   

FIGURE 1 provides an illustration.  In this loose hypothetical case, the relationship between predictor X and log-odds 
of Y is linear.  But the approximation to log-odds(Y) by X_cut3 creates three abrupt jumps in the prediction of log-
odds(Y).  These jumps are not related to underlying behavior of X and Y and create prediction error. 

 
FIGURE 1: Hypothetical 3-cutpoint binning of a predictor X 

THIS PAPER HAS TWO MAIN SECTIONS 

(1) In the first section a statistical procedure and SAS macro for this procedure are given for screening hundreds of 
continuous predictors for logistic regression.  The goal is to identify predictor candidates that merit further study.  

                                                           
1
 A SAS macro for binning and WOE transformations is given by Lund and Brotherton (2013) and Lund (2013).  An updated version 

(version 8f) of the macro is available from the author. 
2
 The binning (using cut-points) of a predictor in bio-statistics is criticized by Royston and Sauerbrei (2008 p. 58) 
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This is done by measuring the predictive power of the original predictor and 10 transformations of the predictor.  
The entire procedure requires 3 passes of the original data set regardless of the number of predictors. 
 

(2) In the second section there is a discussion of the FSP (function selection procedure) of Royston and 
Sauerbrei (2008).

3
  The book by Royston and Sauerbrei, Multivariable Model-building, (2008) includes a link to a 

SAS implementation of FSP (see p. 267).  FSP can be applied to ordinary regression, logistic regression, and 
Cox regression.  Our focus is only on logistic regression.  We run the SAS implementation of FSP on a test case 
and then present an alternative version of a SAS macro for FSP for logistic models.  This alternative macro is 
relatively simple and includes a helpful and necessary pre-processing DATA step.  

SCREENING CONTINUOUS PREDICTORS FOR PREDICTIVE POWER 

Given dozens or hundreds of candidate continuous predictors, the “screening problem” is to test each predictor as 
well as a collection of transformations of the predictor for, at least, minimal predictive power in order to justify further 
investigation.  If the number of candidate predictors is only a few, a brute force approach of fitting the predictor and 
transformations of the predictor by PROC LOGISTIC provides a simple, direct solution.  However, each PROC 
LOGISTIC requires a pass of the training data set.    

Instead, an alternative procedure is described which screens dozens or hundreds of predictors in a single run of 
PROC TTEST. In this paper this procedure is given as a SAS macro %LOGIT_CONTINUOUS.  The use of this 
macro is recommended wherever the number of candidate predictors is more than, perhaps, five.  
%LOGIT_CONTINUOUS takes advantage of a connection between 2-group discriminant analysis, a t-test, and 
logistic regression.  This connection is fully developed in Appendix A and only the result keys are presented below.  

THE CONNECTION BETWEEN 2-GROUP DISCRIMINANT ANALYSIS AND LOGISTIC REGRESSION 

Let X be a predictor for a binary target Y.  The values of Y identify two groups (j = 1, 2) of observations.  It is assumed 
that X has a univariate normal distribution for each group with common standard deviation σ but differing means µ1 

and µ2.  Then, just as in logistic regression, the 2-group discriminant analysis leads to the equation: 

Log (P(Y=1 | X=x) / P(Y=2 | X=x)) = β0 + β1 x 

The key results are: 

(1) When fitting the 2-group discriminant model to a sample, the coefficient β1 is estimated by b1D, where b1D is 
found by substituting sample statistics from the two groups,  ̅1 ,  ̅2, and Sp

2
 as shown in equation (A): 

b1D = ( ̅1  -  ̅2) / Sp
2
 … (A) 

Here, the pooled variance Sp
2
 estimates σ

2
 where Sj

2
 are the sample variances for samples j = 1, 2 and 

Sp
2
 = {(n1 – 1)S1

2
 + (n2 – 1)S2

2
}/(n1 – 1 + n2 – 1) 

The “D” is added as a subscript to “b1” to indicate that the method of fitting is by discriminant analysis. 
Additionally, “L” will be added as a subscript to “b1”to give b1L to indicate when the estimation of β1 is by logistic 
regression maximum likelihood. 

Both b1D and b1L are consistent estimators of β1.  For large enough samples, b1D will be close to b1L 

(2) In order to test that β1 = 0 vs. β1 ≠ 0 the discriminant analysis coefficient b1D can be regarded as a t-statistic with 
n1 + n2 - 2 d.f. via this factorization:  b1D  =  t  (1/Sp)  sqrt(1/n1 + 1/n2).  The square of this t-statistic is essentially a 
chi-square with 1 d.f.  and it will be close to the Wald chi-square statistic for b1L from logistic regression. 

COMPARISON OF DISCRIMINANT ANALYSIS AND LOGISTIC REGRESSION WITHOUT 
NORMALITY 

Without the normality assumptions on X, there is not a theory that guarantees that b1D and b1L will be close in value. 

Press and Wilson (1978 p. 705) state that b1D and b1L will give similar results except if the response (Y=1) or non-
response (Y=0) is heavily concentrated over a sub-region of the domain of X.  Hosmer, Lemeshow, and Sturdivant 
(2013, p. 21-22) note that when X is binary, then b1D will over-estimate β1.   

The observations of Press and Wilson and Hosmer, Lemeshow, and Sturdivant rule out the usage of b1D when X is a 
binary variable, especially when the response is concentrated over one of the two values of X.  (Consider variables 
X3 and X4 in the section on simulation which directly follows.) 

  

                                                           
3
 See Royston and Sauerbrei (2008 p. 82) for the FSP and references to their earlier papers. 
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DESCRIPTION OF SIMULATION OF ONE-VARIABLE DISCRIMINANT AND LOGISTIC MODELS  

To test the robustness of the approximate equality of b1D and b1L and their associated chi-square statistics, the 
distributions of six predictors X1 to X6 were simulated.  There were 4,000 observations with 2,232 observations 
where binary target Y = 1 and 1,768 observations where Y = 2.  

X1:  Distribution of X1 when Y=1 is N(0, 1).
4
  Distribution of X1 when Y=2 is N(0.1, 1).  The distributions for the two 

groups meet the assumptions of normality with equal variances as given for equation (A).  The values of b1D and 
b1L and their chi-squares should be nearly identical. 

 
X2:  Distribution of X2 when Y=1 is N(0, 1).  Distribution of X2 when Y=2 is N(0.1, 1.2).  The distributions for the two 

groups meet the assumptions of normality but without equal variances. 
 
X3:  Distribution of X3 is binary with P(Y=2|X3=0) = 0.358 and P(Y=2|X3=1) = 0.544.  The distribution of Y strongly 

depends on X3.  There are 2,088 observations (52.2%) where X3 = 0. 
 
X4:  Distribution of X4 is binary with P(Y=2|X4=0) = 0.459 and P(Y=2|X4=1) = 0.426.  The distribution of Y is much 

less dependent on X4.  There are 1,949 observations (48.7%) where X4 = 0. 
 
X5:  Distribution of X5 has 5 values having a quadratic relationship to P(Y = 2| X5) as shown in the table. 
 

TABLE 1: Distribution of Rate of Y=2 for X5 

X5 N Obs P(Y=2 | X5) 

1 835 0.380 

2 764 0.424 

3 799 0.454 

4 797 0.504 

5 805 0.450 

 
X6:  Distribution of X6 is uniform on 0 to 1 for both Y = 1 and Y = 2.  Both b1D and b1L should be insignificant. 

The simulation code is given below. 

data example; 

do i = 1 to 4000; 

 Y = (ranuni(12345) < .45) + 1;  /* Y=2 are ~ 45% */ 

 /* Normal distribution tests */ 

 if Y = 2 then X1 = rannor(12345) + 0.1; 

  else if Y = 1 then X1 = rannor(12345); 

 if Y = 2 then X2 = 1.2*rannor(12345) + 0.1; 

  else if Y = 1 then X2 = rannor(12345); 

 /* binary variable tests */ 

 if Y = 2 then X3 = (ranuni(12345) > .40); 

  else if Y = 1 then X3 = (ranuni(12345) > .60); 

 if Y = 2 then X4 = (ranuni(12345) > .50); 

  else if Y = 1 then X4 = (ranuni(12345) > .50); 

 /* discrete variable test */ 

 r = ranuni(12345); 

 if Y = 2 then do; 

  if r < .20 then X5 = 1; 

   else if r < .40 then X5 = 2; 

   else if r < .60 then X5 = 3; 

   else if r < .80 then X5 = 4; 

   else X5 = 5; 

  end; 

 r = ranuni(12345); 

 if Y = 1 then do; 

  if r < .23 then X5 = 1; 

   else if r < .42 then X5 = 2; 

   else if r < .61 then X5 = 3; 

   else if r < .80 then X5 = 4; 

   else X5 = 5; 

  end; 

 /* equal distributions test */ 

 r = ranuni(12345); 

                                                           
4
 Normal with mean 0 and standard deviation 1 
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 if Y = 2 then X6 = r; 

 r = ranuni(12345); 

 if Y = 1 then X6 = r; 

 

 output; 

 end; 

 

The code below computes the values for b1D (coefficient for X from the discriminant model ) for X1 – X6.  First, 
preliminary calculations are performed by PROC TTEST.  An ODS OUTPUT data set for PROC TTEST is the ODS 
data set STATISTICS.  It is saved as TS in the code below.  TS is further processed by a DATA step to compute b1D. 
Here, Y = 2 is being modeled as the “response” versus Y = 1.  The results are printed in TABLE 2. 

Note, no discriminant analysis procedure appears in this code, 

ods listing; 

ods output Statistics = TS; 

ods exclude ConfLimits; 

ods exclude Equality; 

ods exclude EquivLimits; 

ods exclude EquivTests; 

ods exclude TTests; 

 

proc ttest data=example plots=none; 

   class Y; 

   var X1 X2 X3 X4 X5 X6; 

 

data TS_2; set TS; 

retain mean1 mean2 n1 n2; 

keep variable n1 n2 mean1 mean2 sp b1D; 

if class = "1" then do; mean1 = mean; n1 = n; end; 

if class = "2" then do; mean2 = mean; n2 = n; end; 

if class = "Diff (1-2)" 

then 

do; 

 sp = stddev;  

 b1D = -(mean1 - mean2)/(sp**2); /* minus sign to model Y=2 as the response */ 

 output;  

 end; 

proc print data = TS_2 noobs; var Variable b1D; 

run; 

 

The coefficients from PROC LOGISTIC for the same six models are compared to the results of discriminant analysis.  
The subscript “L” indicates the coefficient was fitted by logistic regression.  SAS code for computing b1L is not 
included. 

TABLE 2: Comparison of Coefficients from Discriminant and Logistic 

Variable b1D b1L 

X1 0.089 0.089 

X2 0.111 0.111 

X3 0.828 0.805 

X4 -0.136 -0.136 

X5 0.090 0.090 

X6 0.160 0.160 

 
Although only X1 satisfied the assumptions for equation (A), the discriminant analysis coefficient b1D is close to the 
coefficient b1L from logistic regression for 5 of the 6  variables. Only for X3 is there a noticeable difference.  Here, as 
predicted by Hosmer, Lemeshow, and Sturdivant, the value of bD exceeds b1L in absolute value.  Of more importance 
is whether the square of the t-statistic associated with b1D is a good approximation to the Wald chi-square for the 
logistic coefficient b1L.  The code below computes the square of the t-statistic which underlies b1D. 

ods listing; 

ods output TTests = TT; 

proc ttest data = example plots = none; 

   class Y; 

   var X1 X2 X3 X4 X5 X6; 

 

data TT; set TT; 
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tValue = -tValue; /* minus sign to model Y=2 as the response */ 

chisq_D = tValue**2; 

label Probt = "Prob ChiSq"; 

 

proc print data = TT label; 

var Variable tValue DF Probt chisq_D;  

where method = "Pooled"; 

 
The square of the t-statistic is a chi-square with 1 degree of freedom since a t-statistic with a large number of degrees 
of freedom (3,998 in this example) is essentially a standard normal and the square of a standard normal is distributed 
as a chi-square with 1 degree of freedom. 

Chi-square values and significance levels from PROC TTEST are given by TABLE 3. 

TABLE 3: Chi-Square Values for Coefficients from Discriminant Analysis 

Variable t Value d.f. ChiSq for b1D Prob ChiSq 

X1 2.80 3998 7.823 0.0052 

X2 3.77 3998 14.243 0.0002 

X3 12.73 3998 162.138 <.0001 

X4 -2.14 3998 4.568 0.0326 

X5 4.03 3998 16.222 <.0001 

X6 1.47 3998 2.148 0.1428 

 
TABLE 4 gives the chi-squares from logistic.  With the exception of X3 the chi-square values and significance from 
PROC LOGISTIC are very close to the values from PROC TTEST and, in particular, are close enough to function as 
a screener for predictor variable candidates.  Even for X3 both the chi-squares are large and indicate the significance 
of X3 as a predictor.  (SAS code for computing logistic results is not included.) 

TABLE 4: Chi-Square Values from Logistic 

Variable ChiSq for b1L Prob ChiSq 

X1 7.796 0.0052 

X2 14.145 0.0002 

X3 153.718 <.0001 

X4 4.563 0.0327 

X5 16.127 <.0001 

X6 2.146 0.1430 

CONCLUSIONS 

The risk in using the t-statistic as a screener is that a good predictor for logistic regression would be rejected.  A less 
serious risk is that non-productive predictors are retained for the next step of modeling.  Neither of these outcomes is 
indicated by this simulation nor by other tests of predictors from actual data (not shown here).  Still, more extensive 
simulation testing of the t-test screener is warranted. 

The X5 variable with only 5 values had very similar t-statistic and logistic results.  However, binning and WOE coding 
of X5 remains the preferred approach rather than applying a continuous transformation to X5. 

MACRO FOR SCREENING HUNDREDS OF LOGISTIC MODEL PREDICTORS  

The SAS macro %LOGIT_CONTINUOUS can screen hundreds of numeric predictors for logistic regression as well 
as 10 transformations of these predictors using the chi-square which is computed from a t-statistic.  This t-statistic is 
mathematically derived from the coefficient of 2-group discriminant analysis as explained in Appendix A.  The 10 
transformations include 7 monotonic transformations and 3 quadratic transformations.  Three passes of the data set 
are required for this computation. 

1. PROC MEANS to determine the minimum value of each predictor 
2. A DATA STEP: 

a. Predictors with minimum < 1 are shifted to have minimum value of 1 
b. 10 transformations of the predictor are computed (such as LOG, X

2
, and others) 

3. A PROC TTEST to compute t-statistics 

The original X and the 10 transformations are: 

 8 monotonic:  X
p
 where p is taken from S = {-2, -1, -0.5, 0, 1,  0.5, 2, 3} where “0” denotes log(x).  This list 

includes the original X. 
5
 

                                                           
5
 These transformations anticipate the discussion of the second section of the paper of the FSP by Royston and Sauerbrei.  A future 

enhancement to %LOGIT_CONTINUOUS will be automatic scaling of X
2
 X

3
 and the quadratic transforms to reduce extreme values. 
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 3 quadratic:  (X-median)
2
, (X-p25)

2
, (X-p75)

2
 where median, p25, and p75 are respectively the 50

th
, 25

th
, and 

75
th

 percentiles for X. 
 

The parameters for %LOGIT_CONTINUOUS are: 
 
DATASET:  The input data set name. 
Y:  A numeric binary target variable where the larger value is the “positive” response. 
INPUT:  A list of numeric predictor variables delineated by space.  A predictor may have missing values. 

EXAMPLE: 

%LOGIT_CONTINUOUS is run on X1 and X6 from the data set “example”.  The macro call is: 

%LOGIT_CONTINUOUS(example, Y, X1 X6); 

As shown in the TABLE 5 the best transformations of X1 are X1
3
, X1

2
 and X1.  These have very similar chi-square 

values.  Support for the cubic and square transformations is shown by inspection of TABLE 6 where X1 is ranked into 
8 equal groups and the rates of Y=2 within each group are given. 

The final choice of a transformation of X1 is addressed by the FSP (function selection procedure) of Royston and 
Sauerbrei.  The FSP is discussed in the second major section of this paper.  The FSP might or might not find a 

stronger transformation of X1 than simply X1
3
 or FSP might reject X1 altogether. 

For X6 all the chi-squares are insignificant, as expected. 

TABLE 5: Results of %LOGIT_CONTINUOUS(example, Y, X1 X6) 

Variable Transform b1D ChiSq for b1D Prob ChiSq 

X1_p7 X**3 0.001 8.466 0.004 

X1_p6 X**2 0.010 8.382 0.004 

X1_p1 linear 0.089 7.823 0.005 

X1_p5 X**0.5 0.369 7.342 0.007 

X1_p8 log(X) 0.368 6.727 0.010 

X1_p11 (X-p25)**2 0.042 6.568 0.010 

X1_p4 X**-0.5 -1.410 5.990 0.014 

X1_p3 X**-1 -1.281 5.158 0.023 

X1_p2 X**-2 -1.688 3.380 0.066 

X1_p10 (X-p75)**2 -0.021 1.581 0.209 

X1_p9 (X-p50)**2 0.022 0.947 0.331 

X6_p10 (X-p75)**2 -0.354 3.561 0.059 

X6_p2 X**-2 -0.290 3.537 0.060 

X6_p3 X**-1 -0.391 3.010 0.083 

X6_p4 X**-0.5 -0.633 2.769 0.096 

X6_p8 log(X) 0.254 2.545 0.111 

X6_p5 X**0.5 0.405 2.338 0.126 

X6_p1 linear 0.160 2.148 0.143 

X6_p9 (X-p50)**2 -0.576 1.871 0.172 

X6_p6 X**2 0.049 1.821 0.177 

X6_p7 X**3 0.019 1.558 0.212 

X6_p11 (X-p25)**2 0.137 0.492 0.483 

 
TABLE 6: Distribution of Rate of Y=2 for Octile Ranks of X1 

Octile ranks: X1 N Obs Rate of Y=2 

0 500 0.402 

1 500 0.426 

2 500 0.430 

3 500 0.440 

4 500 0.448 

5 500 0.434 

6 500 0.472 

7 500 0.484 

GUIDELINES FOR INTERPRETING THE RESULTS FROM %LOGIT_CONTINUOUS 

In TABLE 5 the “Prob ChiSq” value should be viewed as a guide rather than a firm standard for significance.  Due to 
by-chance over-fitting to the data by one or more of the 11 functions of X, the thresholds for the “Prob ChiSq” should 
be set at 0.01 (1%) and/or the “ChiSq for b1D” might be set at 10.0 or more.  By either criterion X6 is rejected while X1 
will be further analyzed through the FSP. 
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THE FUNCTION SELECTION PROCEDURE (FSP) FOR A CONTINUOUS PREDICTOR X 

BACKGROUND 

In Multivariate Model-building by Royston and Sauerbrei (2008) a class of transformations of X called fractional 
polynomials (FP) are given.  The fractional polynomial transformations first require that X be translated so that the 
values of X are positive.  Then the fractional polynomial transformations of X are given by: 

X
p
 where p is taken from S = {-2, -1, -0.5, 0, 0.5, 1, 2, 3} where “0” denotes log(x) 

FP1 refers to the collection of functions formed by the selection of one X
p
.  That is,  

g(X,p) = β0 + β1 X
p
 

FP2 refers to the collection of functions formed by selection of two X
p
.  That is,  

 G(X,p1,p2) = β0 + β1 X
p1

 + β2 X
p2 

p1 ≠ p2 
 G(X,p1,p1) = β0 + β1 X

p1
 + β2 X

p1
 log(X) p1 = p2 

FP2 produces curves with a variety of non-monotonic shapes as shown by Royston and Sauerbrei (2008 p. 76).   

The Function Selection Procedure (FSP) is described by Royston and Sauerbrei (2008 p. 82) and a short history is 
given of its development.  The following 3 steps for FSP are taken from documentation of their SAS implementation 
of FSP.

6
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1. Perform a 4 d.f. test at the α level of the best-fitting second-degree FP (i.e. FP2) against the null model.  If the 
test is not significant, drop X and stop, otherwise continue. 

2. Perform a 3 d.f. test at the α level of the best-fitting second-degree FP against a straight line.  If the test is not 
significant, stop (the final model is a straight line), otherwise continue. 

3. Perform a 2 d.f. test at the α level of the best-fitting second-degree FP against the best-fitting first-degree FP (i.e. 
FP1).  If the test is significant, the final model is the FP2, otherwise the FP1 is the final model. 

 
A rationale for the degrees of freedom and hypothesis testing used in FSP is given by Royston and Sauerbrei (2008 
p. 79).  The FSP involves testing a total of 8 FP1 and 28 FP2 models. 

Royston and Sauerbrei (2008 p. 267) give links to software versions for performing FSP including Stata, R, and SAS.  
I downloaded the SAS version %mfp8 on 8/7/2014.  It was written in SAS version 8.  See notes in Appendix B which 

discuss a necessary change to the code before the running of %mfp8. 

EXAMPLE: RUNNING %MFP8 ON X1 FROM “EXAMPLE” DATA SET 

The FSP macro %mfp8 was run on predictor X1 from the “example” simulation data set.  Due to transformations, 
such as LOG, that are only defined for positive values, a translation of X1 is required so that the translated X1 is 
positive.   

Before using %mfp8  the user has the responsibility to translate X1 so that X1 is positive.  I selected a translation so 
that the minimum of the translated X1 would be 1.  This requires 2 passes of the data set:  (1) Find the minimum of 
X1 across the “example” data set.  This minimum equals -3.70327; (2) Apply the translation X1 = X1 + 1 + 3.70327 = 
X1 + 4.70327. 

OBSERVATIONS ABOUT %MFP8 

Before mentioning some minor issues with %mfp8, it must be acknowledged that this macro has very many powerful 
features and should be considered for usage by any predictive modeler. 

 PROC LOGISTIC was run 47 times by %mfp8 .  However, the run time was only a few seconds for running 
%mfp8 on predictor X1 from the “example” data set.  This data set has 4,000 observations. 

 The selection of the amount of translation (shifting to right) of X1 can affect the results of the FSP.  If X1 were to 
be translated by, for example, 100 units, then a different FP2 solution is found.

8
   

 My choice of translation was designed to make the minimum of X1, after translation, to equal 1.  This minimum 
value of X avoids, at least on the left end, extreme values of the predictors.  I don’t know if there is a choice of 
translation that would optimize the log likelihood for the best FP1 or FP2 solutions.

9
   

  

                                                           
6
 Meier-Hirmer, Ortseifen, and Sauerbrei (2003). Multivariable Fractional Polynomials in SAS, http://portal.uni-freiburg.de/imbi/mfp, 

beschreibung.pdf in SAS downloads. 
7
 There is a second algorithm called the “sequential model selection” in beschreibung.pdf which is not discussed in this paper. 

8
 The FP2 solution in this case is p1 = -2 and p2 = -1.  Deviance = 5482.654.  Compare this to TABLE 7. 

9
 Royston and Sauerbrei (2008).  See p. 79 for a discussion of translation and p. 84 for a discussion of scaling. 
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RESULTS FROM RUNNING %MFP8 ON X1 

Results are given in TABLE 7.  The “Deviance” in TABLE 7 is another term for -2 Log Likelihood of the fitted model.  
Findings include: 

 The best FP1 function is X1
3
, in accord with the results of screening by %LOGIT_CONTINUOUS. 

 The degrees of freedom used in the FSP are pivotal. The difference in deviance between FP2 and the null model 
is “Diffra2” = 5491.232 - 5482.564 = 8.668. 

− When significance is computed for X1 by FSP using 4 d.f., then pdiffdev = 6.995%, as given in TABLE 7. 

− If α is set at 10%, then the FSP stops at step 2 and the final model is linear, β0 + β1 X1.   

− If, on the other hand, α is set at 5%, then X1 is rejected altogether.  This rejection at 5% occurs despite 
some promising results regarding X1 from running %LOGIT_CONTINUOUS. 

 In contrast, when significance is computed by %LOGIT_CONTINUOUS for X1
3
 (the best transformation of X1) 

using 1 d.f. the significance is 0.364%.
10

  This achieved significance level meets our suggested guideline of 1% 
but does not exceed the Wald chi-square threshold of 10.  (See TABLE 5.) 

 We might have anticipated that the FP1 solution for X1, if not an FP2 solution, could be selected for the logistic 
model.  Instead, the conservative FSP degrees-of-freedom adjustment has dropped X1 at the 5% level from 
further consideration. 

TABLE 7: FSP Results from MFP8 for Predictor X1 

MFP8: Variable -X1- 

Best Functions for Different Degrees m 

 

Function m p1 p2 deviance diffra2 pdiffdev TEST: 

Null -1 . . 5491.232 8.668 0.06995 FP2 v. Null: 4 d.f. 

Linear 0 . . 5483.413 0.849 0.83763 FP2 v. Linear: 3 d.f. 

First Degree FP1 1 3 . 5482.802 0.238 0.88783 FP2 v. FP1: 2 d.f. 

Second Degree FP2 2 0.5 1 5482.564    

 

%FSP_LR - A SAS MACRO FOR FSP FOR LOGISTIC REGRESSION 

Macro %FSP_LR runs PROC LOGISTIC 36 times and will find the optimal FSP solution.
11

  The predictor X is pre-
processed by %FSP_LR so that if X has minimum less than 1, it is translated to have minimum of 1.  The three-step 
FSP tests are performed.  The code is simpler (but does less) than %mfp8.   

SUMMARY 

This paper shows that a process of screening a multitude of continuous predictors by %LOGIT_CONTINUOUS can 
efficiently and effectively identify predictors to retain for further study.  The FSP can then be focused on the surviving 
candidate predictors for either the selection of a final transformation or final elimination of the variable. 

SAS MACROS DISCUSSED IN THIS PAPER 

The SAS macros %LOGIT_CONTINUOUS and %FSP_LR would require about 4 pages each to list in this paper. 
Instead, these macros will be provided by the author upon request.   

REFERENCES 

Hosmer D., Lemeshow S., and Sturdivant R. (2013). Applied Logistic Regression, 3
rd

 Ed., John Wiley & Sons, New 
York. 

Huberty C. and Olejnik S. (2006), Applied MANOVA and Discriminant Analysis, 2
nd

 Ed., John Wiley & Sons, 
Hoboken, N.J. 

Lund B. (2013). Preparing Interaction Variables for Logistic Regression. SCSUG2013, Proceedings, South Central 
SAS Users Group, Inc. 

Lund, B. and Brotherton, D. (2013). Information Value Statistic, MWSUG 2013, Proceedings, Midwest SAS Users 
Group, Inc., paper AA-14. 

Press S. J. and Wilson S. (1978).  Choosing between logistic regression and discriminant analysis, Journal of the 
American Statistical Association, 73, pp. 699-705. 

Royston P. and Sauerbrei W. (2008).  Multivariate Model-building, John Wiley & Sons, Ltd, West Sussex, England. 

  

                                                           
10

 Chi-square to enter the model in FORWARD or STEPWISE selection. 
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 See Appendix C for a discussion of attempts to reduce the number of PROC LOGISTIC runs that are needed to implement FSP. 
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APPENDIX A: TWO-GROUP DISCRIMINANT ANALYSIS AND LOGISTIC REGRESSION 

In discriminant analysis it is assumed there are “p” populations G1, …, Gp.  The members of these p populations are 
characterized by predictor variables X1 to XK.  The purpose of discriminant analysis is to develop for each population 
a linear combination of the predictors called the classification function (CF).   Then an observation (x1 …, xK) is 
assigned by the CF’s to the population which has the largest CF value.   
 
The development and application of the CF’s follows two steps:   
(i) The “p” CF’s are fitted using observations from G1, …, Gp (i.e. observations where population membership is 

known).  
(ii) The CF’s are applied to observations of X1 to XK where population membership is not known.  An observation is 

assigned to the population with the largest CF value. 
 
To support statistic inference, it is assumed the X1 … XK follow a multivariate normal distribution.

12
 

THE CASE WHERE p = 2, K = 1, AND σ1 = σ2 

The simplest case of discriminant analysis is when there are 2 populations, one predictor X, and the distributions of X 
for the two populations have a univariate normal distribution with common standard deviation σ but differing means µ1 

and µ2. 

The formula for the distribution of X for population j = 1 or 2 is given by: 

P(X=x | j ) = (2πσ
2
)
-1/2

 exp( -0.5 ((x - µj) / σ)
2 

)  … where µj is the mean for X for population j. 

DEVELOPMENT OF THE CLASSIFICATION FUNCTIONS 

Suppose a random sample for populations j = 1, 2 is taken and n1 is the size from population 1 and n2 is the size from 
population 2.  The base-rate population probability of j is denoted by P(j).  These probabilities are estimated by q j = 
nj/(n1 + n2).   

The probability that an observation with value X = x belongs to population j = 1, 2 is the conditional probability 
expressed by: 

P(j | X=x) for j = 1, 2. 

These are the probabilities which are needed to classify an observation x into a population.  The classification rule is 
to assign x to j=1 if:  

P(1 | X=x) > P(2 | X=x) … (A) 

Otherwise assign x to j=2. 

The P(j | X=x) probabilities can be calculated from the P(X=x | j ) distributions using Bayes theorem as shown: 

P(j | X=x) = P(X=x | j ) P(j) / P(x)  … (B) 

                                                           
12

 See Huberty and Olejnik (2006, chapter 13) for discussion. 
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 Substituting (B) into (A) gives: 

P(X=x | 1 ) P(1) / P(x) > P(X=x | 2 ) P(2) / P(x)  … (C) 

The P(x) will cancel when forming the classification rule (D) and there is no need to evaluate them.  Equation (C) 
simplifies by cancelling the P(x) as well as the common factors in the normal distributions and then taking logarithms 
to produce: 

-0.5 * ((x - µ1)/σ)
2
 + log(q1) > -0.5 * ((x - µ2)/σ)

2
 + log(q2) … (D) 

The classification function CFj for j = 1, 2 is:  

CFj = -0.5 * ((x - µj)/σ)
2
 + log(qj) … (E) 

ESTIMATING CF FROM THE SAMPLES 

The samples from populations 1 and 2 are used to estimate the parameters µj and σ.  The sample means  ̅j estimate 

µj.  The pooled variance Sp
2
 estimates σ

2
 where Sj

2
 is the sample variance for sample j and 

Sp
2
 = {(n1 – 1)S1

2
 + (n2 – 1)S2

2
}/(n1 – 1 + n2 – 1) 

The sample CF is used in the sample based classification rule: 

-0.5 * ((x -  ̅1)/ Sp)
2
 + log(q1) > -0.5 * ((x -  ̅2)/ Sp)

2
 + log(q2) … (F) 

THE CLASSIFICATION FUNCTIONS AND LOG-ODDS-RATIO 

Returning to equation (A), the odds ratio of membership in j=1 versus j=2 is given by: 

P(1 | X=x) / P(2 | X=x)  =  ( P(X=x | 1 ) P(1) / P(x) ) / ( P(X=x | 2 ) P(2) / P(x) )  … (G) 

Logarithms are taken of equation G, and P(x) is cancelled to give equation (H): 

Log (P(1 | X=x) / P(2 | X=x)) = Log(P(X=x | 1 ) P(1)) - Log(/ P(X=x | 2 ) P(2)) … (H)  

Using equation (D), equation (H) becomes: 

Log Odds-Ratio = -0.5(-2x(µ1 - µ2) + µ1
2
 - µ2

2
) / σ

2
 + log(q1/q2) … (I) 

Equation (I) shows that the Log-Odds-Ratio from 2-group discriminant analysis is a linear function of x 

Log Odds-Ratio = β0 + β1 x   … (J) 

where β0 = - (µ1
2
 - µ2

2
) / 2σ

2
  +  log(q1/q2) and β1 = (µ1 - µ2) / σ

2
 

When fitting the 2-group discriminant analysis model to the sample, the estimates b0D, b1D for β0, β1 are found by 
replacing µ1, µ2, σ with  ̅1 ,  ̅2, and Sp in equation (J) 

b0D = - ( ̅1
2
 +  ̅2

2
) / 2Sp

2
  +  log(q1/q2) and b1D = ( ̅1  -  ̅2) / Sp

2
 … (K) 

 The “D” is added as a subscript to indicate that the method of fitting is by discriminant analysis. 

If we make the assumption that (1/Sp) is a constant, then, as shown by (L), the expression for b1D is a linear 
transformation of a t-statistic with n1 + n2 – 2 d.f.  The term K is the constant (µ1 - µ2) / Sp

2
. 

b1D = {( ̅1  -  ̅2) - (µ1 - µ2)} / Sp
2
 + (µ1 - µ2) / Sp

2
 = t  (1/Sp) sqrt(1/n1 + 1/n2)  + K … (L) 

The appropriateness of the assumption of constant Sp is justified by having large sample sizes n1 and n2. 

CONNECTION WITH LOGISTIC REGRESSION 

The logistic regression model with predictor x also is formulated as: 

Log Odds-Ratio = β0 + β1 x. 

In the case of logistic regression the parameter estimates b0L, b1L are fitted by maximum likelihood. 

The “L” is added as a subscript to indicate that the method of fitting is Logistic Regression with maximum likelihood. 

CONNECTING b1D AND b1L 

Under the assumptions of Appendix A, b1D is essentially an unbiased estimator of β1.  The actual expectation is given 
by E(b1D) = ((n1 + n2 – 2)/ (n1 + n2 – 4)) β1.  Meanwhile, b1L is asymptotically an unbiased estimator of β1. 

The Wald chi-square for b1L gives the significance for rejecting the null that β1 = 0.   
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For discriminant analysis, the null hypothesis that β1 = 0 makes (µ1 - µ2) = 0.  The hypothesis H0:  β1 = 0 vs. 
H1:  β1 ≠ 0 at significance “α” is tested by finding a critical value C so that the test statistic  T =  t  (1/Sp) sqrt(1/n1 + 
1/n2)  satisfies P(| T | > C) = α.  This test can be changed to finding a critical C’ so that P(| t | > C’) = α where 
C’ = C  / ( (1/Sp) sqrt(1/n1 + 1/n2) ).  But then C’ is the t-statistic value tα/2. 

For large n1 + n2 the square of the t-statistic is essentially a chi-square with 1 d.f.  The test above can be rephrased in 
terms of a chi-square. 

Finally, Hosmer, Lemeshow, and Sturdivant (2013, p 91) give the opinion that in cases where the predictor X has 
approximately a normal distribution for both of the groups determined by values of Y, the t-test, discussed above, is a 
good guide for screening a predictor for logistic regression. 

APPENDIX B: NECESSARY CHANGES TO %MFP8 

A. The “%then” must be removed in the sub-macro “fpmodels” 
 
%macro fpmodels(model,y,x,pref,base,m,stvars); 
 
    %local i j k; 
 
     %if %upcase(&model)=N %then 
        %do; 
            %let procname=REG; 
            %let procopt=SSE OUTSEB; 
            %let modelpar=; 
            %let modelopt=; 
         %end; 
     %else %if %upcase(&model)=L %then 
         %do; 
            %let procname=LOGISTIC; 
            %let procopt=DESCENDING COVOUT; 
            %let modelpar=; 
            %let modelopt=; 
         %end; 

     %else /*%then*/ 
         %do; 
            %let procname=PHREG; 
            %let procopt=COVOUT; 
            %let modelpar=*&censvar(&censval); 
            %let modelopt= / Ties=&ties; 
         %end; 
 
B. For purposes of running in Windows %mfp8 must be modified by replacing “/” with “\” as shown in the statements 

below: 
 
%include "&MacPath.\boxtid.sas"; 
%include "&MacPath.\xtop.sas"; 
%include "&MacPath.\xvars.sas"; 
%include "&MacPath.\fpmodels.sas"; 
%include "&MacPath.\datasave.sas"; 
%include "&MacPath.\exlabb.sas"; 
%include "&MacPath.\exinc.sas"; 
%include "&MacPath.\labs.sas"; 
%include "&MacPath.\brename.sas"; 
%include "&MacPath.\funcfm.sas"; 
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Appendix C:  ATTEMPTS TO REDUCE THE NUMBER OF PROC LOGISTIC RUNS IN FSP 

A. The number of PROC LOGISTIC’s is reduced to 8 by running the code below. 

PROC LOGISTIC; MODEL Y = Var<k> / SELECTION = FORWARD INCLUDE=1  START=1  STOP=2  SLE=1; 

The Var<k>’s are defined by the table: 

Var1= X
-2

 X
-1

 X
-.5

 X
.5
 X X

2
 X

3
  Log(X) X

-2
 Log(X) 

Var2=  X
-1

 X
-.5

 X
.5
 X X

2
 X

3
  Log(X) X

-1
 Log(X) 

Var3=   X
-.5

 X
.5
 X X

2
 X

3
  Log(X) X

-.5
 Log(X) 

Var4=    X
.5
 X X

2
 X

3
  Log(X) X

.5
 Log(X) 

Var5=     X X
2
 X

3
  Log(X) X Log(X) 

Var6=      X
2
 X

3
  Log(X) X

2
 Log(X) 

Var7=       X
3
  Log(X) X

3
 Log(X) 

Var8=         Log(X)  Log(X) Log(X) 
 

All possible FP2 pairs have a chance to be selected but the selection of the second variable in a pair, to accompany 
the first variable, forced in by INCLUDE=1, is based on best Wald chi-square.  Examples can be found that show that 
this selection may not find the FP2 pair with the best log likelihood. 
 
B. The number of PROC LOGISTIC’s might be reduced by running PROC LOGISTIC with SELECTION = SCORE.  

For example, one would hope that the code below finds the best FP1 based on the Score Statistic (not Log 
Likelihood):   

 
PROC LOGISTIC; MODEL Y = X

-2
  X

-1
  X

-.5
  X

.5
  X  X

2
  X

3
  Log(X) / SELCTION=SCORE BEST=1 START=1 STOP=1;   

 
This fails because PROC LOGISTIC will detect a near collinear relationship among X

-2
  X

-1
  X

-.5
  X

.5
  X  X

2
  X

3
  Log(X) 

and will remove one or more variables from its processing. 


