
Paper S1-11-2013
SAS®: Tips and Tricks

Audrey Yeo, Aviva USA, West Des Moines, Iowa

Abstract
Using SAS® in the work environment is different from using SAS in the educational
environment. Data in the work environment is neither as perfect nor as simple as data in the
educational environment. This paper will highlight some tips and tricks that will help a new SAS
user, whether a recent graduate or just new to SAS, deal with some common but challenging
problems.

Introduction
While working as an Actuarial Technician, I was required to do a lot of data cleansing, data
merging, and also data reporting using SAS®. While doing all these tasks, I encounter a lot of
“How do I do this” questions. Hence, I started to compile notes, tips, and tricks that I find useful
along the way. In this paper, I’m going to present tips on how to create reports that require a
“numeric” variable to be sorted accordingly. I’m also going to present some merging tips and
conclude the paper with some information on many to many merge.

Tips and Tricks #1
Working in an insurance industry, our reports produced are always dealing with numbers.
However, some of these numbers are actually numerical values stored in character formats,
especially when we are dealing with ranges. Thus, when creating reports using PROC REPORT,
we see that the outputs for these “numerical” variables are not sorted accordingly in the
numerical format. This is because they are actually character variables, and are sorted
accordingly in the character format. For example, if you have a column with data 1-10, 31-35,
21-30, and 111-120, the output for the character variables in a PROC REPORT will be 1-10,
111-120, 21-30, and 31-35. Below is a trick that we can use so that the output will be reported as
1-10, 21-30, 31-35, and 111-120.

Original Code1:
DATA growth1;
 input blocks $7. trtmnt growth;
 datalines;
1-10 1 7.84
31-35 1 8.69
21-30 2 6.69
35-41 2 6.95
41-46 2 6.41
47-48 3 6.43
56-60 3 6.61
111-120 3 6.61
121-145 3 6.61
410-460 2 6.41
210-250 2 6.41
395-405 3 6.79
;
run;

1

PROC REPORT data = growth1 missing headline nowd out = growth3;
 column blocks trtmnt growth;
 define blocks / group;
 define trtmnt / group;
 define growth / analysis sum;
run;

Output (Original Code1):

As you can see, the report created has the blocks column sorted in a way that is not ideal. We can
use PROC FORMAT to fix this issue, as shown in the code below.

Fixed Code1:
PROC FORMAT;
value $blockfmt (notsorted)
 1 = '1-10'
 2 = '21-30'
 3 = '31-35'
 4 = '35-41'
 5 = '41-46'
 6 = '47-48'
 7 = '56-60'
 8 = '111-120'
 9 = '121-145'
 10 = '210-250'
 11 = '395-405'
 12 = '410-460';
run;

DATA growth2;
 input block $7. trtmnt growth;
 datalines;
1-10 1 7.84
31-35 1 8.69
21-30 2 6.69
35-41 2 6.95
41-46 2 6.41
47-48 3 6.43
56-60 3 6.61
111-120 3 6.61
121-145 3 6.61
410-460 2 6.41
210-250 2 6.41
395-405 3 6.79
;
run;

2

PROC REPORT data = growth2 missing headline nowd completerows out = growth4;
 column block trtmnt growth;
 define block / group preloadfmt order = data format = $blockfmt.;
 define trtmnt / analysis;
 define growth / analysis sum;
run;

Output (Fixed Code1):

The output above shows that the variables are sorted accordingly. Besides PROC FORMAT, we
could also use a PROC SORT with SORTSEQ=LINGUISTIC(NUMERIC_COLLATION=ON)
as shown in Fixed Code2.

Fixed Code2:
DATA growth1;
 input blocks $7. trtmnt growth ;
 datalines;
1-10 1 7.84
31-35 1 8.69
21-30 2 6.69
35-41 2 6.95
41-46 2 6.41
47-48 3 6.43
56-60 3 6.61
111-120 3 6.61
121-145 3 6.61
410-460 2 6.41
210-250 2 6.41
395-405 3 6.79
;
run;

PROC SORT data=growth1 sortseq=linguistic(numeric_collation=on) out=growth2;
by blocks; run;

PROC REPORT data = growth2 missing headline nowindows out = growth3;
 column blocks trtmnt growth;
 define blocks / group order=data;
 define trtmnt / group;
 define growth / analysis sum;
run;

3

Output (Fixed Code2):

Now, let’s say we add another variable into the blocks column, 461+, as shown below.

Original Code2:
DATA growth1;
 input blocks $7. trtmnt growth ;
 datalines;
1-10 1 7.84
31-35 1 8.69
21-30 2 6.69
35-41 2 6.95
41-46 2 6.41
47-48 3 6.43
56-60 3 6.61
111-120 3 6.61
121-145 3 6.61
410-460 2 6.41
210-250 2 6.41
395-405 3 6.79
461+ 5 3.24
;
run;

PROC REPORT data = growth1 missing headline nowindows out = growth3;
 column blocks trtmnt growth;
 define blocks / group;
 define trtmnt / group;
 define growth / analysis sum;
run;

Output (Original Code2):

Like the previous Original Code1, the blocks column is not sorted ideally.

4

Fixed Code3:
PROC FORMAT;
value $blockfmt (notsorted)
 1 = '1-10'
 2 = '21-30'
 3 = '31-35'
 4 = '35-41'
 5 = '41-46'
 6 = '47-48'
 7 = '56-60'
 8 = '111-120'
 9 = '121-145'
 10 = '210-250'
 11 = '395-405'
 12 = '410-460'
 13 = '461+';
run;

DATA growth2;
 input block $7. trtmnt growth;
 datalines;
1-10 1 7.84
31-35 1 8.69
21-30 2 6.69
35-41 2 6.95
41-46 2 6.41
47-48 3 6.43
56-60 3 6.61
111-120 3 6.61
121-145 3 6.61
461+ 5 3.24
410-460 2 6.41
210-250 2 6.41
395-405 3 6.79
;
run;

PROC REPORT data = growth2 missing headline nowd completerows out = growth4;
 column block trtmnt growth;
 define block / group preloadfmt order = data format = $blockfmt.;
 define trtmnt / analysis;
 define growth / analysis sum;
run;

Output (Fixed Code3):

5

Fixed Code4:
DATA growth1;
 input blocks $7. trtmnt growth ;
 datalines;
1-10 1 7.84
31-35 1 8.69
21-30 2 6.69
35-41 2 6.95
41-46 2 6.41
47-48 3 6.43
56-60 3 6.61
111-120 3 6.61
121-145 3 6.61
410-460 2 6.41
210-250 2 6.41
395-405 3 6.79
461+ 5 3.24
;
run;

PROC SORT data=growth1 sortseq=linguistic(numeric_collation=on) out=growth2;
by blocks; run;

PROC REPORT data = growth2 missing headline nowindows out = growth3;
 column blocks trtmnt growth;
 define blocks / group order=data;
 define trtmnt / group;
 define growth / analysis sum;
run;

Output (Fixed Code4):

Using both PROC FORMAT and PROC SORT with NUMERIC_COLLATION=ON, we’re able
to rank the variable 461+ into the rightful position.

Tips and Tricks #2
Before we are able to create our reports, we have to make sure that we have the data required to
create the reports. Many times, the data required is not contained in just one dataset/file. We
have to merge several datasets/files in order to get everything that we need to create the reports.

It is important to understand that there are more than one ways to solve a problem. It depends on
what you have at hand at the moment and what you think is the best way of using what you have.
From here onwards, I’m going to show you the equivalents of the DATA steps and the PROC
SQL merge.

6

Given the two datasets below, we will be going through left join merge, right join merge, inner
join merge, and full join merge.

Employee: Department:

1. Left Join

DATA step Merge1:
PROC SORT data = Employee; by DepartmentID; run;
PROC SORT data = Department; by DepartmentID; run;

DATA LeftJoin;
 merge Employee (in=a) Department (in=b);
 by DepartmentID;
 if a;
run;

Output (DATA step Merge1):

PROC SQL Merge1:
PROC SQL;
 create table LeftJoin2 as
 select e.lastname, e.departmentID, d.departmentname
 from employee as e left join department as d
 on e.departmentID = d.departmentID;
quit;

Output (PROC SQL Merge1):

PROC SQL left join is equivalent to DATA step merge if a.

7

2. Right Join

DATA step Merge2:
PROC SORT data = Employee; by DepartmentID; run;
PROC SORT data = Department; by DepartmentID; run;

DATA RightJoin;
 merge Employee (in=a) Department (in=b);
 by DepartmentID;
 if b;
run;

Output (DATA step Merge2):

PROC SQL Merge2:
PROC SQL;
 create table RightJoin2 as
 select e.lastname, d.departmentID, d.departmentname
 from employee as e right join department as d
 on e.departmentID = d.departmentID;
quit;

Output (PROC SQL Merge2):

PROC SQL right join is equivalent to DATA step merge if b.

3. Inner Join

DATA step Merge3:
PROC SORT data = Employee; by DepartmentID; run;
PROC SORT data = Department; by DepartmentID; run;

DATA InnerJoin;
 merge Employee (in=a) Department (in=b);
 by DepartmentID;
 if a and b;
run;

8

Output (DATA step Merge3):

PROC SQL Merge3:
PROC SQL;
 create table InnerJoin2 as
 select e.lastname, e.departmentID, d.departmentname
 from employee as e inner join department as d
 on e.departmentID = d.departmentID;
quit;

Output (PROC SQL Merge3):

PROC SQL inner join is equivalent to DATA step merge if a and b.

4. Full Join

DATA step Merge4:
PROC SORT data = Employee; by DepartmentID; run;
PROC SORT data = Department; by DepartmentID; run;

DATA FullJoin;
 merge Employee (in=a) Department (in=b);
 by DepartmentID;
 if a or b;
run;

Output (DATA step Merge4):

9

PROC SQL Merge4:
PROC SQL;
 create table FullJoin2 as
 select e.lastname, e.departmentID, d.departmentname
 from employee as e full join department as d
 on e.departmentID = d.departmentID;
quit;

Output (PROC SQL Merge4):

PROC SQL full join is equivalent to DATA step merge if a or b.

The four joins that we went through above works only if it is a one to one merge, one to many
merge, or many to one merge. While we can also use DATA step to create a many to many
merge, it is a more complicated code. PROC SQL, on the other hand, provides a simpler solution.
Below is an example for a many to many merge using PROC SQL.

5. Many to many join

Tablea: Tableb: Desired output needs to be:

We were given two tables as shown on the left above and we would like to merge them to create
a third table (on the right). This is a many to many merge.

Many to Many Code1:
proc sql;
 create table manymany as
 select a.userid, a.group, b.profile
 from tablea as a, tableb as b
 where a.group = b.group
 order by a.userid, a.group, b.profile;
quit;

10

Using PROC SQL, we are able to merge the dataset into our desired output. Let us show you
another example of the many to many merge using the full join function.

Many to Many Code2:
PROC SQL;
 create table manymany2 as
 select a.userid, a.group, b.profile
 from tablea as a full join tableb as b
 on a.group = b.group
 order by a.userid, a.group, b.profile;
quit;

Using a PROC SQL with a full join function, we are able to get our desired output. Comparing
the Many to Many Code2 example to the Many to Many Code1 example, you can see that we did
not use the full join function in the first example (instead, we used where a.group = b.group), but
we are still able to get the many to many merge output.

Conclusion
To summarize, these are some tips and trick that I find very useful to me as a data technician.
Especially tips and trick #2 where we go into detail the merges using DATA steps and PROC
SQL.

Contact Information
Name: Audrey Yeo
Enterprise: Aviva USA
Address: 7700 Mills Civic Parkway
City, State, ZIP: West Des Moines, IA 50316
Work Phone: 515-342-3759
E-mail: audrey.yeo@avivausa.com

Trademark Citations
SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

11

