
Paper BB13-2013

Creating Formats on the Fly
Suzanne M. Dorinski, U.S. Census Bureau, Washington DC

ABSTRACT
The Census Bureau conducts the Common Core of Data surveys for the National Center for Education Statistics
annually. We have written SAS® programs to automate the database documentation. We try to avoid including hard-
coded values in the programs. Thanks to a record layout spreadsheet, the analysts can quickly update the survey
metadata outside the SAS programs. This paper explains how SAS can read the record layout spreadsheet to create
formats on the fly. The analysts can update the values as changes occur over time without having to worry about
writing correct SAS syntax. Behind the scenes, SAS is using dictionary views, macros, ODS OUTPUT, PROC
TEMPLATE, PROC FORMAT, the ODS Report Writing Interface, and RTF to create the desired results. This paper
uses syntax for SAS 9.2, written for programmers at the intermediate level.

DISCLAIMER
This report is released to inform interested parties of ongoing research and to encourage discussion of work in
progress. Any views expressed are those of the author and not necessarily those of the U.S. Census Bureau.

BACKGROUND
The Common Core of Data consists of a series of annual surveys about public elementary and secondary education
in the United States. This paper focuses on the Local Education Agency (School District) Universe. Information
collected for the school districts includes phone number, location and type of agency, current number of students,
number of high school graduates and completers in the previous year.

The National Center of Education Statistics (NCES) makes the data files available to the public on their web site.
http://nces.ed.gov/ccd/pubagency.asp is the link for the school district universe data. NCES provides the data as
both a flat file and a SAS data set. They provide both SAS and SPSS code so that users can read the flat file into the
desired statistical package. NCES provides a record layout for the flat file. NCES also publishes database
documentation that explains the methodology and the guidelines for using and processing the data. Appendix B of
the database documentation includes tables that show the distributions of character variable responses (missing / not
applicable / reported); the minimum, maximum, and mean values for continuous variables, and frequencies of
categorical variables.

This paper explains how we create formats on the fly for the frequencies of categorical variables. We will use the
Local Education Agency Universe Survey for School Year 2010-11, version provisional 2a as the example.
http://nces.ed.gov/ccd/Data/zip/ag102a_sas7bdat.zip is the link for the public-use version of this data set, while
http://nces.ed.gov/ccd/pdf/pau102agen.pdf is the link for the database documentation. Table B-3 in the database
documentation lists the frequencies of the categorical variables.

The complete code for the example discussed in this paper is located at
http://www.sascommunity.org/wiki/Creating_Formats_on_the_Fly.

DESIRED OUTPUT
Figure 1 shows the desired output for the first two categorical variables on the file. The variables are TYPE and
ULOCAL. While PROC FREQ will produce the counts and percentages easily, the default output will not be close to
the desired output. By default, PROC FREQ shows the percentages to two decimal places, and the counts do not
use a comma format. PROC FREQ centers the variable’s label above the results, and uses the variable name as the
column header in the column that shows the values. Figure 2 shows what PROC FREQ produces by default for the
variables TYPE and ULOCAL.

1

http://nces.ed.gov/ccd/pubagency.asp
http://nces.ed.gov/ccd/Data/zip/ag102a_sas7bdat.zip
http://nces.ed.gov/ccd/pdf/pau102agen.pdf
http://www.sascommunity.org/wiki/Creating_Formats_on_the_Fly

Figure 1. Screen shot of first page of Table B-3 in database documentation

2

Figure 2. PROC FREQ default output for TYPE and ULOCAL

MOTIVATION FOR ELIMINATING HARD CODED PROC FORMAT WITHIN SAS PROGRAM
While it is possible to use PROC FORMAT within the SAS program to make the value 1 show up as “1—Regular
local school district” for the TYPE variable, the analysts who run the SAS programs may not be familiar with the
PROC FORMAT syntax. The Common Core of Data is an annual data collection, and the values for variables may
change over time, or the descriptive text for an existing value may change.

It was simple to add a few more variables to the metadata spreadsheet that was being prepared. We have agreed on
a standard way of entering the information that SAS needs to create the formats. The metadata spreadsheet can
easily be updated as changes occur. The only part of the SAS program that needs to change each year is the values
of the macro variables at the top of the program, where the input and output directories and the file names are
specified.

We were influenced on earlier projects by two papers (Dilorio and Abolafia, 2004), (Dilorio and Abolafia, 2006).

USE OF DOC_FORMATS VARIABLE IN METADATA SPREADSHEET
SAS uses the variable DOC_FORMATS in the metadata spreadsheet to build the formats on the fly. We use the pipe
character, denoted |, as the delimiter in DOC_FORMATS. The first word in DOC_FORMATS is whatever descriptive
text shows up in Table B-3 about the variable, while the remaining words are the formatted values for the PROC
FREQ output. Table 1 shows DOC_FORMATS for the variables TYPE and ULOCAL.

3

Table 1. DOC_FORMATS values for TYPE and ULOCAL
Variable DOC_FORMATS

TYPE Agency type | 1\emdash Regular local school district |2\emdash Local school district that is a
component of a supervisory union |3\emdash Supervisory union | 4\emdash Regional education service
agency |5\emdash State-operated agency |6\emdash Federally-operated agency | 7\emdash Charter
agency |8\emdash Other education agency

ULOCAL NCES urban-centric locale code|11\emdash City, large |12\emdash City, midsize |13\emdash City,
small |21\emdash Suburb, large|22\emdash Suburb, midsize|23\emdash Suburb, small |31\emdash
Town, fringe |32\emdash Town, distant |33\emdash Town, remote |41\emdash Rural, fringe |42\emdash
Rural, distant |43\emdash Rural, remote |M\emdash Missing |N\emdash Not applicable

\emdash is an RTF control word, which creates — in the RTF output. Figure 3 shows the relationship between the
DOC_FORMATS values and the desired output.

Figure 3. The relationship between DOC_FORMATS values and the desired output

4

USE COUNTW AND SCAN FUNCTIONS TO PROCESS DOC_FORMATS
In the SAS code below, we use PROC SQL to create the data set var_list. PROC SQL is reading the variable name
and type from the dictionary view VCOLUMN, located in the SASHELP library. The variable name on the metadata
spreadsheet is DELIVNAME, while the variable type on the metadata spreadsheet is FIELD_TYPE, so we rename
the variable from the dictionary view in PROC SQL.

The PROC IMPORT step reads the metadata spreadsheet. The subsetting IF in the freq_list data step is selecting
the variables used on the school district universe part of the Common Core of Data (survey=’AGN’) and only those
variables that will be needed for Table B-3 (database_doc_table=’FREQ’).

We merge the two data sets in the updated_freq_list data step. We use the variable list from the dictionary view as a
check that the metadata spreadsheet is current for new variables. New variables will show up in Table B-3 without
formatted values if the metadata spreadsheet is not current.

We use the COUNTW function to count how many words DOC_FORMATS contains. Then we use the SCAN
function to assign the descriptive text to the variable named LABEL_PART. Since we specified the pipe delimiter in
both functions, SAS will only recognize that symbol as the delimiter between words.

proc sql;
 create table var_list as
 select name as delivname,
 type as field_type
 from sashelp.vcolumn
 where libname="LEA" AND
 memname="%upcase(&dsn)";
quit;

PROC IMPORT OUT= WORK.meta_spreadsheet
 DATAFILE= "&spreadsheet_dir\&spreadsheet_FULL_NAME"
 DBMS=XLS REPLACE;
 textsize=32000;
 guessingrows=500;
RUN;

data freq_list;
 set meta_spreadsheet;
 if survey='AGN' and upcase(database_doc_table)='FREQ';
run;

proc sort data=freq_list;
 by delivname;
run;

proc sort data=var_list;
 by delivname;
run;

data updated_freq_list;
 merge freq_list(in=f)
 var_list;
 by delivname;
 if f;
 words_to_process=countw(doc_formats,'|');
 label_part=scan(doc_formats,1,'|');
run;

5

PROCESSING THE REST OF DOC_FORMATS
The first PROC SQL below is a quick bit of housekeeping. We find the maximum length of DOC_FORMATS and
store it in the macro variable BIG_NUMBER_FOR_LENGTH_STATEMENT. That value comes in handy later in the
program, to ensure that variable lengths are uniform across data sets when using PROC APPEND.

To finish processing the rest of the DOC_FORMATS text, we need to know how many words are possible. We use
the second PROC SQL below to assign the maximum number of words to the macro variable WORD_COUNT, and
then create another macro variable MAX where we subtract 1, since the first word is always the descriptive text on
the left side of the variable name in the desired output.

The get_word macro deals with the second through last words in DOC_FORMATS. It pulls each word off and
assigns it to FOOTER_1 through FOOTER_&MAX (max is 16 in this example). [A note about variable names: In an
earlier version of this program, the explanatory text for each value was listed below the PROC FREQ output. That is
why the variables were named FOOTER_1 through FOOTER_&MAX. We kept the variable names when we were
asked to provide the explanatory text within the PROC FREQ output, rather than below it.]

proc sql noprint;
select max(length(doc_formats)) into :big_number_for_length_statement

from updated_freq_list;
quit;

proc sql noprint;
 select max(words_to_process) into :word_count
 from updated_freq_list;
quit;

%let max=%eval(&word_count-1);

proc sort data=updated_freq_list;
 by delivorder;
run;

* get_word macro is pulling 2nd through last words in doc_formats variable,
* assigning to footer_ variables, so that we can build formats on the fly. ;

%macro get_word(upper);
 %do i=1 %to &upper;
 temp=left(scan(doc_formats,&i,'|'));
 %let j=%eval(&i-1);
 footer_&j=temp;
 %end;
%mend get_word;

6

CREATING THE FORMATS ON THE FLY
The format_info_to_transpose data set calls the get_word macro and creates the footer variables (FOOTER_1
through FOOTER_16 for this example). We then transpose the data to get it into the shape needed for a control data
set for PROC FORMAT.

1\emdash Regular local school district is the value of footer_1 for TYPE. In the data step after the PROC
TRANSPOSE, we exclude rows where the footer value is blank. The label variable contains the formatted value we
want displayed in the PROC FREQ output. We use the resolve function to assign the value of COL1 to the label
variable. Here we use the scan function to pull off the first word, but this time we use \ as the delimiter. We use \ as
the delimiter here because every footer variable consists of the value followed by \emdash and then the explanatory
text. PROC FORMAT needs to know what the variable value is, which is assigned to the start variable. FMTNAME
is the name of the format, and here we use the value of DELIVNAME.

We are creating a format for each variable in the output, and we are naming that format with the same name as the
variable name. That makes programming the macro a bit easier. All but one of the variables in the desired output is
a character variable. By setting type=’c’, we do not have to use $ as the first character of the format name, because
PROC FORMAT will handle that for us. For more details on creating a format from a SAS data set, see Wright
(2007).

Once we have the control data set, we use PROC FORMAT to create the formats in a temporary catalog.

data format_info_to_transpose(keep=delivname field_type
footer_1--footer_&max);

 set updated_freq_list(keep=delivname field_type doc_formats);
 %get_word(&word_count)
run;

proc transpose data=format_info_to_transpose
 out=transposed_format_info;
 var footer_1-footer_&max;
 by delivname field_type notsorted;
run;

* \ is delimiter in footer_ values, since value is ALWAYS
* followed by \emdash.
* first word is value needed to build format. ;

data format_control_data_set(keep=fmtname start label type);
 set transposed_format_info;
 if col1 ne ''; *exclude rows where footer value was blank ;
 label=resolve(col1);
 start=scan(label,1,'\');
 fmtname=delivname;
 if field_type='char' then type='c';
*setting type='c' means i don't have to add $ in front of fmtname –
*proc format will do that. ;
run;

proc format library=work cntlin=format_control_data_set;
run;

Figure 4 shows the formats created for TYPE and ULOCAL.

7

Figure 4. Format information for TYPE and ULOCAL

8

THE FREQ_TABLE MACRO DOES THE PROC FREQ FOR EACH VARIABLE
In this section, we will discuss parts of the macro. Dorinski (2007) explains in more detail this processing approach.
The macro handles one variable at a time, and stores the results in the categorical_report data set. We append the
information for each variable to the categorical_report data set.

The _null_ data step is reading the information for a variable to display in the desired output. DELIVNAME is the
name of the variable, LABEL_PART is the descriptive text, and DOC_ORDER is a variable from the metadata
spreadsheet that tells us what order to list the variables in the desired output. For the TYPE variable, DELIVNAME is
TYPE, while LABEL_PART is “Agency type”.

The ODS OUTPUT statement is selecting the output to keep from the PROC FREQ. For this example, we are only
interested in the one-way frequencies. We rename the variables so that the PROC APPEND at the bottom of the
loop works properly.

The table variable tells us which table statement generated the ODS OUTPUT observation. Since this program uses
a table statement with only one variable, we do not need the table variable, so we drop it. F_<variable name> is the
formatted value of the variable.

In the PROC FREQ, we check for the existence of a character or numeric format for the variable. If a format exists,
we use it. The RACECAT variable on the school universe data set is numeric, while all the other variables in the
desired output are character.

 data _null_;
 obsnum=&i;
 set updated_freq_list point=obsnum;
 if _error_ then abort;
 call symputx('field',delivname);
 call symputx('label_part',label_part);
 call symputx('doc_order',doc_order);
 stop;
 run;

 ODS OUTPUT OneWayFreqs=&field._freq_output(drop=table

rename=(f_&field=f_field
 &field=temp_value));

 proc freq data=lea.&dsn;
 tables &field / list missing;
 %if %sysfunc(cexist(work.formats.&field..formatc))

%then format &field $&field.. ;;
 %if %sysfunc(cexist(work.formats.&field..format))

%then format &field &field.. ;;
 run;

9

We use the PROC SQL below to test if we have numeric data. All the information stored in the categorical_report
data set needs to be character, so the data step after the PROC SQL is converting the results for RACECAT from the
PROC FREQ. We use the macro variable in the length statement in that data set. If we do not specify the lengths of
those variables, they will vary across survey items, and the PROC APPEND will fail when it tries to append variables
with different lengths. The macro variable’s value of 527 here is overly generous, but the program will automatically
adjust as the survey metadata is changed.

 /* need to know if value variable in &field._freq_output is
 numeric or character. if numeric, need to convert it to
 character. */

 proc sql noprint;
 select type into :var_type
 from sashelp.vcolumn
 where libname="WORK" and
 memname="%upcase(&field._freq_output)" AND
 name="temp_value";
 quit;

 /* use macro variable for length statement in data step so
 that PROC APPEND will work properly. length of field,
 value, f_field, and label_part vary between survey items.
 &big_number_for_length_statement is always large enough
 to accomodate all survey items. */

 data &field._freq_output(drop=temp_value);
 length field value f_field label_part $
 &big_number_for_length_statement ;
 label f_field='formatted value';
 set &field._freq_output;
 field="&field";
 label_part="&label_part";
 doc_order=&doc_order;
 %if &var_type=char %then
 %do;
 value=temp_value;
 %end;
 %else
 %do;
 value=put(temp_value,best10.);
 %end;
 run;

 proc append base=categorical_report data=&field._freq_output;
 run;

MODIFY TEMPLATES FOR DESIRED RESULTS
We modify the BASE.FREQ.ONEWAYLIST template so that the PROC FREQ output will display as desired. By
default, PROC FREQ uses two decimal places for percentages. You can modify the template to show percentages to
one decimal place instead.

Previous versions of the program modified the BASE.FREQ.ONEWAYFREQS template. However, there were syntax
changes beginning in SAS 9.2. See SAS Usage Note 37442 at http://support.sas.com/kb/37/442.html for more
details. As suggested in the Usage Note, the program now modifies the BASE.FREQ.ONEWAYLIST template
instead.

We modify the RTF style template to control the overall formatting of the output document. Dorinski (2006) explains
the techniques in more detail.

10

http://support.sas.com/kb/37/442.html

ODS REPORT WRITING INTERFACE USED TO ARRANGE DATA IN TABLE
We use the ODS Report Writing Interface to display the categorical_report data set as desired. The table in the
output has five columns, but we want to have the label followed by the variable name in parentheses on the first row
of the output for the variable. The ODS Report Writing Interface allows us that kind of control over the output.
Dorinski (2008) explains an example in more detail.

The ODS Report Writing Interface was originally called ODS Object Oriented Features. SAS has published a tip
sheet for the ODS Report Writing Interface. You can download it from
http://support.sas.com/rnd/base/ods/Tipsheet_RWI.pdf. The syntax and Daniel O’Connor’s SAS Global Forum 2009
paper about the ODS Report Writing Interface are available at
http://support.sas.com/rnd/base/datastep/dsobject/index.html.

UNANTICIPATED BENEFIT FROM THIS APPROACH
We wrote this program (and others for other pieces of database documentation) to document the final data set
created for the survey year. Because we worked to eliminate as much of the hard coding as possible, users of the
program discovered that the programs were more robust than originally anticipated. They now run these programs
on the edited but not yet imputed files, looking for anomalies in the data.

REFERENCES
Dilorio, Frank and Abolafia, Jeff. 2004. “Dictionary Tables and Views: Essential Tools for Serious Applications”,
Proceedings of the Twenty-Ninth Annual SAS® Users Group International Conference, available online at
http://www2.sas.com/proceedings/sugi29/237-29.pdf.

Dilorio, Frank and Abolafia, Jeff. 2006. “The Design and Use of Metadata: Part Fine Art, Part Black Art”,
Proceedings of the Thirty-first Annual SAS® Users Group International Conference, available online at
http://www2.sas.com/proceedings/sugi31/104-31.pdf.

Dorinski, Suzanne M. 2006. “How To Produce Almost Perfect RTF Output”, Proceedings of the Nineteenth Annual
NorthEast SAS® Users Group Conference, available online at http://www.nesug.org/proceedings/nesug06/io/io12.pdf.

Dorinski, Suzanne M. 2007. “A Lazy Programmer Case Study: Dynamic Macro Code To Deal With Changing
Number of Variables Over Time”, Proceedings of the Twentieth Annual NorthEast SAS® Users Group Conference,
available online at http://www.nesug.org/proceedings/nesug07/ap/ap08.pdf.

Dorinski, Suzanne M. 2008. “Using ODS Object Oriented Features To Produce A Formatted Record Layout”,
Proceedings of the Twenty-first Annual NorthEast SAS® Users Group Conference, available online at
http://www.nesug.org/proceedings/nesug08/bb/bb02.pdf.

Wright, Wendy L. 2007. “Creating a Format from Raw Data or a SAS® Dataset”, Proceedings of the SAS® Global
Forum 2007 Conference, available online at http://www2.sas.com/proceedings/forum2007/068-2007.pdf.

ACKNOWLEDGEMENTS
The author thanks Cindy Sheckells for suggesting that we extend the methods we originally developed for the State
Library Agency Survey to the surveys that make up the Common Core of Data. The author thanks Suzanne McArdle
for teaching her how to edit SharePoint wikis, which made it easier to get started on sasCommunity.org. The author
thanks John Barrow, Mary Ann Koller, and Carma Hogue for reading the draft of this paper and providing helpful
comments.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Suzanne M. Dorinski
US Census Bureau
GOVS HQ-6K062E
4600 Silver Hill Road
Washington DC 20233
301-763-4869
Suzanne.Marie.Dorinski@census.gov

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

11

http://support.sas.com/rnd/base/ods/Tipsheet_RWI.pdf
http://support.sas.com/rnd/base/datastep/dsobject/index.html
http://www2.sas.com/proceedings/sugi29/237-29.pdf
http://www2.sas.com/proceedings/sugi31/104-31.pdf
http://www.nesug.org/proceedings/nesug06/io/io12.pdf
http://www.nesug.org/proceedings/nesug07/ap/ap08.pdf
http://www.nesug.org/proceedings/nesug08/bb/bb02.pdf
http://www2.sas.com/proceedings/forum2007/068-2007.pdf
mailto:Suzanne.Marie.Dorinski@census.gov

