
1

Paper BB-09-2013

OPTIMIZE YOUR DELETE

Brad Richardson, SAS Institute Inc., Cary, NC

ABSTRACT

Have you deleted a data set or tw o from a library that contains thousands of members using PROC DATASETS? If
so, you probably have w itnessed some w ait time. To maximize performance, w e have reinstated PROC DELETE as

a SAS-supported procedure. One of the main differences betw een PROC DELETE deletion methods versus PROC

DATASETS DELETE is that PROC DELETE does not need an in-memory directory to delete a dataset. So w hat

does this mean exactly? This paper w ill explain all.

INTRODUCTION

The purpose of this paper is not to teach you the basics of PROC DELETE and PROC DATASETS, but instead to
show the new features available for PROC DELETE and discuss the optimization of the deletion processes. We w ill

examine w hen PROC DELETE should be used over PROC DATASETS and vice versa. The revival of PROC

DELETE in SAS 9.4 has provided several new features. Also, by studying the PROC DELETE process, the

developers w ere able to improve other Base Utility Procedures.

PROC DATASETS

PROC DATASETS is an interactive procedure w hich allow s you to manage members in your SAS library . Since
DATASETS is an interactive procedure it is able to contain the functionality of several stand-alone procedures and

some functions that are exclusive to the procedure. In most cases, having all of this functionality under one umbrella

decreases the overhead w hen an entire library is altered. The procedure w as created to handle libraries, not just a

few members w ithin the library or a single deletion. At the time w hen PROC DATASETS w as created memory w as

not as easily available and as inexpensive as it is today. Many libraries did not contain a massive amount of data

sets. Therefore, to cut dow n on processing time, the DATASETS procedure has a directory, or list of members in the

library w hich it keeps in memory this is called the in-memory directory. The benefit of keeping a directory in memory

is that, w hen a library needs to be modif ied, the DATASETS procedure only has to access the disk to perform the

requested actions and the presence of the members need never be queried.

WHAT IS THE IN-MEMORY DIRECTORY?

The in-memory directory is a list w hich contains SAS library members and their auxiliary f iles, such as indexes, audit

trails, and extended attributes. The directory is created so that PROC DATASETS only has to hit the disk once to

determine the existence of the library members. The directory is created by reading the names of all the f iles in the

directory associated w ith the libname used and determining w hich members of SAS library. PROC DATASETS

stores this list in memory and uses it to act on for any of the functions it provides, such as deleting, renaming, aging,

appending, copying, etc. PROC DATASETS creates an in-memory directory each time w hen it initializes. When

PROC DATASETS w as originally w ritten, the overhead of creating an in-memory directory required far less time than

accessing the hard disk multiple times. Over time this has changed due to the rapid improvement of condensing

physical memory and increasing memory capacity.

Partially due to the increase in easily obtainable memory capacity, there is an emergent requirement to store and

retain a more data. Therefore, the number of members stored in SAS libraries has increased dramatically over the

years. On the other hand the bus to transfer this massive data has not grow n as quickly; as a result there are longer

w ait times to create the in-memory directories. If you have libraries that have thousands of members, it may not be

optimal for DATASETS to create an in-memory directory. The overhead of creating an in-memory directory to

manipulate many members in a library is still an optimal algorithm, but if you are going to modify only a few members

w ithin a library then you may w ant to consider a different approach. So w hat should you do w hen you only need a

few members modif ied?

WELCOME BACK PROC DELETE!

To eff iciently modify a few members w ithin a library, utilize some of the singular function procedures. One of the main

2

complaints w e heard from customers w as removing datasets. To resolve the problem; PROC DELETE has been

reinstated as a supported procedure. Since PROC DELETE’s sole purpose is to permanently eliminate library

members, there is no need to build an in-memory directory. PROC DELETE is meant to delete members w ithin a

library, but not an entire library. So, unlike PROC DATASETS, PROC DELETE does not check to see if the selected

data set actually exists before trying to remove the f ile. Only after the attempt to erase the f ile w ill PROC DELETE

know w hether the dataset actually existed, since there is no overhead to get the member names from disk, transport

the data over the bus, and create an in-memory directory, it speeds the deletion process up. The unsupported

DELETE procedure lacked a lot of functionality that PROC DATASETS supported, so to bring it up-to-date some new
features w ere added to DELETE.

WHAT ARE THE NEW FEATURES?

Considering that PROC DELETE has not off icially been supported by SAS since the late 90s, there w ere a number of

new features that needed to be added to bring the procedure up-to-date. The goal of the new features w as to have

PROC DELETE mirror the behaviors of PROC DATASETS’ DELETE statement as much as possible. Some of the

new features added to PROC DELETE include:

 Numeric suff ix lists

 LIB=libref option

 MEMTY PE=

 ENCRY PTKEY=(encryptkey)

One of the new functionalities added to PROC DELETE is the numeric suff ix list. The numeric suff ix list feature in

PROC DELETE w orks the same as that in the PROC DATASETS DELETE statement. The list allow s the user to

specify a range of datasets to be removed w ithout having to explicitly list all of the datasets. The syntax requires that

you have a series of datasets w ith the same name, ending in a numeric value.

proc delete data = A1-A3;

run;

quit;

From the example above datasets A1, A2 and A3 in the WORK library w ill be deleted if they exist, but if they do not

exist then an error message w ill be generated saying that the f ile does not exist. Also, if the f irst dataset numeric

suff ix contains a leading zero, then the last dataset name must also have a leading zero.

Now w e w ill look at the LIB= option. The LIB= option identif ies the library containing the data sets. Previously PROC

DELETE w ould require a tw o level name for each dataset if it w as not in the WORK library, but now the LIB= option

allow s for a one level name on any library. Only one library name can be specif ied for this option. The LIB= option

can be used in conjunction w ith any other feature. The tw o level name is still accepted in PROC DELETE.

libname mylib “.”;

proc delete lib=mylib data = A1-A3;

run;

Next is the MEMTY PE= option w hich provides f lexibility in w hat member types are being removed. In the past PROC

DELETE has not allow ed you to specify w hat memtype you w ould like to delete. Since the default MEMTY PE w as

DATA back w hen PROC DELETE w as previously supported, the procedure w ould only delete members w ith the

DATA memtype. Currently the default MEMTY PE is still DATA, but you can override the member type w ith any of the

SAS supported memtypes.

The ENCRYPTKEY= option allow s the SAS data set to be encrypted using AES encryption. There are tw o different

kinds of encryption available in SAS 9.4 SAS Proprietary encryption and AES Encryption.

The f irst kind is SAS Proprietary encryption is automatically provided w ith Base SAS softw are. SAS Proprietary
encryption uses 32-bit f ixed encoding and is appropriate for preventing accidental exposure of information.

data abc.foo(encrypt=yes read=rr);

x=1;run;

proc datasets lib=abc nolist;

delete foo;

3

run;

quit;

The second kind of encryption is AES, provided w ith SAS/SECURE softw are. AES provides a stronger encryption

that can be up to 64 characters long; it requires that the ENCRY PTKEY be specif ied each time the data set is

opened.

data lib1.x1(encrypt=aes encryptkey=key);

x=1;

run;

proc delete lib=lib1 data=x1(encryptkey=key);

run;

quit;

PROC DELETE VS PROC DATASETS

In previous sections w e discussed the deletion process used by PROC DATASETS and PROC DELETE, as w ell as

w hy PROC DELETE may require less processing time w hen removing various datasets. Now let’s do a time

comparison of the tw o procedures. In the example below , w e created a library containing 10,000 members w ith the

DATA member type. In the f irst example both PROC DELETE and PROC DATASETS remove one dataset from the

library.

18 proc datasets lib=mylib;

19 delete a5674;

20 run;

NOTE: Deleting MYLIB.A5674 (memtype=DATA).

20 ! quit;

NOTE: PROCEDURE DATASETS used (Total process time):

 real time 8.63 seconds

 cpu time 8.56 seconds

Output 1. Results from the deletion in a large library w ith PROC DATASETS

21 proc delete

22 data=mylib.a5675;

23 run;

NOTE: Deleting MYLIB.A5675 (memtype=DATA).

NOTE: PROCEDURE DELETE used (Total process time):

 real time 0.02 seconds

 cpu time 0.01 seconds

4

23 ! quit;

Output 2. Results from the deletion in a large library w ith PROC DELETE

Next, both procedures w ill delete f ive datasets from the same library. The library is recreated before the PROC

DATASETS test to keep the results in line.

2 proc datasets lib=mylib;

NOTE: Writing HTML Body file: sashtml.htm

3 delete a9042;

4 delete a4685;

5 delete a1895;

6 delete a361;

7 run;

NOTE: Deleting MYLIB.A9042 (memtype=DATA).

NOTE: Deleting MYLIB.A4685 (memtype=DATA).

NOTE: Deleting MYLIB.A1895 (memtype=DATA).

NOTE: Deleting MYLIB.A361 (memtype=DATA).

8 quit;

NOTE: PROCEDURE DATASETS used (Total process time):

 real time 26.03 seconds

 cpu time 13.33 seconds

Output 3. Results from the deletion of five datasets in a large library w ith PROC DATASETS

2 proc delete

3 data=

4 mylib.a9042

5 mylib.a4685

6 mylib.a1895

7 mylib.a361;run;

NOTE: Deleting MYLIB.A9042 (memtype=DATA).

NOTE: Deleting MYLIB.A4685 (memtype=DATA).

NOTE: Deleting MYLIB.A1895 (memtype=DATA).

NOTE: Deleting MYLIB.A361 (memtype=DATA).

NOTE: PROCEDURE DELETE used (Total process time):

 real time 0.08 seconds

 cpu time 0.01 seconds

Output 4. Results from the deletion of five datasets in a large library w ith PROC DELETE

The first test case w as to delete a single dataset from a massive library. Comparing the results of the f irst test case

PROC DATASETS completed the task in 8.63 seconds in real time and 8.56 seconds for cpu time. How ever PROC

5

DELETE produces the same results in 0.02 seconds real time and 0.01 seconds in cpu time. Next let’s compare, the

second test case total processing times; PROC DATASETS completed the task in 26.03 seconds in real time and

13.33 seconds for cpu time. In comparison, DELETE w as able to f inish the job in 0.08 seconds real time and 0.01

seconds in cpu time. PROC DELETE w as able to complete the same tasks, but in a fraction of the time. In both test

cases the cpu time decreased by 99.7%~99.9% and the real time w as reduce to 99.7%~99.8%. The additional

processing time required by PROC DATASETS w as used to create the in-memory directory. The library that w as

created only has a few thousand datasets, w hich may be comparatively small to the numbers that are being used

w ith in large companies. Therefore, using PROC DATASETS to delete a couple of members w ithin a larger library
w ould increase the total processing time, w hereas PROC DELETE w ill keep a consistent processing t ime.

So you may be asking yourself, w hy not get rid of the in-memory directory completely? The reason is because there

are many benefits to retaining an in-memory directory. Even though PROC DELETE processing time for deletion is

faster than PROC DATASETS, there are also negatives to using PROC DELETE.

PROS AND CONS OF PROC DELETE

The return of PROC DELETE has signif icantly improved the deletion process in terms of time, but in contrast w e lose
some of the capabilities of PROC DATASETS. If you recall, PROC DATASETS is an interactive procedure and

PROC DELETE is a non-interactive procedure. PROC DELETE’s only objective is to permanently remove members

from the library, w hereas PROC DATASETS is a multiple purpose procedure; this is w hy PROC DATASETS keeps

an in-memory directory.

In essence the in-memory directory makes it possible for PROC DATASETS to have much of it functionality. The

directory that PROC DATASETS creates and stores in memory allow s you to run a series of commands w ith one

procedure. As an illustration, you can rename a member, repair damaged member, and remove a f ile all in one step.

The code is optimized because one procedure is being used. Also the w ildcard “*” and all “/” commands cannot be
eff iciently implemented w ithout the in-memory directory. For PROC DELETE to support this functionality it w ill have

to access the disk multiple times to see if any of the library members meet the criteria, w hich w ould be very costly.

Of course, there is a dow n side to using an in-memory directory as w ell. Aside from the time required to create the

in-memory directory, also the in-memory directory is not fail safe w ith multiple people accessing the library. Consider

an instance w hen you have tw o SAS sessions accessing the same library at the same time. One session deletes a

dataset called “myExample” their in-memory directory is updated reflecting the change. Now the other session w ould

like to rename “myExample” to “theEx”. PROC DATASETS w ill check the in-memory directory to see if the f ile exists.

Since the user’s DATASETS does not access the disk, it show s that the file “myExample” still exists. When RENAME
is called an error is surfaced.

PROC COPY OPTIMIZED

As mentioned in previous sections PROC DATASETS keeps an in-memory directory to help process some of the

commands, PROC DATASETS is not the only procedure that keeps a directory in memory. PROC COPY also

creates and stores a directory in memory. PROC COPY w as created to use the in-memory directory for the same

reasons PROC DATASETS did. At the time, libraries w ere not nearly so large as they are today. PROC COPY is
often used to copy an entire library. Of course w hen this occurs, the disk must be accessed to determine all the

members that the library contains.

Similar to PROC DELETE, if the desired action is to modify a few members, and then there is no need to create an

in-memory directory. In SAS 9.4, the PROC COPY SELECT statement has been optimized to avoid the in-memory

directory w hen possible. The PROC COPY SELECT statement w ithout a MEMTY PE= option w ill copy any member

in the library w ith the name specif ied. Therefore, the optimization requires the PROC COPY caller to specify exactly

w hat member types are required. PROC COPY w ithout the optimization know s w hat member types exist by looking

them up in the in-memory directory. The new algorithm is very convenient for those current users that use PROC
COPY calls w ith SELECT and MEMTY PE specif ied are automatically optimized; w ithout you changing any SAS code.

To receive the performance gain, it must be a SELECT copy w ith a member type specif ied.

For example, let’s take the library that w as used in the previous example and copy a couple of datasets to another

library. First, w e w ill run the test case using no MEMTY PE= option afterw ards the same action w ill use MEMTY PE=.

38 proc copy in=mylib out=templib;

39 select a2542 a9236;run;

NOTE: Copying MYLIB.A2542 to TEMPLIB.A2542 (memtype=DATA).

6

NOTE: There were 1 observations read from the data set MYLIB.A2542.

NOTE: The data set TEMPLIB.A2542 has 1 observations and 1 variables.

NOTE: Copying MYLIB.A9236 to TEMPLIB.A9236 (memtype=DATA).

NOTE: There were 1 observations read from the data set MYLIB.A9236.

NOTE: The data set TEMPLIB.A9236 has 1 observations and 1 variables.

NOTE: PROCEDURE COPY used (Total process time):

 real time 0.90 seconds

 cpu time 0.87 seconds

Output 5. Results from the copying of two data sets in a large library w ith SELECT but w ithout MEMTYPE=

43 proc copy in=mylib out=templib memtype=data;

44 select a2542 a9236;run;

NOTE: Copying MYLIB.A2542 to TEMPLIB.A2542 (memtype=DATA).

NOTE: There were 1 observations read from the data set MYLIB.A2542.

NOTE: The data set TEMPLIB.A2542 has 1 observations and 1 variables.

NOTE: Copying MYLIB.A9236 to TEMPLIB.A9236 (memtype=DATA).

NOTE: There were 1 observations read from the data set MYLIB.A9236.

NOTE: The data set TEMPLIB.A9236 has 1 observations and 1 variables.

NOTE: PROCEDURE COPY used (Total process time):

 real time 0.03 seconds

 cpu time 0.03 seconds

Output 6. Results from the copying of two data sets in a large library w ith SELECT and MEMTYPE=

The changes to PROC COPY speeds up the operations both for real time and cpu time by 96.6%~96.7%. Similar to

PROC DELETE, PROC COPY processing time w ill not increase w hen the library size increases.

CONCLUSION

In summary, PROC DELETE’s new changes have made it more eff icient to remove data sets from the library in SAS

9.4 release. There are a few things to consider w hen determining w hether PROC DELETE is the right tool to delete

the data sets. If you are looking to just remove a few data sets from the library, then PROC DELETE is the best
option. On the other hand if you need to delete an entire library, then PROC DATASETS is the best tool. By know ing

w hat the differences are betw een PROC DELETE and PROC DATASETS DELETE deletion process, you can

receive a massive performance gain in your SAS application.

ACKNOWLEDGMENTS

Thanks to Diane Olson, Lisa Brow n, and Peggy Cavalieri for review ing this paper. Thanks to Sue Holmes for the

ENCRY PTKEY documentation. Thanks to Miguel Bamberger for the SAS code and all of his advice.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Brad Richardson

SAS Institute Inc.

500 SAS Campus Drive

Cary NC 27513

Work Phone: (919)677-8000

7

E-mail: Brad.Richardson@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS

Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

