Markets Basket Analysis (MBA) is a data mining technique which is widely used in the consumer package goods (CPG) industry to identify which items are purchased together and, more importantly, how the purchase of one item affects the likelihood of another item being purchased. This paper will first discuss this traditional use of MBA, as well as introduce the concepts of support, confidence, and lift. It will then show how one company used MBA to analyze safety data in an attempt to identify factors contributing to injuries. Finally, a Base SAS macro which performs MBA will be provided and its usage demonstrated. Intended audience is anyone interested in data mining techniques in general, and in market basket analysis in particular, and while a Base SAS macro will be provided, no programming knowledge is required, and non-programmers will benefit from this paper.

SALES TRANSACTIONS

Our imaginary store sales the following items: bananas, bologna, bread, buns, butter, cereal, cheese, chips, eggs, hotdogs, mayo, milk, mustard, oranges, pickles, and soda. We have recorded 20 sales transactions as follows:

<table>
<thead>
<tr>
<th>#1</th>
<th>bread</th>
<th>butter</th>
<th>eggs</th>
<th>milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2</td>
<td>bologna</td>
<td>bread</td>
<td>chips</td>
<td>mayo</td>
</tr>
<tr>
<td>#3</td>
<td>bananas</td>
<td>bread</td>
<td>butter</td>
<td>cheese</td>
</tr>
<tr>
<td>#4</td>
<td>buns</td>
<td>chips</td>
<td>mustard</td>
<td>soda</td>
</tr>
<tr>
<td>#5</td>
<td>bologna</td>
<td>bread</td>
<td>chips</td>
<td>mustard</td>
</tr>
<tr>
<td>#6</td>
<td>bananas</td>
<td>bread</td>
<td>chips</td>
<td>mustard</td>
</tr>
<tr>
<td>#7</td>
<td>bananas</td>
<td>bread</td>
<td>chips</td>
<td>mustard</td>
</tr>
<tr>
<td>#8</td>
<td>buns</td>
<td>chips</td>
<td>mustard</td>
<td>soda</td>
</tr>
<tr>
<td>#9</td>
<td>bananas</td>
<td>bread</td>
<td>eggs</td>
<td>milk</td>
</tr>
<tr>
<td>#10</td>
<td>bologna</td>
<td>bread</td>
<td>chips</td>
<td>mustard</td>
</tr>
<tr>
<td>#11</td>
<td>bananas</td>
<td>bread</td>
<td>chips</td>
<td>mustard</td>
</tr>
<tr>
<td>#12</td>
<td>bread</td>
<td>butter</td>
<td>cheese</td>
<td>chips</td>
</tr>
<tr>
<td>#13</td>
<td>bologna</td>
<td>bread</td>
<td>chips</td>
<td>mustard</td>
</tr>
<tr>
<td>#14</td>
<td>bananas</td>
<td>bread</td>
<td>chips</td>
<td>mustard</td>
</tr>
<tr>
<td>#15</td>
<td>bread</td>
<td>butter</td>
<td>cheese</td>
<td>chips</td>
</tr>
<tr>
<td>#16</td>
<td>bologna</td>
<td>bread</td>
<td>chips</td>
<td>mustard</td>
</tr>
<tr>
<td>#17</td>
<td>bananas</td>
<td>bread</td>
<td>chips</td>
<td>mustard</td>
</tr>
<tr>
<td>#18</td>
<td>bread</td>
<td>butter</td>
<td>cheese</td>
<td>chips</td>
</tr>
<tr>
<td>#19</td>
<td>bologna</td>
<td>bread</td>
<td>chips</td>
<td>mustard</td>
</tr>
<tr>
<td>#20</td>
<td>bananas</td>
<td>bread</td>
<td>chips</td>
<td>mustard</td>
</tr>
</tbody>
</table>

Figure 1. Sales transactions as recorded.
The MBA macro requires that each row of the input dataset have a transaction ID and an item. We can create that dataset with a simple DATA STEP:

```sas
data work.sales;
  input tid item $;
datalines;
  1 bread
  1 butter
  1 eggs
  1 milk
  2 bologna
  2 bread
  ...
  20 mustard
  20 soda
;run;
```

The resulting SAS dataset appears as follows:

![Sales transactions as a SAS dataset](image)

SUPPORT

There is often little benefit in examining extremely rare events. Support is one way to filter out such events. The **support** of an item is the number of transactions containing that item. Items not meeting the minimum support criteria are excluded from further analysis. For our purposes, we will assume a minimum support requirement of four. (Within the MBA macro, support can be expressed as a count or as a percentage of all transactions.) In Figure 3 we can see that pickles do not meet our minimum support requirements.
PAIRS

We then create all possible pairings of the surviving items. Each pair is then checked to see that it, too, meets the minimum support requirement. The support of each pair of items is the number of transactions containing that pair. Pairs of items not meeting the minimum support criteria are excluded from further processing. Limiting ourselves to the surviving items is the key point of the \textit{apriori algorithm}.

In Figure 4 we see that bananas and oranges each have a support of 5, but the pair (bananas, oranges) only has a support of 3, which is less than our requirement of 4, so that pairing will be excluded.

In Figure 5 we see that bologna has a support of 6, and chips has a support of 10. Furthermore, the pair (bologna, chips) has a support of 4, which does meet our support requirement, so that pairing will be included.
ITERATE
We then repeat the process, iterating with itemsets of size three, size four, etc. until
• we are unable to find any itemsets with sufficient support, or
• we reach the maximum number of iterations as specified in the macro.
While it may initially be appealing to try a large number of iterations, it can be difficult to come up with a "story" to explain itemsets resulting from more than three iterations.

ASSOCIATION RULES
Our final results are often expressed as association rules and take the following form (where LHS stands for left hand side and RHS stands for right hand side):

\[(\text{LHS}) \rightarrow (\text{RHS}) \ [\text{support, confidence}]\]

For example:

\{(chips) \rightarrow (bologna) \ [0.20, 0.40]\}

where 0.20 is the support (calculated as 4/20) and 0.40 is the confidence (discussed next). The support value of 0.20 means that the pair (chips, bologna) appear in 20% of the transactions.

CONFIDENCE
Confidence is defined as the conditional probability that a transaction containing the LHS will also contain the RHS.

\[
\text{Confidence} (\text{LHS} \rightarrow \text{RHS}) = P(\text{RHS} \mid \text{LHS}) = \frac{P(\text{RHS} \cap \text{LHS})}{P(\text{LHS})} = \frac{\text{support} (\text{LHS} \cap \text{RHS})}{\text{support} (\text{LHS})}
\]

So the confidence for \{(chips) \rightarrow (bologna)\} is calculated as

\[
P(\text{bologna} \mid \text{chips}) = \frac{P(\text{bologna} \cap \text{chips})}{P(\text{chips})} = \frac{\text{support} (\text{chips} \cap \text{bologna})}{\text{support} (\text{chips})} = \frac{4}{20} / \frac{10}{20} = 0.40
\]
LIFT

Lift is a measure of the improvement in the occurrence of the RHS given the LHS: it is the ratio of the conditional probability of the RHS given the LHS, divided by the unconditional probability of the RHS.

\[
\text{Lift}(\text{LHS} \rightarrow \text{RHS}) = \frac{P(\text{RHS} \mid \text{LHS})}{P(\text{RHS})} = \frac{\text{confidence}(\text{LHS} \rightarrow \text{RHS})}{\text{support}(\text{RHS})}
\]

So the confidence for \{chips\}→\{bologna\} is calculated as

\[
\text{Lift}(\text{chips} \rightarrow \text{bologna}) = \frac{\text{confidence}(\text{chips} \rightarrow \text{bologna})}{\text{support}(\text{bologna})} = \frac{0.40}{6/20} = 1.33
\]

As lift is a ratio, we are usually interested in a value greater than one.

In addition to showing support, confidence, and lift, the MBA macro will also highlight possible interaction effects, defined as those situations where Lift(AB→C) > max(Lift(A→C), Lift(B→C)).

THE MBA MACRO

The SAS code for the MBA macro is included at the end of this paper. The following code executes the macro. The keyword parameters are self-explanatory:

```sas
%mba(TRANS_FILE=work.sales
 , ITEM_ID_IS_STRING="Y"
 , MAXIMUM_ITERATIONS=3
 , MINIMUM_SUPPORT=0.2
 , RHS=('bologna' 'bread')
 , RESULTS_FILE=Perm.Results_Groc
 , WEBPAGE="C:\Users\Owner\Desktop\MWSUG\mba_groc.html"
 );
run;
```

The macro produces a SAS dataset of results which facilitates post-processing. It also produces a report in HTML format. The RHS parameter lets you list those RHS items to be included in the webpage. If the RHS parameter is omitted, all itemsets meeting the minimum support requirement will be included. An image of the webpage is included at the end of this paper.

IT'S NOT JUST FOR GROCERIES!

While retailing may have been the impetus for market basket analysis, its use is certainly not limited to groceries! Our company used MBA to analyze injury data. Consider the following “available items”: prior disciplinary event, prior positive alcohol test, prior injury, shift location, shift time, and injury.

One “shopper” may have picked up a prior positive alcohol test, a prior injury, a night shift at location A, and an injury. Another “shopper” may have picked up a prior disciplinary event, a day shift at location B, but no injury. We would be interested in the LHS factors when RHS = injury.

CONCLUSION

This paper has introduced market basket analysis, as well as its key metrics: support, confidence, and lift. We have also seen how market basket analysis can be used to identify potential interaction effects, and how it can be used in other areas besides retail, such as in examining injury data. Indeed, the use of market basket analysis is limited only by your imagination!
ACKNOWLEDGMENTS
The author would like to thank Dr. Michael Thompson of First Analytics, and Drs. Daniela Raicu, Raffaella Settimi, and Jonathan Gemmel, all of DePaul University.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:
 Name: Bill Qualls
 Enterprise: First Analytics
 Address: 1009 Capability Drive, Suite 314
 City, State ZIP: Raleigh, NC 27606
 Work Phone: 630-542-5185
 E-mail: bqualls@firstanalytics.com
 Web: http://www.firstanalytics.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.
SAS SOURCE CODE

* * * SELECT DISTINCT ITEMS * * *
* This is one of several helper macros for my Market Basket Analysis macro. * * *
* * *

%macro select_distinct_items(CANDIDATE_LIST=, ITEMS_EACH_ROW=);
%global ITEM_LIST ITEM_COUNT; * Will be used in subsequent macros *
%local i;

proc sql noprint;
%if (&GLBL_ITEM_ID_IS_STRING = "Y") %then %do;
 select distinct "" || trim(item) || "" , count(distinct item)
%end;
%else %do;
 select distinct item, count(distinct item)
%end;
into :ITEM_LIST separated by " ", :ITEM_COUNT
from (
 %do i = 1 %to &ITEMS_EACH_ROW;
 %if (&i > 1) %then %do;
 union
 %end;
 select item&i as item from &CANDIDATE_LIST
 %end
)
;
run;

%put ITEM_LIST = &ITEM_LIST;
%put ITEM_COUNT = &ITEM_COUNT;
%mend select_distinct_items;

* * * CREATE_CANDIDATE_SET * * *
* This is one of several helper macros for my Market Basket Analysis macro. * * *
* * *

%macro create_candidate_set(ITEM_LIST=, ITEM_COUNT=, ITEMSET_SIZE=, OUTPUT_CANDIDATE_FILE=);
%local i;

data &OUTPUT_CANDIDATE_FILE (keep =
 %do i = 1 %to &ITEMSET_SIZE;
 item&i
 %end;
);

array item[&ITEM_COUNT]
%if (&GLBL_ITEM_ID_IS_STRING = "Y") %then %do;
 $32
%end;
(&ITEM_LIST);
i = 0;
do while (1 = 1);
 i = i + 1;
 rc = lexcomb(i, &ITEMSET_SIZE, of item[*]);
 if (rc < 0) then leave;
 output;
end;
run;

*title "&OUTPUT_CANDIDATE_FILE";
*proc print data=&OUTPUT_CANDIDATE_FILE;
*run;
%mend create_candidate_set;

* -- *
* FIRST_LIST_IS_TRIVIAL *
* This is one of several helper macros for my Market Basket Analysis macro. *
* -- *
%
macro first_list_is_trivial(OUTPUT_LIST_FILE=);

proc sql noprint;
cREATE TABLE &OUTPUT_LIST_FILE AS
 SELECT item AS item1,
 COUNT(*) AS Support_Count,
 COUNT(*) / &GLBL_MBA.Transaction_Count AS support
 FROM &GLBL_MBA_TRANS_FILE
 GROUP BY item
 HAVING support >= &GLBL_MBA_MIN_SUPPORT_PCT;
QUIT;
RUN;

*title "&OUTPUT_LIST_FILE";
*proc print data=&OUTPUT_LIST_FILE;
*run;
*title;

data &GLBL_MBA_RESULTS_FILE;
set &GLBL_MBA_RESULTS_FILE &OUTPUT_LIST_FILE (in=new);
Iteration = 1;
run;
%mend first_list_is_trivial;

* -- *
* CALCULATE_SUPPORT *
* This is one of several helper macros for my Market Basket Analysis macro. *
* -- *
%
macro calculate_support(ITEMSET_SIZE=, INPUT_CANDIDATE_FILE=, OUTPUT_LIST_FILE=);
%local i;
%do I = 1 %to &ITEMSET_SIZE;
 proc sql noprint;
 create table work.x&i as
 select *
from &GLBL_MBA_TRANS_FILE
where item in
 (select distinct item&i from &INPUT_CANDIDATE_FILE);
quit;
run;
%end;

proc sql noprint;
create table &OUTPUT_LIST_FILE as
select
 %do
 I = 1 %to &ITEMSET_SIZE;
 %if (&I > 1) %then %do;
 ,
 %end;
 x&I..item as item&I
 %end;
, count(*) as Support_Count,
, count(*) / &GLBL_MBA_TRANSACTION_COUNT as support,
, &ITEMSET_SIZE as Iteration
from
 %do
 I = 1 %to &ITEMSET_SIZE;
 %if (&I > 1) %then %do;
 ,
 %end;
 work.x&I
 %end;
where
 %do
 I = 1 %to &ITEMSET_SIZE - 1;
 %if (&I > 1) %then %do;
 and
 %end;
 x&I..tid = x%sysevalf(&I+1).tid and x&I..item < x%sysevalf(&I+1).item
 %end;
 %do
 I = 1 %to &ITEMSET_SIZE;
 %if (&I > 1) %then %do;
 ,
 %end;
 x&I..item
 %end;
 %do
 I = 1 %to &ITEMSET_SIZE;
 %if (&I > 1) %then %do;
 ,
 %end;
 x&I..item
 %end;
 %do
 I = 1 %to &ITEMSET_SIZE;
 %if (&I > 1) %then %do;
 ,
 %end;
 x&I..item
 %end;
 %do
 I = 1 %to &ITEMSET_SIZE;
 %if (&I > 1) %then %do;
 ,
 %end;
 x&I..item
 %end;
where support >= &GLBL_MBA_MIN_SUPPORT_PCT;
quit;
run;

*title "&OUTPUT_LIST_FILE";
*proc print data=&OUTPUT_LIST_FILE;
*run;
*title;

data &GLBL_MBA_RESULTS_FILE;
set &GLBL_MBA_RESULTS_FILE &OUTPUT_LIST_FILE;
run;

proc datasets lib=work nolist;
%do
 I = 1 %to &ITEMSET_SIZE;
 delete x&I;
%end;
run;
%mend calculate_support;
%macro initialize_result_set();

%local I;

data &GLBL_MBA_RESULTS_FILE;
attrib Iteration length=8;
%do I = 1 %to &GLBL_MBA_MAX_ITERATIONS;
 %if (&GLBL_ITEM_ID_IS_STRING = "Y") %then do;
 attrib Item&I length=$32;
 %end;
 %else %do;
 attrib Item&I length=8;
 %end;
%end;

attrib Support_Count length=8;
attrib Support length=8 format=6.2;
* Remaining columns filled after apriori. ;
%do I = 1 %to &GLBL_MBA_MAX_ITERATIONS-1;
 %if (&GLBL_ITEM_ID_IS_STRING = "Y") %then do;
 attrib LHS&I length=$32;
 %end;
 %else %do;
 attrib LHS&I length=8;
 %end;
%end;

%if (&GLBL_ITEM_ID_IS_STRING = "Y") %then do;
 attrib RHS length=$32;
%end;
%else %do;
 attrib RHS length=8;
%end;

attrib Confidence length=8 format=6.2;
attrib Lift length=8 format=6.2;
delete; * Without this you get an empty row ;
run;
%mend initialize_result_set;

%macro find_confidence_and_lift();

%local I;

data Work.With_LHS_RHS (drop = i j k);
set &GLBL_MBA_RESULTS_FILE;

array items[&GLBL_MBA_MAX_ITERATIONS]
%if (&GLBL_ITEM_ID_IS_STRING = "Y") %then %do;
 $32
%end;
item1-item&GLBL_MBA_MAX_ITERATIONS;

* LHS has one less item than itemset size (iteration) ;
array lhs[%sysfunc(&GLBL_MBA_MAX_ITERATIONS - 1)]
%if (&GLBL_ITEM_ID_IS_STRING = "Y") %then %do;
 $32
%end;
LHS1-LHS$sysfunc(&GLBL_MBA_MAX_ITERATIONS - 1);

if (Iteration = 1) then do;
 LHS1 = item1;
 RHS = item1;
 output;
end;
else do;
 do i = 1 to Iteration;
 k = 0;
 do j = 1 to Iteration;
 * put Iteration= i= j= k=;
 if (i = j) then do;
 RHS = items[j];
 end;
 else do;
 k = k + 1;
 LHS[k] = items[j];
 end;
 end;
 output; * write one row for each LHS->RHS ;
 end;
end;
run;

* Having populated LHS and RHS, now do confidence and lift ;

proc sql noprint;
create table Work.Almost_Confidence_And_Lift as
select a.Iteration
%do i = 1 %to %sysfunc(&GLBL_MBA_MAX_ITERATIONS-1);
, a.LHS&i
%end,
, a.RHS
, a.Support / b.support as Confidence format=6.2
, (a.support / b.support) / c.support as Lift format=6.2
from Work.with_lhs_rhs as a
left join &GLBL_MBA_RESULTS_FILE as b
 on (a.iteration - 1) = b.iteration
%do i = 1 %to %sysfunc(&GLBL_MBA_MAX_ITERATIONS-1);
 and a.LHS&i = b.item&i
%end;
left join &GLBL_MBA_RESULTS_FILE as c
 on c.Iteration = 1
 and a.RHS = c.item1
order by a.RHS
, a.ITERATION descending
%do i = 1 %to %sysfunc(&GLBL_MBA_MAX_ITERATIONS-1);
* Now merge individual lifts back in *

proc sql noprint;
create table Work.Lifts_Only as
select rhs, lhs1, lift from Work.Almost_Confidence_And_Lift where iteration = 2;
quit;
run;

proc sql noprint;
create table Work.With_Confidence_And_Lift as
select a.*
 %do i = 1 %to %sysfunc(&GLBL_MBA_MAX_ITERATIONS-1);
 t&i..Lift as LHS&i..lift
 %end;
from Work.Almost_Confidence_And_Lift as a
 %do i = 1 %to %sysfunc(&GLBL_MBA_MAX_ITERATIONS-1);
 left join Work.Lifts_Only as t&i
 on a.rhs = t&i..rhs
 and a.LHS&i = t&i..LHS1
 %end;
order by a.RHS, a.ITERATION descending
 %do i = 1 %to %sysfunc(&GLBL_MBA_MAX_ITERATIONS-1);
 a.LHS&i
 %end;
quit;
run;
data &GLBL_MBA_RESULTS_FILE;
set Work.With_Confidence_And_Lift;
run;

proc datasets lib=Work nolist;
delete With_LHS_RHS;
delete Lifts_Only;
delete Almost_Confidence_and_Lift;
delete With_Confidence_and_Lift;
run;
%mend find_confidence_and_lift;

* --- WRITE_WEBPAGE --- *
* This is one of several helper macros for my Market Basket Analysis macro. *
* --- *
%macro write_webpage(WEBPAGE=, RHS=);
%local I;

12
proc sql noprint;
create table work.I as
select distinct rhs as item
from &GLBL_MBA_RESULTS_FILE
%if (&RHS ne) %then %do;
where rhs in &RHS
%end;
;
quit;
run;

data _NULL_;
set &GLBL_MBA_RESULTS_FILE end=eof;
%if (&RHS ne) %then %do;
where rhs in &RHS;
%end;

data &WEBPAGE lrecl=500;
if (_N_ = 1) then do;
 put "<html>";
 put "<head>";
 put "<title>Market Basket Analysis</title>";
 put "<body>";
 put "<h3 align='center'>Market Basket Analysis

Source File: &GLBL_MBA_TRANS_FILE (Obs = &GLBL_MBA_TRANSACTION_COUNT)

Minimum support: " percent " (n = &GLBL_MBA_MIN_SUPPORT_COUNT)</h3>";
 put "</br>";
 put "<table align='center' width='40%'>
 <tr><td><p>Quicklink to Right Hand Side (RHS) variables
 do while (i_eof = 0);
 set Work.I end=i_eof;
 put "" item +(-1) "";
 end;
 </p></td></tr>
 <tr bgcolor='yellow'><td align='center'><p>
 Possible interaction effects shown in yellow.

 Example: Lift(AB%str(&)rarr%str(;)C) %str(&)gt%str(;
 max(Lift(A%str(&)rarr%str(;)C), Lift(B%str(&)rarr%str(;)C))</td></tr>
 put '</p></td></tr>
 put "</table>";
end;

lag_rhs = lag(rhs);
if (rhs ne lag_rhs) then do;
 if (_n_ > 1) then do;
 put "</td></tr>";
 put "</table>";
 end;
 put ""/a>";
 put "
";
 put "<table align='center' width='90%' border='1' cellpadding='2'
cellspacing='2'>";
 put "<caption>RHS: " rhs "</caption>";
 put "</tr>";
%do i = 1 %to %sysfunc((&GLBL_MBA_MAX_ITERATIONS - 1));
```plaintext
put "<th>LHS &i</th>
%end;

put "<th width='100'>Support</th>";
put "<th width='100'>Confidence</th>";
put "<th width='100'>Lift</th>";
put "</tr>";
end;

if (Lift > max(0
 %do i = 1 %to %sysevalf(&GLBL_MBA_MAX_ITERATIONS - 1);
   , LHS&i._Lift
 %end;
)) then do;
   bigLift = 1;
end;
else do;
   bigLift = 0;
end;

if (bigLift = 1) then do;
   put "<tr bgcolor='yellow'>";
end;
else do;
   put "<tr>";
end;

%do i = 1 %to %sysevalf(&GLBL_MBA_MAX_ITERATIONS - 1);

   put "<td>
   %if (&GLBL_ITEM_ID_IS_STRING = "Y") %then %do;
      if (LHS&i = ") then do;
         put ' &nbsp';
      end;
   %else %do;
      if (LHS&i = .) then o;
         put ' &nbsp';
   %end;
   %end;
   %else %do;
      put LHS&i;
      if (bigLift = 1) then do;
         put " (" LHS&i._Lift +(-1) ")";
      end;
   %end;
   %end;

   * put "</td>";  * </td> optional so omitting it to get a smaller file ;
%end;

* </td> optional so omitting it to get a smaller file ;
put "<td align='center'>" Support;
put "<td align='center'>" Confidence;
put "<td align='center'>" Lift;
put "</tr>";

if (eof) then do;
```
%macro mba(TRANS_FILE=, ITEM_ID_IS_STRING=, MAXIMUM_ITERATIONS=, MINIMUM_SUPPORT=, RHS=, RESULTS_FILE=, WEBPAGE=);

%local I;
%global GLBL_MBA_MAX_ITERATIONS;
%let GLBL_MBA_MAX_ITERATIONS = &MAXIMUM_ITERATIONS;
%global GLBL_ITEM_ID_IS_STRING;
%let GLBL_ITEM_ID_IS_STRING = &ITEM_ID_IS_STRING;
%global GLBL_MBA_TRANS_FILE;
%let GLBL_MBA_TRANS_FILE = &TRANS_FILE;
%global GLBL_MBA_RESULTS_FILE;
%let GLBL_MBA_RESULTS_FILE = &RESULTS_FILE;
%global GLBL_MBA_TRANSACTION_COUNT;
proc sql noprint;
select count (distinct tid) into :GLBL_MBA_TRANSACTION_COUNT
from &GLBL_MBA_TRANS_FILE;
quit;

run;

%put GLBL_MBA_TRANSACTION_COUNT = &GLBL_MBA_TRANSACTION_COUNT;
%global GLBL_MBA_MIN_SUPPORT_PCT;
%global GLBL_MBA_MIN_SUPPORT_COUNT;

%if (&MINIMUM_SUPPORT >= 1) %then %do;
 %let GLBL_MBA_MIN_SUPPORT_COUNT = %sysfunc(round(%sysevalf(&GLBL_MBA_TRANSACTION_COUNT * &MINIMUM_SUPPORT))));
 %let GLBL_MBA_MIN_SUPPORT_PCT = %sysevalf(&MINIMUM_SUPPORT / &GLBL_MBA_TRANSACTION_COUNT);
%end;
%else %do;
 %let GLBL_MBA_MIN_SUPPORT_COUNT = %sysevalf(&MINIMUM_SUPPORT);
 %let GLBL_MBA_MIN_SUPPORT_PCT = %sysevalf(&MINIMUM_SUPPORT / &GLBL_MBA_TRANSACTION_COUNT);
%end;

%put GLBL_MBA_MIN_SUPPORT_COUNT = &GLBL_MBA_MIN_SUPPORT_COUNT;
%put GLBL_MBA_MAX_SUPPORT_PCT = &GLBL_MBA_MIN_SUPPORT_PCT;

%initialize_result_set();

%first_list_is_trivial(OUTPUT_LIST_FILE=Work.L1);

%let DONE = N;
%let MAX_ITERS = %sysfunc(&GLBL_MBA_MAX_ITERATIONS - 1);
%let i = 0;
%do %while (&i < &MAX_ITERS and &DONE = N);
 %let i = %sysevalf(&i + 1);
 %select_distinct_items(CANDIDATE_LIST=work.L&I, ITEMS_EACH_ROW=&I);
 %if (&ITEM_COUNT <= &i) %then %do;
 proc datasets lib=Work nolist;
 delete L&I;
 run;
 %let DONE = Y;
 %end;
%end;
%else %do;
 %create_candidate_set(ITEM_LIST=&ITEM_LIST
 , ITEM_COUNT=&ITEM_COUNT
 , ITEMSET_SIZE=%sysevalf(&I+1)
 , OUTPUT_CANDIDATE_FILE=Work.C%sysevalf(&I+1));
 %calculate_support(ITEMSET_SIZE=%sysevalf(&I+1)
 , INPUT_CANDIDATE_FILE=Work.C%sysevalf(&I+1)
 , OUTPUT_LIST_FILE=Work.L%sysevalf(&I+1));
 proc datasets lib=Work nolist;
 delete L&I;
 delete C%sysevalf(&I+1);
 run;
 %end;
%end;

%find_confidence_and_lift();

%write_webpage(WEBPAGE=&WEBPAGE, RHS=&RHS);
%mend mba;

%let MYLIB = C:\Users\Owner\Desktop\MWSUG;
libname Perm "&MYLIB";
data work.sales;
input tid item $;
datalines;
 1 bread
 1 butter
 1 eggs
 1 milk
 2 bologna
 2 bread
 2 cheese
 2 chips
 2 mayo
 2 soda
 3 bananas
 3 bread
 3 butter
 3 cheese
 3 oranges
 4 buns
 4 chips
 4 hotdogs
 4 mustard
 4 soda
 5 buns
 5 chips
 5 hotdogs
 5 mustard
 5 pickles
 5 soda
 6 bread
 6 butter
 6 cereal
 6 eggs
 6 milk
 7 bananas
 7 cereal
 7 eggs
 7 milk
 7 oranges
 8 bologna
 8 bread
 8 buns
 8 cheese
 8 chips
 8 hotdogs
 8 mayo
 8 mustard
 8 soda
 9 bananas
 9 bologna
 9 bread
 9 cheese
 9 milk
 9 oranges
 9 soda
 10 bread
 10 butter
 10 cereal
 10 eggs
 10 milk
 11 bananas
Market Basket Analysis
Source File: work.sales (Obs = 20)
Minimum support: 20% (n = 4)

Quicklink to Right Hand Side (RHS) variables

- bologna
- bread

Possible interaction effects shown in yellow.
Example: \(\text{Lift}(AB \rightarrow C) > \max(\text{Lift}(A \rightarrow C), \text{Lift}(B \rightarrow C)) \)

<table>
<thead>
<tr>
<th>RHS: bologna</th>
<th>LHS 1</th>
<th>LHS 2</th>
<th>Support</th>
<th>Confidence</th>
<th>Lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>bread (1.54)</td>
<td>cheese (2.50)</td>
<td>0.30</td>
<td>0.86</td>
<td>2.86</td>
<td></td>
</tr>
<tr>
<td>bread (1.54)</td>
<td>chips (1.33)</td>
<td>0.20</td>
<td>1.00</td>
<td>3.33</td>
<td></td>
</tr>
<tr>
<td>bread</td>
<td>mayo</td>
<td>0.25</td>
<td>1.00</td>
<td>3.33</td>
<td></td>
</tr>
<tr>
<td>bread (1.54)</td>
<td>mustard (1.90)</td>
<td>0.20</td>
<td>1.00</td>
<td>3.33</td>
<td></td>
</tr>
<tr>
<td>bread (1.54)</td>
<td>soda (1.52)</td>
<td>0.25</td>
<td>1.00</td>
<td>3.33</td>
<td></td>
</tr>
<tr>
<td>cheese (2.50)</td>
<td>chips (1.33)</td>
<td>0.20</td>
<td>0.80</td>
<td>2.67</td>
<td></td>
</tr>
<tr>
<td>cheese</td>
<td>mayo</td>
<td>0.25</td>
<td>1.00</td>
<td>3.33</td>
<td></td>
</tr>
<tr>
<td>cheese (2.50)</td>
<td>mustard (1.90)</td>
<td>0.20</td>
<td>0.80</td>
<td>2.67</td>
<td></td>
</tr>
<tr>
<td>cheese (2.50)</td>
<td>soda (1.52)</td>
<td>0.25</td>
<td>0.83</td>
<td>2.78</td>
<td></td>
</tr>
<tr>
<td>chips</td>
<td>mayo</td>
<td>0.20</td>
<td>1.00</td>
<td>3.33</td>
<td></td>
</tr>
<tr>
<td>chips</td>
<td>soda</td>
<td>0.20</td>
<td>0.40</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>mayo</td>
<td>mustard</td>
<td>0.20</td>
<td>1.00</td>
<td>3.33</td>
<td></td>
</tr>
<tr>
<td>mayo</td>
<td>soda</td>
<td>0.20</td>
<td>1.00</td>
<td>3.33</td>
<td></td>
</tr>
<tr>
<td>bread</td>
<td></td>
<td>0.30</td>
<td>0.46</td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td>cheese</td>
<td></td>
<td>0.30</td>
<td>0.75</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>chips</td>
<td></td>
<td>0.20</td>
<td>0.40</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>mayo</td>
<td></td>
<td>0.25</td>
<td>1.00</td>
<td>3.33</td>
<td></td>
</tr>
<tr>
<td>mustard</td>
<td></td>
<td>0.20</td>
<td>0.57</td>
<td>1.90</td>
<td></td>
</tr>
<tr>
<td>soda</td>
<td></td>
<td>0.25</td>
<td>0.45</td>
<td>1.52</td>
<td></td>
</tr>
</tbody>
</table>
RHS: bread

<table>
<thead>
<tr>
<th>LHS 1</th>
<th>LHS 2</th>
<th>Support</th>
<th>Confidence</th>
<th>Lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>bologna</td>
<td>cheese</td>
<td>0.30</td>
<td>1.00</td>
<td>1.54</td>
</tr>
<tr>
<td>bologna</td>
<td>chips</td>
<td>0.20</td>
<td>1.00</td>
<td>1.54</td>
</tr>
<tr>
<td>bologna</td>
<td>mayo</td>
<td>0.25</td>
<td>1.00</td>
<td>1.54</td>
</tr>
<tr>
<td>bologna</td>
<td>mustard</td>
<td>0.20</td>
<td>1.00</td>
<td>1.54</td>
</tr>
<tr>
<td>bologna</td>
<td>soda</td>
<td>0.25</td>
<td>1.00</td>
<td>1.54</td>
</tr>
<tr>
<td>butter</td>
<td>eggs</td>
<td>0.25</td>
<td>1.00</td>
<td>1.54</td>
</tr>
<tr>
<td>butter</td>
<td>milk</td>
<td>0.25</td>
<td>1.00</td>
<td>1.54</td>
</tr>
<tr>
<td>cheese</td>
<td>chips</td>
<td>0.20</td>
<td>0.80</td>
<td>1.23</td>
</tr>
<tr>
<td>cheese</td>
<td>mayo</td>
<td>0.25</td>
<td>1.00</td>
<td>1.54</td>
</tr>
<tr>
<td>cheese</td>
<td>mustard</td>
<td>0.20</td>
<td>0.80</td>
<td>1.23</td>
</tr>
<tr>
<td>cheese</td>
<td>soda</td>
<td>0.25</td>
<td>0.83</td>
<td>1.28</td>
</tr>
<tr>
<td>chips</td>
<td>mayo</td>
<td>0.20</td>
<td>1.00</td>
<td>1.54</td>
</tr>
<tr>
<td>chips</td>
<td>soda</td>
<td>0.20</td>
<td>0.40</td>
<td>0.62</td>
</tr>
<tr>
<td>eggs</td>
<td>milk</td>
<td>0.30</td>
<td>0.86</td>
<td>1.32</td>
</tr>
<tr>
<td>mayo</td>
<td>mustard</td>
<td>0.20</td>
<td>1.00</td>
<td>1.54</td>
</tr>
<tr>
<td>mayo</td>
<td>soda</td>
<td>0.20</td>
<td>1.00</td>
<td>1.54</td>
</tr>
<tr>
<td>bologna</td>
<td></td>
<td>0.30</td>
<td>1.00</td>
<td>1.54</td>
</tr>
<tr>
<td>butter</td>
<td></td>
<td>0.30</td>
<td>1.00</td>
<td>1.54</td>
</tr>
<tr>
<td>cheese</td>
<td></td>
<td>0.35</td>
<td>0.88</td>
<td>1.35</td>
</tr>
<tr>
<td>chips</td>
<td></td>
<td>0.20</td>
<td>0.40</td>
<td>0.62</td>
</tr>
<tr>
<td>eggs</td>
<td></td>
<td>0.30</td>
<td>0.86</td>
<td>1.32</td>
</tr>
<tr>
<td>mayo</td>
<td></td>
<td>0.25</td>
<td>1.00</td>
<td>1.54</td>
</tr>
<tr>
<td>milk</td>
<td></td>
<td>0.35</td>
<td>0.88</td>
<td>1.35</td>
</tr>
<tr>
<td>mustard</td>
<td></td>
<td>0.20</td>
<td>0.57</td>
<td>0.88</td>
</tr>
<tr>
<td>oranges</td>
<td></td>
<td>0.20</td>
<td>0.80</td>
<td>1.23</td>
</tr>
<tr>
<td>soda</td>
<td></td>
<td>0.25</td>
<td>0.45</td>
<td>0.70</td>
</tr>
<tr>
<td>bread</td>
<td></td>
<td>0.65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>