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ABSTRACT 
This paper will focus on the basics of path analysis, how to run path models in Proc CALIS, and how to use SAS to 
test for multivariate normality.  Two estimation methods for path analysis: ML (Maximum Likelihood) and FIML (Full 
Information Maximum Likelihood) will be explained and compared.  The results from Proc CALIS will also be 
compared with the SPSS AMOS module and the Mplus software. 
 
Further, SAS can be used to check data for the MAR (Missing At Random) assumption and to estimate a path model 
after imputing missing data.   Power calculations for structural equation models can be done with Proc IML.  The 
concepts behind SEM power calculation will be explained and an IML program to perform SEM power calculations 
will be presented. 
 
The data used for the analysis in this presentation is from the REACH-Detroit project, a culturally tailored Diabetes 
intervention for African American and Latino/a persons in inner city Detroit. 
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Introduction to Path Analysis1-3 

A Path Analysis model is a multivariate linear model based on a diagram that specifies the relationships between the 
variables, such as Figure 1 below.  Path Analysis is the sub-model of SEM (Structural Equation Model), in which all 
variables (except error terms) are manifest, meaning observable.  Whereas, SEM allows for both manifest and latent 
variables.  Let n be the size of a random sample, where X1 to Xp are the independent variables and Y1 to Yq are the 

dependent variables.  In general, p and q do not have to be equal.  Each of X1 to Xp and Y1 to Yq are n  1 vectors. 

 
Figure 1: Example of a Path Diagram With Equations, p = 3, q = 2. 

 

 Y1 = X1γY1X1 + X2γY1X2 + Y2βY1Y2 + δ1. 

 Y2 = X2γY2X2 + X3γY2X3 + δ2.   
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SAS Code for Path Diagram in Figure 1 
ods html newfile=proc path="c:\tempfiles";    ods graphics on; 

Proc Calis Covariance Residual Modification Kurtosis Method=ML plots=residuals 

Data=Test; 

LINEQS Y1 = P_Y1X1 X1 + P_Y1X2 X2 + P_Y1Y2 Y2 + Err_Y1,   

       Y2 = P_Y2X2 X2 + P_Y2X3 X3 + Err_Y2;             

VARIANCE Err_Y1 = Var_EY1, Err_Y2 = Var_EY2,  

         X1 = Var_X1, X2 = Var_X2, X3 = Var_X3; 

VAR X1 X2 X3 Y1 Y2;           

Run;    ods graphics off; ods html close; 

 

Endogenous and Exogenous Variables 
An exogenous variable is an input variable with a mean and variance determined by variables outside of the model 
diagram, such as X1 to X3 in Figure 1 above.  An endogenous variable is an output variable with a mean and variance 
that are related to other variables in the model, such as Y1 and Y2 in Figure 1.  Exogenous variables are analogous to 
independent, input, or X variables in multiple regression, while endogenous variables correspond to dependent, 
output, or Y variables.  Path analysis differs from multivariate regression by allowing a variable to be a covariate in 
one equation and an outcome in another equation, such as Y2 in Figure 1. 

 
Covariances must be estimated for each pair of exogenous variables.  Variances must be estimated for each 
exogenous variable and the error terms of the equations for endogenous variables.  These parameters are 
automatically set by the CALIS procedure.   Estimating covariances between the error terms of endogenous variable 
equations is optional and depends on whether the researcher hypothesizes significant covariance between 
endogenous error terms.  Hence, error covariances are set to zero by default in the CALIS procedure. 
 

Design Equations and Matrices1,5 
Assume a simple random sample of size n from an infinite population.  Let  

 p = Number of manifest exogenous variables; q = Number of manifest endogenous variables. 

 r = p + q = Number of manifest exogenous + endogenous variables. 

 X = Matrix of manifest exogenous variables, with dimension n  p. 

 Y = Matrix of manifest endogenous manifest variables, with dimension n  q. 

 Z = [X Y] = Matrix of manifest endogenous and exogenous variables, dimension n  r. 
 

 μ = Column vector of means of manifest variables based on SEM model, dimension r  1. 

 Σ = Covariance matrix of manifest variables based on EM model, dimension r  r. 

 Both μ and Σ are functions of the SEM model parameters.
5
 

 

 z  = Column vector of sample means of manifest variables, dimension r  1. 

 S = Sample covariance matrix , containing all sample variances and covariances of the columns of z, with  

(n – 1) in the denominator, dimension r  r. 

 S  = Generalized Variance of S = determinant(S). 

   =  Estimated covariance  matrix of Z based on the SEM model. 

   = Generalized Variance of  = determinant( ). 

The goals of SEM are to estimate the conditional means and covariances of the endogenous variables.    must be a 

positive definite matrix, meaning that the determinant  must be positive.  SEM models are often fit by the method of 
Maximum Likelihood.  The maximum likelihood process minimizes the discrepancy function, FML, where  

     1 1ln ln
T

MLF S tr S z z r            and FML = -2log(likelihood)/n.
6,7

 

Model χ
2
:  2 1ML MLn F   .

7
  If the SEM model fits perfectly, the model χML

2
 = 0, because S =  .  

 
The LISREL (Linear Structural Relationships) equation for path analysis is  Y = α + YΒ + XΓ + δ, where E(δ) = 0 and δ 
is uncorrelated with X1 to Xp.  Further, Β has zeros on the diagonal and (I – B) is non-singular.  The reason for this is 
that (I – B)

-1
 must exist, in order to find a solution to the equation.  If B=0, the path model is equivalent to multivariate 

regression. 
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Lagrange Multiplier  And Wald Statistics7 
To display the Lagrange multiplier and Wald statistics, include the “Modification” option on the Proc CALIS  

The Lagrange Multipier estimates the  reduction in χML
2
 by adding variables to SEM model.  Whereas, the  

Wald Statistic estimates the  increase in χML
2
 by removing variables from a SEM model.  The SAS Proc CALIS 

documentation states that Lagrange multiplier and Wald statistics are approximations of what how the model χ2 
would change.   More accurate results would be obtained by actually running the models and comparing the actual χ2 
values with a Likelihood Ratio Test. 
 

Evaluating the Goodness of Fit of a SEM Model1,2 
Goodness of fit indices are best understood by dividing them into four categories: absolute fit, incremental fit, 
parsimony, and prediction ability of the model. 
 
Let dfML = degrees of freedom for the model under consideration,  
      dfB = degrees of freedom for the null model with no covariates. 
The model χ

2
 is given by Χ

2
ML = (n – 1)FML and null model’s χ

2
 is Χ

2
B = (n – 1)FB 

  
Absolute Fit Indices are analogous to R

2
 in linear regression and estimate the proportion of the sample covariance 

that is explained by the model.  The GFI (Joreskorg-Sorbom Goodness of Fit Index) is analogous to R
2 
in linear 

regression
2, 6

.  GFI > .9 indicates a good absolute fit. 
 
Incremental Fit Indices compare the hypothesized model to the null model with no predictors (Y1 = ε1, ..., Yq = εq).  

Kline recommends the CFI (Bentler’s Comparative Fit Index).
2, 14

.  A value of CFI from .90 - .95 is considered 

acceptable, while above .95 indicates a better incremental fit.  CFI = 1 – (χML
2
 - dfML)/( χB

2
 – dfB) 

 
Parsimony Adjusted Indices include penalty terms in their formulas for more complex models.  When two models 

with similar fit to the data are compared with parsimony adjusted indices, the indices will favor the less complex 
model.  The RMSEA (Steiger-Lind Root Mean Square Error of Approximation) with a 90% confidence interval).

2, 15
.  

RMSEA < .05 is considered ideal, .05 to .08 indicates acceptable parsimony, .08 to .10 is considered mediocre, and 
above .10 signals a poor fit.

1
  Also, “Probability of Close” fit is the p-value for the null hypothesis that RMSEA ≤ .05.   

 
Predictive Fit Indices estimate model fit in in samples of the same size and   estimate the model’s ability to make 

predictions for the population.  The SRMR (Standardized Root Mean Square Residual, Hu and Bentler, 1999) is 
related to the correlation residuals.

2, 16
.  SRMR < .10 is the goal, with values under < .08 indicating better predictive 

ability of the model. 
 
Because SEM is based on maximum likelihood estimation, AIC (Akaike’s Information Criteria) can be used to 
compare any two models and the LRT (likelihood ratio test statistic) can be used to compare two nested models.   In 
SEM, the LRT is computed by subtracting the chi-squares between the reference model, χ

2
M,  and the nested model, 

χ
2

0.   LRT = χ
2

M - χ
2

0.  The degrees of freedom will be the difference in degrees of freedom between the reference 
model and the nested model.   
 
The squared multiple correlation coefficient for each endogenous variable has the same interpretation as R

2
 in linear 

regression, the proportion of variance in the dependent variable that is explained by the regression equation. 
 

Degrees of Freedom and Power  
Since the goal of SEM is to choose a model that nearly replicates the covariance matrix, a saturated model would 
contain r(r + 1)/2 terms, because a covariance matrix contains r(r + 1)/2 unique entries.   

 Let  t = number of parameters estimated in a SEM = t = # path coefficients + # variances + # covariances. 

 df  = degrees of freedom = r(r + 1)/2 – t. 
1, 17

 
 
So, df does not change with n as in a linear regression model.  Neither increasing nor decreasing the sample size will 
change the degrees of freedom, but will change the power. 
 
MacCullum (1996) proposed estimating the power in a SEM by comparing the values of the RMSEA statistic between 
models with good and poor fits.  For a well-fitting model, the χ

2
 statistic will have a noncentrality parameter, λ, near 

zero
18

.  For a poorly fitting model, the χ
2
 statistic will have the same df, but with a larger non-centrality parameter.  

The difference between the non-centrality parameters can be used  to estimate power because E( χ
2
 –df )= λ.  

 
Let RMSEA0 = RMSEA for a well-fitting model, typically .05. 
RMSEAa = RMSEA for a poor-fitting model, typically .08. 
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df = Degrees  of freedom. 
n = Sample size for complete data. 
α = Size of type I error; commonly .05. 
 
λ0 = Non-centrality parameter assuming Σ is such that E(χ

2
) - df = (n-1)*df*RMSEA0

2
. 

λa = Non-centrality parameter assuming Σ is such that E(χ
2
) - df = (n-1)*df*RMSEAa

2
. 

  
The null hypothesis is H0: 0 ≤ λ ≤ λ 0.  The alternative hypothesis is HA:  λ ≥ λ a. 
cval = 100(1 – α)  percentile of χ2(df, λ 0). 
Power =  Pr[χ2(df, λ a) > cval]. 
 
For the REACH-Detroit data, n=188 complete observations, 58 df, and the lower bound for power is 0.79.  This is a 
lower bound because the entire dataset contains 326 observations and the model was estimated with FIML (Full 
Information Maximum Likelihood), which includes all observations, even if the data is incomplete. 
 

SAS Code for SEM Power Calculation 
Proc IML;  

alpha=.05; /* significance level */  

rmsea0=.05; /* null hyp value */ 

rmseaa=.08; /* alt hyp value */  

d=58;/* degrees of freedom */  

n=188; /* sample size */ 

ncp0=(n-1)*d*(rmsea0**2);  

ncpa=(n-1)*d*(rmseaa**2);  

cval = cinv(1-alpha, d, ncp0);  

power = 1 - probchi(cval, d, ncpa);  

Print rmsea0 rmseaa alpha d n cval[Format=10.3] power[Format=5.3] ncp0 ncpa; 

Quit; 

 

Description of the REACH Detroit Project 
REACH stands for Racial and Ethnic Approaches to Community Health.  In the year 2000, the Centers for Disease 
Control and Prevention (CDC) funded 24 different REACH projects in cities across the country.  In the United States, 
communities of color are more likely than whites to suffer from health problems such as diabetes, high blood 
pressure, breast and cervical cancer, hiv/aids, and infant mortality.  For more information, visit www.reachdetroit.org 
and www.cdc.gov/reach. 
 
The REACH-Detroit intervention was a culturally tailored Diabetes curriculum over 11 sessions taught by PEER 
health educators, known as (FHAs) “Family Health Advocates”.  Part 1 of the curriculum was called “Journey to 
Health” and part 2 was called “Self-Management”.  Having the FHAs accompany clients to at least one doctor visit 
was another key part of the intervention.   
 
This analysis project utilized data from 326 REACH clients in two cohorts.  The measurements were taken from 
interviews and lab measurements at baseline, 6, 12 months.  In cohort 1 (n = 180), there was no control group 
because a randomized / control study was not acceptable to community partners in Detroit when the project began.  
After gaining trust in the community for a randomized control intervention, cohort 2 was designed with two groups: 
group 1 (n = 72) intervention after baseline interview; group 2 (n = 74) intervention after 6 month interview.  Further, 
pre-Intervention was defined as baseline if cohort 1 or cohort 2 immediate arm and 6 months if cohort  2 delayed arm. 
Post-intervention  was defined as  6 months if cohort 1 or cohort 2 immediate arm and 12 months for the cohort 2 
delayed arm.  The primary outcome was HbA1c (Hemoglobin A1c), the state of art method of measurement of blood 
sugar. 
 
The hypothesized path to improvement in HbA1c is shown in figure 2.  In English, figure 2 says that improvement in 
diabetes self-management behavior would lead to reduction in HbA1c.  Improvements in self-management behavior 
would be achieved through greater knowledge and self-efficacy, along with lower diabetes distress.  Participation in 
the intervention would lead to improved knowledge and self-efficacy, and would reduce diabetes distress.  
Participation measured by the number of intervention classes, attendance in group versus one-on-one format, and 
being accompanied to at least one doctor appointment by a FHA.   
 
Before beginning the path analysis, all demographic, participation, and outcome measures were compared by 
treatment group and by cohort.  Designated groups were cohort 1, cohort 2 delayed, and cohort 2 immediate.   
Differences in Binary measures were evaluated with a Pearson chi-square test.  Ordinal measures were compared by 
one-way anova if the distributions were symmetric and with the Kruskal-Wallis test for asymmetrical distributions. 

http://www.cdc.gov/reach
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Figure 2: Hypothesized Paths to HbA1c Improvement 
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Assessment of Multivariate Normality (SAS code in appendix) 
 

Measures and Assessment by Mahalanobis Distance, Histogram, and QQ Plot    
Let Zj be a single random variable  with mean μ and variance σ

2
.  Then, the normality of Zj can be assessed by 

computing (Zj – μ)/σ and comparing its histogram and qq-plot to a standard normal variable with zero mean and unit 
variance.  If the histogram and qq-plot of Zj are close to a Normal(0, 1), then assuming that Zj is approximately normal 
is reasonable.  Because (Zj – μ)

2
/σ

2
 would be have a chi-square distribution with one degree of freedom, χ

2
(1), 

comparing the histogram and qq-plots of (Zj – μ)
2
/σ

2
 to a χ

2
(1) is an alternative method for assessing normality.   

 
For a r-variate random sample of size n, the Mahalanobis distance is analogous to (Zj – μ)

2
/σ

2
 and is given by the 

formula below. 

 Let Z be a n  r matrix of random variables. 

 Z(i) = Ith row of Z with dimension 1  r. 

 μ = column vector of means of the columns of Z, dimension r  1. 

 Σ = covariance matrix of a row of Z(i), dimension r  r. 

 d(i)
2
 = Mahalanobis distance of Z(i) = (Z(i) – μ

T
) Σ

-1
(Z(i) – μ

T
)
T
. 

 
If Z is multivariate  normal, then the histogram and qq-plots of the Mahalanobis distance,  d(i)

2
, should have an 

approximate χ
2
(r) distribution.  In practice, μ and Σ are usually unknown and are estimated by the sample mean and 

covariance. 
 
The Mahalanobis Distance, d(i)

2
, can also be computed from the eigenvalues and eigenvectors of the covariance 

matrix of Z.  Because the covariance matrix is symmetric and non-negative definite, it can be expressed in terms of 
its eigenvalues and eigenvectors

3
.  There will be r eigenvalue, eigenvector pairs for Z. 

 Let λj = eigenvalue of the covariance matrix of a row of Z.  

 Λ = diagonal matrix with λ1, λ2, …, λr on its diagonal, dimension r  r. 

 ej = eigenvector corresponding to λj. dimension n  1. 

 e = r  r matrix containing eigenvectors e1 to er in each column.  
Then, d(i)

2
 = Mahalanobis distance of Z(i) = (Z(i) – μ

T
)e

T
Λ

-1
e(Z(i) – μ

T
)
T
. 

 

Mardia’s Statistics for Multivariate Normality 
One of the assumptions in the classical SEM is that all variables, endogenous and exogenous, are multivariate 
normal.  Because SEM tests a hypothesized covariance structure with a chi-square statistic that is sensitive to large 
kurtosis, multivariate kurtosis is considered a key diagnostic for data in a SEM model

5
. 

 

For any univariate random variable, Zj, with mean μ, the skewness and kurtosis are defined by the following 
equations:  μ3 = skewness = E(Zj – μ)

3
 and μ4 = kurtosis= E(Zj – μ)

4
.  For any random variable with a symmetric 

distribution, including a normal random variable, the skewness will be zero.  For any normal random variable with 
variance σ

2
, the kurtosis will be 3σ

2
.  For a standard normal distribution, the kurtosis will be 3.   

 
Geometrically, skewness is a measure of symmetry.   Positive skewness indicates that a distribution has a longer tail 
to the right and negative skewness signals a larger tail to the left.  Kurtosis measures peakedness and tail density 
relative to a standard normal distribution.  A kurtosis above 3 indicates a higher, sharper peak and longer tails than a 
Normal(0,1).  Lower values indicate a lower, less distinct peak and shorter tails than a Normal(0, 1).  Balanda and 
MacGillivray wrote that increasing kurtosis was associated with the movement of probability mass from the shoulders 
of a distribution into its center and tails

26
. 

 
Mardia generalized the formulas for univariate skewness and kurtosis to a r-variate distribution

27
.  He proved that the 

kurtosis for a r-variate standard normal variable would be r(r + 2).  So, if r = 1, the kurtosis would be 3.   
 
The population multivariate skewness and kurtosis are given by the following equations

27, 28
: 

 Multivariate Skewness = β1r = E{(Z(i) – μ
T
)Σ

-1
(Z(i) – μ

T
)
T
}
3
. 

 Multivariate Kurtosis =  β2r = E{(Z(i) – μ
T
)Σ

-1
(Z(i) – μ

T
)
T
}
2
. 

 
For a single variable, Zj, the multivariate kurtosis will correspond to univariate formula, β2r = E{(Zj(i) – μ

T
)σ

-2
 (Zj(i) – 

μ
T
)
T
}
2
.  However, the multivariate formula for skewness is the square of the univariate formula; β1r = E{(Zj(i) – μ

T
)σ

-2
 

(Zj(i) – μ
T
)
T
}
3
. 

 

Mardia proposed the following formulas for sample skewness and kurtosis. 

 Z = column vector of the means of columns of Z, dimension r  1. 
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 Multivariate Skewness:    
3

1

1 ( ) ( )2
1 1

1 n n T
T T

r i k

i k

b Z Z S Z Z
n



 

 
   

 
 . 

 Multivariate Kurtosis:     
2

1

2 ( ) ( )

1

1 n T
T T

r i i

i

b Z Z S Z Z
n





 
   

 
 . 

 
If Z is r-variate normal, then nb1r/6 ~ χ

2
[r(r + 1)(r + 2)/6] and  b2r ~ Normal[r(r + 2), 8r(r + 2)/n]

27
.  Therefore, the 

multivariate normality of Z can be tested with a chi-square test for nb1r/6 and the multivariate kurtosis by comparing 

2 ( 2)

8 ( 2)

rb r r

r r n

  
   

to the percentiles of the standard normal distribution.  

 
Test Results for Multivariate Normality in the REACH Detroit Dataset 
For the REACH data, multivariate normality was examined with histograms and qq-plots for all variables in model 
(Figure 3a) and only the endogenous variables  (Figure 3b).  When the joint normality is assessed for all variables in 
Figure 3a, the histogram and qq-plots more closely fit the chi-square distribution, than in Figures 3b.   
 

For figure 3.3.1, r = 20 and 
2 ( 2)

0.03.
8 ( 2)

rb r r

r r n

  
      

The value is <<1.96 and again indicates that multivariate normality is a reasonable assumption.  The mystery is that 
some of the variables are binary.  So, how can all variables together produce better diagnostics for multivariate 
normality than only the endogenous variables?  The key to this mystery is that binary variables can have kurtoses 
that are smaller than normal variables and the contribution of binary variables can lower the multivariate kurtosis.   
 
Standardized skewness is the skewness divided by the (variance)

3/2
.  Similarly, standardized kurtosis refers to 

(kurtosis/(variance)
2
 – 3).   The standardized skewness of a Bernoulli random variable, where π is the probability of 

the event, is 
 

 

1 2

1



 




 and standardized kurtosis is 

 
 

1 6 1

1

 

 

 


.  Therefore, the normalized skewness and 

kurtosis of a binary random variable can have values lower than a normal random variable.  The overall multivariate 
kurtosis can be lowered by including binary random variables with other random variables that have kurtosis values 
higher than normal random variables.  The table below displays the standardized skewness and kurtosis values for 
binary variables with π from 0.25 to 0.75. 
 

π Skewness Kurtosis 

0.25 1.15 -0.67 

0.50 0.00 -2.00 

0.75 -1.15 -0.67 
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Figure 3a: Histogram and QQ-Plot of All Exogenous And Endogenous Variables  

  
 
Figure 3b: Histogram and QQ-Plot of Endogenous Variables  

 

 
 

Although the model χ
2
 derivation is based on the assumption that all variables in a SEM are multivariate normal

5
, the 

exogenous variables do not have to be normally distributed
5, 32, 33

.  An adequate condition is that the endogenous 
variables, conditional on the exogenous variables, be multivariate normal

5, 33
.  Bentler and Chou provided examples 

of exogenous variables, such as gender and race/ethnicity, that are clearly non-normal.  In conclusion, the normality 
diagnostics indicate that the multivariate skewness and kurtosis in the REACH data are sufficiently small for SEM 
analysis. 
 

Missing Data   
In the REACH-Detroit dataset, missing data is an issue that needs to be addressed.  Out of 326 observations, 188 
are complete. 
 
Let Y be the outcomes, or dependent variables, for a model.  (Hemoglobin A1c, Knowledge, Self- Management, 
Diabetes Distress, Self-Efficacy).  X are the predictors, or independent variables, for a model.  (Participation, 
Demographics, Treatment Group).   
 
M is the indicator for missing data and f(M) be the probability density function for M, where  
M = 1 denotes missing data and M = 0 denotes complete data on an observation. 
In the missing data literature, there are three types of missing data mechanisms

34-36
: 

 

 MCAR (Missing Completely at Random). Missingness does not depend on the values of variables in the 

data set.  I.E., missingness does not depend on Y (outcome) or X (covariates).  f(M | X, Y) = f(M).   

 MAR (Missing at Random).  Missing Y may depend on covariates, X, but not on Y.  f(M | X, Y) = f(M | X).  
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 MNAR (Missing Not at Random).  Missingness  is related to unobserved data;  also called “Non-Ignorable 

Missing”. 
 
In my opinion, Missing at Random (MAR) is a reasonable assumption for the REACH-Detroit data.   

 From Table 1, the pre-intervention means for all 5 endogenous variables (HbA1c, Knowledge, Diabetes 
Distress, Self-Efficacy, Self-Management) do not differ significantly by whether the post-intervention values 
are missing.  In addition, the post-intervention HbA1c means do not differ by whether pre HbA1c is missing.  
Due to the small numbers of missing values in the other pre-intervention variables, the only post –
intervention variable that was compared by whether the pre-intervention values were missing was HbA1c. 

 The only variables that differ by withdrawal are participation measures, class attendance and FHA 
accompanied doctor visits.  This makes perfect sense because people who withdrew weren’t available to 
participate.  None of the outcome nor demographic variables differ significantly by withdrawal. 

 Withdrawal was the reason for over 70% of the missing post-intervention data. 
 Last, although none of the exogenous variables are significantly associated with withdrawal, I do not think 

that the data is MCAR (Missing Completely At Random) because a previous analysis indicated that a higher 
percentage of African Americans withdrew in cohort 2. 

 
Table 1: Means (95% CI) of Endogenous Variables, By Whether Data at the Other Time Point Is Missing 

 

Measure Other Timepoint Missing OtherTimepoint Present p-Value 

Pre-Intervention HbA1c 8.4 (7.7, 9.0) 8.5 (8.2, 8.8) 0.6405 

Post-Intervention HbA1c 7.7 (5.9, 9.6) 7.8 (7.5, 8.0) 0.8776 

Pre-Intervention Knowledge  3.4 (3.2, 3.6) 3.3 (3.2, 3.5) 0.4969 

Pre-Intervention Diabetes Distress 22.3 (17.2, 27.4) 24.4 (21.7, 27.1) 0.1733 

Pre-Intervention Self-Efficacy 74.8 (70.8, 78.7) 70.4 (67.8, 73.0) 0.0705 

Pre-Intervention Self-Management  2.9 (2.7, 3.1) 3.0 (2.9, 3.1) 0.3714 

 

Multiple Imputation (MI)35, 37 (SAS code in appendix ) 
Multiple Imputation uses Markov Chain Monte Carlo simulation to estimate missing values in the data set.  A key 
assumption for multiple imputation is that the missing data mechanism is at least MAR (Missing At Random).  
Depending on the amount of data that is missing, m imputations will be performed, with the result being m datasets.  
The higher the percentage of missing data, the higher the number of imputations. 
 
After imputing m datasets, the originally intended statistical analysis procedure, such as regression or structural 
equation modeling, will be performed, but will be repeated on the m imputed datasets.  The resulting parameter 
estimates from the m analyses will then be averaged from the m runs and the standard errors will be the sum of 
between imputation and within-imputation variances by following equations.  In addition, the imputation model can 
contain additional variables that are either associated with missingness or with the value of the outcome. 
 

 Let i  be the r  1 vector of parameter estimates from the ith imputation. 

 

1

1 m

i

im
 



  = Combined parameter estimates from the m imputations. 

 Wi be a r  1 vector of within-imputation variances for the ith imputation. 

 

1

1 m

i

i

W W
m 

   = Within-Imputation Variance. 

  
2

1

1

( 1)

m

i

i

B
m

 


 

 = Between-Imputation Variance, dimension r x 1. 

 
1

1T W B
m

 
   

 
= Total Variance of parameter estimates, dimension r x 1. 

 λ = Proportion of observations with incomplete data. 

 RE = Relative Efficiency = Ratio between variance of estimates based on m imputations to the asymptotic 
variance from infinite imputations. 

 RE = (1 + λ/m)
-1

 . 
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Full Information Maximum Likelihood (FIML)
7, 38

 

The FIML algorithm is the same as the ML (Maximum Likelihood) algorithm, except that all available information is 
used.  As in multiple imputation, a key assumption is that the missing data mechanism is MAR or MCAR.  In the 
Maximum Likelihood algorithm, an observation with data on 9 out of 10 variables would be excluded from the 
likelihood calculations.  Whereas, FIML would use the 9 out of 10 variables on that record. 
 

 Let Sn = Biased sample covariance = (n – 1)S/n, dimension r  r. 

 NOTE: X, Y, Z, z , μ, S, Σ same as previously defined in on page 2. 

 C = Number of complete observations. 
 

S and z  are estimated from the complete data with C observations.  The initial estimates of μ and Σ are estimated by 
maximum likelihood from the complete data.  These estimates are updated with the data available in every 
observation to minimize the expression for FFIML below. 
 

Let z(i) be the row vector for ith row of z.  If the ith row of z has complete data, then z(i) has dimension 1  r.  If k out of 

r variables on the ith observation contain data, then the dimension will be 1  k.  
 
Let μi and Σi be the mean and covariance for the ith observation of z.  If the ith observation of z has complete data, 
then μi = μ and Σi = Σ.  Otherwise, if data for k of the r variables are present, then μi

 
will have dimension k x 1 and Σi 

will have dimension k x k.  Therefore, μi is the sub-vector of μ and Σi is the sub-matrix of for which data is present in 
the ith row.  For example, if z contained 10 variables and 7 variables had data present on the 5

th
 observation, the 

dimensions of μ5  would be 7 x 1; Σ5 would be a 7 x 7 matrix, instead of a 10 x 10 matrix.   
 
The values in μ5 would be the 7 means from μ that corresponded to the positions in the 5

th
 observation for which data 

was present.  Similarly for Σ5, no new data would be computed.  The sub-matrix would be the values from Σ which 
corresponded to the non-missing position in the 5

th
 observation. 

 
Then, the discrepancy functions to minimize for ML and FIML are the following: 
 

      1 1ln ln
T

MLF S tr S z z r              

       1

( ) ( )

1

1
ln

n
T

T T

FIML i i i i i i i

i

F z z
n

 



       ; Кi is a constant.  

 
If all n rows of z contain complete data, then the expression for FFIML becomes the following, where K is a constant.  

     1 1ln .
T

FIML nF tr S z z K         
 

 
Results of Fitting a Path Analysis Model to the REACH Detroit Data.   
 
The FIML estimation method was used to estimate the coefficients for all of the candidate models.  Because FIML is 
maximum likelihood estimation, likelihood ratio tests can be used to compare nested models and AIC (Akaike 
Information Criterion) can be used to compare any two models.  Four issues were addressed to select the final 
model: 
 

 Transform to code FHA-accompanied doctor visits. 

 Direct path from participation measures to Post-Intervention HbA1c. 

 Effect of removing demographics, treatment group, participation measures. 

 Self-management behavior as aggregate measure or include each variable used in computing the self-
management score. 

 
The first issue was how to transform FHA-accompanied doctor visits.  In the original design of REACH-Detroit, clients 
were supposed to have one doctor visit accompanied by a FHA (Family Health Advocate).  However, 93 of the 326 
clients had two or more FHA-accompanied doctor visits.  The AIC criterion was used to select the model with the 
transformation that best fit the data.  Three transformations for doctor visits were considered and each produced a 
single variable to represent FHA-accompanied doctor visits.  The coding systems that were considered were: {0, 1+}, 
{0, 1, 2, 3, 4+}, and square root(doctor visits).  The reasoning behind the square root transformation was that zero 
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and one would retain their original values, while values above one would be weighted downwards.  The AIC results 
for the three models were 22071.70 for 1+ or zero, 22638.11 for truncation at 4, and 22321.28 for the square root 
transformation.  Because lower AIC indicates better fit, 1+ or zero is clearly the best coding for doctor visits and also 
fits best with the original design of REACH. 
 
The second issue was whether the model should contain direct paths from the participation variables  to post-
intervention HbA1c.  There were four participation variables: number of intervention classes, 1+ FHA-accompanied 
doctor visit,  1+ Journey to Health Group Class, and 1+ Self-Management Group Class.  The LRT (Likelihood Ratio 
Test) was used to compare these two models by subtracting the χ

2
 statistics between the full and reduced models.  

The lrt statistic was (142.96 -135.62) = 7.34, which produced a p-value of  0.1138.  Based on the lrt statistic, the 
direct path from the participation variables to post-intervention HbA1c was omitted from the model. 
 
Third, what would be the effect of removing demographics and treatment group, along with each participation 
variable?  Again, these questions were answered by using the likelihood ratio test and the results are shown in the 
Table 5.1.1 below.  Based on the LRT tests, demographics, cohort, and treatment group do not add significant 
information to the model, although p-value was borderline significant a p < 0.10.  This suggests that the 
demographics and treatment group have a small or negligible effect on Post-Intervention HbA1c. 
 
Of the participation variables, both the number of intervention classes and the group versus one-on-one format were 
key variables.  However, the FHA-accompanied doctor visit did not make much difference, possibly because this part 
of the intervention wasn’t delivered to the clients as originally planned. 
 
Table 2: Likelihood Ratio Tests for Removing Selected Covariates 

 

Variables Removed Degrees of Freedom LRT Statistic p-Value 

Demographics, Cohort, Treatment Group 6 11.8 0.0667 

Number of Intervention Classes  3 12.63 0.0055 

1+ Journey to Health Group Class,  
1+ Self-Management Group Class 

6 14.47 0.0248 

1+ FHA-Accompanied Doctor Visit 3 0.81 0.8475 

 

Comparison of the REACH Detroit Path Models Between FIML, ML, and MI . 
According to the SEM literature, handling missing data with FIML is asymptotically equivalent to multiple imputation

39, 

40
.  The advantage to FIML is that the syntax is easier in software packages.  For example, to use FIML estimation in 

SAS Proc CALIS, the only change is Method=FIML instead of Method=ML.  FIML is the default estimation method in 
SPSS/AMOS.  However, Multiple Imputation has the advantage of being able to include variables in the imputation 
model that are not in the Structural Equation Model.   
 
To compare FIML, ML, and MI, the REACH structural equation model coefficients and standard errors were 
estimated with SAS Proc CALIS.  For the FIML and ML estimations, the method option was set to ML and then to 
FIML.  For the multiple imputation, 20 imputations were chosen because 42% of the observations in the dataset 
contained incomplete data and the Little & Rubin guidelines

35
 indicated that 20 imputations would produce 98% 

relative efficiency.  First, twenty imputations were conducted with SAS Proc MI.  “Withdrawal” was included in the 
imputation, along with the other variables in the SEM, because “Withdrawal” was strongly correlated with 
missingness.  Then, the SEM coefficients were estimated for each of the 20 imputations with Proc CALIS.  Last, the 
estimated coefficients and standard errors from the 20 imputations were combined by using the equations on page 9.  
The SAS code for the missing data analysis is provided in the appendix. 
 
The estimated coefficients and standard errors were compared between MI and FIML, and between ML and FIML by 
computing agreement ratios.  The agreement ratio was defined as  (estimate by other method) / (estimate by FIML).  
The agreement ratios were computed for both the point estimates and for the standard errors.  Multiple imputation 
produced coefficient estimates with a mean agreement ratio to FIML of 0.98 and a median of 1.00.  However, the 
standard errors from multiple imputation were a little larger than FIML with mean agreement ratio of 1.13 and a 
median of 1.03. 
 
Using maximum likelihood instead of FIML produced estimates with larger variation.  The average agreement ratio for 
the coefficient estimates was 1.14, while the median was 0.91.  For the standard errors, the mean agreement ratio 
was 1.18 and the median was 1.14. 
 
Of the three estimation methods, FIML produced the most stable estimates. 

 



 12   

Table 3: Agreement Ratios Between MI (Multiple Imputation) and FIML, ML (Maximum Likelihood) & FIML 

 

 

Coefficient 
Point 

Estimate 
MI / FIML 

Coefficient 
Standard 

Error 
MI / FIML 

Coefficient 
Point 

Estimate 
ML / FIML 

Coefficient 
Standard 

Error 
ML / FIML 

Average 0.98 1.13 1.14 1.18 

Median 1.00 1.03 0.91 1.14 

Min 0.10 0.90 0.14 1.00 

Max 2.09 2.25 3.40 1.83 

 

Interpretation of the Model.   
The coefficients, standard errors, and significance levels from fitting the structural equation model to the REACH-
Detroit data are shown in Figure 3.  The model diagnostics are displayed in Table 4. 
 
Because the covariance matrix was used for this analysis, the SEM model coefficients are interpreted in the same 
way as regression coefficients.  A unit change in an exogenous variable, with all other variables held constant, 
corresponds to a mean change in the endogenous variable of the coefficient of the exogenous variable. 
 
All of the endogenous variables: HbA1c, self-management behavior, knowledge of diabetes management, diabetes-
related distress, and self-efficacy were strongly positively correlated with their pre-intervention values at p<.001. 
 
HbA1c.  As hypothesized, post-intervention HbA1c was predicted by post-intervention self-management behavior.   A 

unit increase in self-management behavior was associated with -0.55 drop in post-intervention HbA1c (p<.001).  
Although the majority of REACH participants were women, male gender was associated with a lower post-
intervention HbA1c by -0.42 (p<.05). 
 
SMB (Self-Management Behavior).  In the equation for post-intervention smb, the only significant predictor was a 

drop in diabetes distress.  I.E., a drop in diabetes-related distress was associated with an increase in self-
management behavior.  While the coefficient for diabetes-related distress is significant at the p<.05 level, the 
coefficient of -0.004 does not have a clear physical interpretation, although it indicates that lower distress is 
associated with better self-management.  So, if diabetes distress dropped by 10 points, that would correspond to a 
.04 increase in self-management on a 1-to-4 point scale.   
 
One possible reason for the low diabetes distress coefficient is that the effect is larger for African Americans than for 
Latino/as.  From a multiple regression for the self-management equation in the sem model for African Americans, the 
diabetes distress coefficient was -0.01 (p<.001) and self-efficacy was borderline significant with a point estimate of 
0.006 (p ≈ .05).   
 
Knowledge of Diabetes Management.  Higher post-intervention knowledge was associated with better class 

attendance and attending classes in the group, rather-than one-on-one, format (p<.05).  Knowledge was measured 
on a scale of 1-to-5, with higher values indicating better knowledge.  For each intervention class attended the 
average increase in knowledge was 0.03 (p<.05).  Clients who received the intervention in group format had 0.25 
greater increase in knowledge than clients who attended one-on-one with their FHAs.  Therefore, if a client attended 
10 classes and each class was in group format, the average increase in knowledge would be .55, which is 
approximately half a point on a four point scale. 
 
Diabetes-Related Distress.  Attending the “self-management” section of the intervention in group format was 

associated with a -5.86 (p<.01) average drop in Diabetes distress.  A six point drop in Diabetes distress on a 100 
scale is considered a clinically significant, as well as a statistically significant improvement. 
 
Self-Efficacy.  Post-intervention self-efficacy increased on the average of 1.38 (p<.001) for each intervention class 

attended.  If a client attended 10 classes, average self-efficacy would increase by 13.8 on a 100 point scale. 

 
Goodness of Fit Indices.  In an ideal model, the overall χ

2
 will be non-significant.  As long as the other goodness of 

fit indices indicate reasonable fit, the model is considered acceptable, especially if the model coefficients have 
reasonable values. 
 
Although the χ

2
 for the REACH SEM is significant, GFI = 0.9928, meaning that the model explains 99.28% of the 

generalized variance.  GFI (Goodness of Fit Index) is a measure of absolute fit and is analogous to R
2
 in linear 
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regression.  GFI estimates the proportion of the sample covariance that is explained by the model.  A GFI above .9 
indicates a good absolute fit

2, 6
. 

 
The SRMR (Standardized Root Mean Square Residual) measures predictive fit and SRMR<.10 is the goal

4, 16
.  For 

the REACH SEM, SRMR = 0.0464. 
 
The RMSEA (Root Mean Square Error of Approximation) is a parsimony-adjusted index.  RMSEA < .05 is considered 
ideal and .05 to .08 indicates acceptable parsimony

1, 2, 15
.  For the REACH SEM, RMSEA is 0.0670, with a 90% 

confidence interval of (0.0533, 0.0810). 
 
CFI (Comparative Fit Index) is an incremental fit index that compares the hypothesized model to the null or intercept-
only model.  A value of CLI from 90 - .95 is considered acceptable, while above .95 indicates a better incremental fit

2, 

14
.  For REACH, CLI is 0.9353. 

 
 
Table 4: Goodness of Fit Indices for the REACH-Detroit SEM 

 Fit Index Value 

Chi-Square 142.9647 

Chi-Square DF 58 

Pr > Chi-Square <.0001 

Goodness of Fit Index (GFI) 0.9928 

SRMR (Standardized Root Mean Square Residual) 0.0464 

RMSEA Estimate 0.0670 

RMSEA Lower 90% Confidence Limit 0.0533 

RMSEA Upper 90% Confidence Limit 0.0810 

Probability of Close Fit 0.0222 

Bentler Comparative Fit Index 0.9353 
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Figure 4: SEM Coefficients, Standard Errors, and Significance Levels 

 
Note: * p<.05; ** p<.01; *** p<.001 
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Comparison of SAS Proc CALIS, SPSS AMOS Module, and Mplus.   
In SAS, Proc CALIS is the procedure for SEM.  In SPSS, the AMOS module is used for SEM analysis.  CALIS is an 
abbreviation for “Covariance Analysis and Linear Structural Equations”and AMOS stands for “Analysis of Moment 
Structures”.  SAS version 9.3 was compared to SPSS version 19 and Mplus version 6.1 in the same way that the 
FIML and MI estimates were compared earlier in this paper.  Agreement ratios were calculated for each coefficient 
estimate and standard error by the formula (Other Software parameter) / (SAS parameter) and are displayed in Table 
5. 
 
The coefficient point estimates were nearly identical between SAS, SPSS, and Mplus with mean and median 
agreement ratios close to 1.  However, the standard errors were slightly larger in AMOS and Mplus than in SAS. 
 
Table 5: Agreement Ratios Between SAS Proc CALIS, SPSS AMOS, MPLUS  

 

 

Coefficient 
Point Estimate 

SPSS / SAS 

Coefficient 
Standard Error 

SPSS / SAS 

Coefficient 
Point Estimate 
MPLUS / SAS 

Coefficient 
Standard Error 
MPLUS / SAS 

Average 1.00 1.03 1.01 1.07 

Median 1.00 1.00 1.00 1.01 

Min 0.99 0.93 0.17 0.96 

Max 1.00 1.38 1.54 1.55 

 

Conclusions. 
 SEM is an effective method of modeling the process by which variables change.  If a series of regression 

equations were used for outcomes Y1 to Yq, SEM provides a method to model the sequence in the changes 
in Y1 to Yq, rather than looking at each Yj separately.   

 HbA1c is the key outcome in Diabetes studies.  An effective intervention will reduce HbA1c by at least .5.  
By looking at unadjusted HbA1c means from pre-intervention to post-intervention in REACH-Detroit cohorts 
1 and 2, there are significant drops.  SEM provides insight into the process by which HbA1c changes 
through the REACH behavioral intervention.  

 One or more participation variables were associated with changes in knowledge, diabetes distress, and self-
efficacy.  When intervention format was significant, group format was always more beneficial than the one-
on-one format, which is good for cost-effectiveness because group format is less expensive. 

 When the endogenous variables are approximately normal, SAS Proc CALIS, SPSS/AMOS, and M-Plus 
produce the approximately the same results. 
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Appendix: SAS Code for Multivariate Normality, Multiple Imputation, Path Model 
for REACH Detroit 
 
/* SAS Code to test for Multivariate Normality */ 

/* Compute Mahalanobis Distance, Diagnostic Statistics, Histogram & QQ Plots */ 

proc princomp data=SEMData std out=out_prin; 

 var Post_H1c Post_V110 Post_SMB Post_PAID Post_SelfEff_MH; 

 run; 

 

data mahalanobis; 

     set out_prin; 

     d2 = uss(of prin:);   run; 

 

Proc Univariate Data=Mahalanobis_endog; 

 Var  d2; 

 Label  mahalanobis_distance_to_mean="Squared Distance"; 

 Symbol1 V=Dot; 

 

Histogram / Gamma(Alpha=2.5 Sigma=2 Theta=0 Fill) 

     CFill=Blue Name="Data W/Post";   /* alpha = # variables / 2  */ 

 Inset Gamma(KSD KSDPval) / Header='Goodness of Fit Test' 

             Position=(95,95) RefPoint=TR; 

 

 QQPlot    / Gamma(Alpha=2.5 Sigma=2 Theta=0 L=1) 

             PctlMinor PCTLSCALE Name="5 Endogenous Variables"; 

Run; 

 
 
/* SAS Code for Multiple Imputation */ 

*** Step 1: Impute with Proc MI ***; 

*** Include WithFlag (Withdrawal as covariate) ***; 

Proc MI Data=TestMissing NImpute=20 seed=11292011 out=ImputeSEM; 

Var WithFlag Age_BLIW Genderind RaceInd Cohort2 Randomization2 HSGrad  

TotalClasses FHADrVisitsBinJrnyHlthGrp SelfMgtGrp  

Pre_V110 Pre_SMB Pre_PAID Pre_SelfEff_MH 

Post_V110 Post_SMB Post_PAID Post_SelfEff_MH 

Pre_H1cPost_H1c ;  

Run; 

 

*** Step 2: Combine estimates from Proc CALIS ***; 

Proc Calis Covariance Method=ML VARDEF=N Data=ImputeSEM; 

LINEQS … list line equations;  

VARIANCE List variances; 

VAR List variables; 

by _IMPUTATION_; 

ODS Output LINEQSEQ=LINEQSEQ;  

Run; 

/* To combine the estimates from the 20 imputations, I downloaded the estimates from 

Proc CALIS and combined them in Excel by using the equations on page 9 */ 
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*** SAS Proc CALIS Code for Path Analysis ***; 

ods html newfile=proc path="c:\tempfiles";             

ods graphics on;                           

Proc Calis Covariance Residual Modification Kurtosis Method=FIML plots=residuals 

Data=SEMData;       

LINEQS                  

Post_V110 = P_PostV110_PreV110 Pre_V110 +             

  P_PostV110_TotalClasses TotalClasses + P_PostV110_FHADrVisitsBin FHADrVisitsBin +       

  P_PostV110_JrnyHlthGrp JrnyHlthGrp + P_PostV110_SelfMgtGrp SelfMgtGrp +        

  E_PostV110,                

                  

Post_PAID = P_PostPAID_PrePAID Pre_PAID +             

  P_PostPAID_TotalClasses TotalClasses + P_PostPAID_FHADrVisitsBin FHADrVisitsBin +       

  P_PostPAID_JrnyHlthGrp JrnyHlthGrp + P_PostPAID_SelfMgtGrp SelfMgtGrp +        

  E_PostPAID,                

                  

Post_SelfEff_MH = P_PostSelfEff_MH_PreSelfEff_MH Pre_SelfEff_MH +          

  P_PostSelfEff_MH_TotalClasses TotalClasses + P_PostSelfEff_FHADrVisitsBin 

FHADrVisitsBin +      

  P_PostSelfEff_JrnyHlthGrp JrnyHlthGrp + P_PostSelfEff_SelfMgtGrp SelfMgtGrp +       

  E_PostSelfEff_MH,               

                  

Post_SMB = P_PostSMB_PreSMB Pre_SMB + P_PostSMB_PostV110 Post_V110 +          

  P_PostSMB_PostPAID Post_PAID + P_PostSMB_PostSelfEff Post_SelfEff_MH +        

  E_PostSMB,                

                  

Post_H1c = P_PostH1c_PreH1c Pre_H1c + P_PostH1c_PostSMB Post_SMB +          

  P_PostH1c_Age Age_BLIW + P_PostH1c_Gender Genderind +          

  P_PostH1c_RaceInd RaceInd + P_PostH1c_Cohort2 Cohort2 +          

  P_PostH1c_Rand Randomization2 + P_PostH1c_HSGrad HSGrad +          

   E_Post_H1c;              

                  

VARIANCE                 

E_PostV110 = Var_PostV110,               

E_PostSMB = Var_PostSMB,               

E_PostPAID = Var_PostPAID,               

E_PostSelfEff_MH = Var_PostSelfEff_MH,              

E_Post_H1c = Var_PostH1c,               

Pre_H1c = Var_PreH1c,                

Pre_V110 = Var_PreV110,                

Pre_SMB = Var_PreSMB,                

Pre_PAID = Var_PrePAID,                

Pre_SelfEff_MH = Var_PreSelfEff_MH,              

Age_BLIW = Var_AgeBLIW,                

GenderInd = Var_GenderInd,               

RaceInd = Var_RaceInd,                

HSGrad = Var_HSGrad,                

Cohort2 = Var_Cohort2,                

Randomization2 = Var_Randomization2,              

JrnyHlthGrp = Var_JrnyHlthGrp,               

SelfMgtGrp = Var_SelfMgtGrp,               

FHADrVisitsBin = Var_FHADrVisitsBin,              

TotalClasses = Var_TotalClasses;              

                  

VAR                  

Pre_H1c Pre_V110 Pre_SMB Pre_PAID Pre_SelfEff_MH            

Age_BLIW Genderind RaceInd Cohort2 Randomization2 HSGrad           

TotalClasses FHADrVisitsBin JrnyHlthGrp SelfMgtGrp            

Post_H1c Post_V110 Post_SMB Post_PAID Post_SelfEff_MH;            

ODS Output LINEQSEQ=LINEQSEQ SQMultCorr=SQMultCorr Fit=Fit;           

Run;                  

ods graphics off;                

ods html close;                 


