

 © 2012 Wells Fargo Home Mortgage All rights reserved.

Paper DM-07

Swimming with Sharks: Using Formats with Summary Data

Tom Bugg, Wells Fargo Home Mortgage, Des Moines, IA

ABSTRACT

Creating summary tables for later use can be done efficiently using formats to bucket continuous variables, without
the added time and disk space associated with an extra step of creating grouping, or “bucket” variables.

However, if we create datasets from these procedures for later use, we must use extreme caution. Even though
there may be risk associated with creating and using summary data in this manner – it can be very worthwhile.

INTRODUCTION

Although handling summarized data for further processing can sometimes be compared with “swimming with sharks”,
I’ve heard that some people get a kick out of it. A number of methods can be employed to avoid the pitfalls and take
advantage of the advantages of using very small data sets for further processing. By becoming aware of the potential
pitfalls, we can build an appropriate “shark cage” for protection.

GROUPING RECORDS BY “BUCKETS”

We often group loan or customer records for comparison purposes based on buckets of continuous variables such as
score.

A number of methods are available for grouping, or creating “buckets”. Two possible ways include:

 We can Create a “Bucket” variable on the source data set, and then run all summary data queries based on
this variable

 We can use the Format Procedure to create virtual buckets, and then create summary tables using the
original continuous variable. Summary tables can be created using several different procedures, including
(but not limited to):

o The FREQ Procedure

o The MEANS or SUMMARY Procedure

o The TABULATE Procedure

For this paper, we’ll concentrate mostly on using PROC FREQ.

CREATING A BUCKET VARIABLE IN DETAIL DATA

A bucket variable can be created with simple if-then logic:

data swim_with_sharks_data;

 set swim_with_sharks_data;

 length score_bucket $15;

 if score = . then score_bucket = "Missing or Zero";

 else if score < 300 then score_bucket = "Missing or Zero";

 else if 300 le score < 620 then score_bucket = "LT 620";

 else if 620 le score < 660 then score_bucket = "620 - 659";

 else if 660 le score < 680 then score_bucket = "660 - 679";

 else if 680 le score < 700 then score_bucket = "680 - 699";

 else if 700 le score < 740 then score_bucket = "700 - 739";

 else if 740 le score < 780 then score_bucket = "740 - 779";

 else if score > 780 then score_bucket = "780+";

run;

 © 2012 Wells Fargo Home Mortgage All rights reserved.

Alternatively, the same bucket variable can be created with a format and a “put” statement:

 proc format;

 value score_b

 . = "Missing or Zero"

 low-0 = "Missing or Zero"

 1-299 = "Missing or Zero"

 300 - 619 = "LT 620"

 620 - 659 = "620 - 659"

 660 - 679 = "660 - 679"

 680 - 699 = '680 - 699'

 700 - 739 = "700 - 739"

 740 - 779 = "740 - 779"

 780-high = "780+";

data swim_with_sharks_data;

 set bugg.swim_with_sharks_data;

 score_bucket = put(score,score_b.);

run;

Both of these methods work. Why is using a format preferable when creating a bucket variable?

 Consistency – many times we have permanent formats that can be used, and we’ll be consistent within and
across programs

 Simplicity – When typing out new code, the “put” statement is much shorter, and will lead to fewer coding
errors/debugging time

 Speed – I ran the two methods repeatedly during heavy utilization times, and although the CPU time is fairly
close between the two methods, using the format was consistently faster in total time

 (note: when run on a weekend,
there was no discernable difference
in speed)

Once bucket variables are created, summary tables can be created using these new values with confidence that the
resulting tables will be usable as is. A summary created with Proc Freq from either of these methods gives us the
results below:
 Table of score_bucket by bus_group

 score_bucket bus_group

 Frequency |GROUPA |GROUPB |GROUPC |GROUPD |GROUPE | Total

 620 - 659 | 26434 | 18238 | 4997 | 411 | 0 | 50080

 660 - 679 | 16356 | 13660 | 3371 | 266 | 0 | 33653

 680 - 699 | 17682 | 17732 | 4233 | 272 | 0 | 39919

 700 - 739 | 36082 | 43227 | 9636 | 456 | 2 | 89403

 740 - 779 | 45588 | 64350 | 12998 | 386 | 0 | 123322

 780+ | 42293 | 73504 | 12060 | 205 | 1 | 128063

 LT 620 | 11727 | 12523 | 3314 | 74 | 0 | 27638

 Missing or Zero | 3148 | 4701 | 73 | 0 | 0 | 7922

 Total 199310 247935 50682 2070 3 500000

This second method can be especially useful

if you have permanent formats set up to

standardize reporting for your area

Example of Results from If-Then Method
NOTE: There were 500000 observations read from the data set SWIM_WITH_SHARKS_DATA.

NOTE: The data set SWIM_WITH_SHARKS_DATA has 500000 observations and 350 variables.

NOTE: Compressing data set SWIM_WITH_SHARKS_DATA decreased size by 49.91 percent.
 Compressed is 5112 pages; un-compressed would require 10205 pages.

NOTE: DATA statement used (Total process time):

 real time 59.00 seconds
 cpu time 23.74 seconds

Example of Results from Put(format) Method
NOTE: There were 500000 observations read from the data set SWIM_WITH_SHARKS_DATA.
NOTE: The data set SWIM_WITH_SHARKS_DATA has 500000 observations and 350 variables.

NOTE: Compressing data set SWIM_WITH_SHARKS_DATA decreased size by 49.91 percent.

 Compressed is 5112 pages; un-compressed would require 10205 pages.
NOTE: DATA statement used (Total process time):

 real time 37.00 seconds

 cpu time 23.74 seconds

 © 2012 Wells Fargo Home Mortgage All rights reserved.

USING A BUCKET VARIABLE

The following Proc Freq code creates the preceding output, and also saves a summary dataset for further use:

proc freq data = swim_with_sharks_data;

 table score_bucket*bus_group/nocum norow nocol nopercent missing out=ifthen;

run;

Here’s what we get if we use a simple proc print to see what the resulting data looks like (partial output):

 bus_

 score_bucket group COUNT PERCENT

 620 - 659 GROUPA 26434 5.2868

 620 - 659 GROUPB 18238 3.6476

 620 - 659 GROUPC 4997 0.9994

 620 - 659 GROUPD 411 0.0822

 660 - 679 GROUPA 16356 3.2712

 660 - 679 GROUPB 13660 2.7320

 660 - 679 GROUPC 3371 0.6742

 660 - 679 GROUPD 266 0.0532

 680 - 699 GROUPA 17682 3.5364

 680 - 699 GROUPB 17732 3.5464

 680 - 699 GROUPC 4233 0.8466

 680 - 699 GROUPD 272 0.0544

 700 - 739 GROUPA 36082 7.2164

 700 - 739 GROUPB 43227 8.6454

 700 - 739 GROUPC 9636 1.9272

 700 - 739 GROUPD 456 0.0912

 700 - 739 GROUPE 2 0.0004

Data in this summarized form can be useful in a number of tasks. We’ll discuss these uses later, but for now let’s talk
about other ways of getting the same information.

BUCKETING WITHOUT CREATING A NEW VARIABLE – VIRTUAL BUCKET

What if we don’t want to create a new variable? It’s not always a good idea to create a new variable on a large
“source” data set. Considerations include:

 Memory constraints

 Disk space constraints

 Time constraints

We can use formats directly with our summary code to give us the same results without the added step of creating a
bucket variable. In essence, we’re creating a virtual bucket:

proc freq data = swim_with_sharks_data;

 table score*bus_line/nocum norow nocol nopercent missing out=fmt_method;

 format score score_b.;

run;

The output from the procedure (other than the order) looks identical to that of the earlier Proc Freq, without the need

of creating a new variable:

 Table of score by bus_group

 score bus_group

 Frequency |GROUPA |GROUPB |GROUPC |GROUPD |GROUPE | Total

 Missing or Zero | 3148 | 4701 | 73 | 0 | 0 | 7922

 LT 620 | 11727 | 12523 | 3314 | 74 | 0 | 27638

 620 - 659 | 26434 | 18238 | 4997 | 411 | 0 | 50080

 660 - 679 | 16356 | 13660 | 3371 | 266 | 0 | 33653

 680 - 699 | 17682 | 17732 | 4233 | 272 | 0 | 39919

 700 - 739 | 36082 | 43227 | 9636 | 456 | 2 | 89403

 740 - 779 | 45588 | 64350 | 12998 | 386 | 0 | 123322

 780+ | 42293 | 73504 | 12060 | 205 | 1 | 128063

 Total 199310 247935 50682 2070 3 500000

 © 2012 Wells Fargo Home Mortgage All rights reserved.

The resulting dataset appears to be identical as well (again, the order is different – I wonder why?), so it may appear
that we are free to use the data in the same way.

 bus_

 score group COUNT PERCENT

 Missing or Zero GROUPA 3148 0.6296

 Missing or Zero GROUPB 4701 0.9402

 Missing or Zero GROUPC 73 0.0146

 LT 620 GROUPA 11727 2.3454

 LT 620 GROUPB 12523 2.5046
 LT 620 GROUPC 3314 0.6628

 LT 620 GROUPD 74 0.0148

 620 - 639 GROUPA 26434 5.2868

 620 - 639 GROUPB 18238 3.6476

 620 - 639 GROUPC 4997 0.9994

 620 - 639 GROUPD 411 0.0822

 660 - 679 GROUPA 16356 3.2712

 660 - 679 GROUPB 13660 2.7320

 660 - 679 GROUPC 3371 0.6742

 660 - 679 GROUPD 266 0.0532

 680 - 699 GROUPA 17682 3.5364

 680 - 699 GROUPB 17732 3.5464

 680 - 699 GROUPC 4233 0.8466

BUCKETING WITHOUT CREATING A NEW VARIABLE – USING OUTPUT DATA

One thing I do frequently with summary data is to put it into the shape I’d like for output, export, or for use as a lookup
table, etc. So let’s do that with the table created with a “bucket” variable:

proc sort data = put;

 by score_bucket bus_group;

proc transpose data = put out=put_tr (drop=_name_ _label_);

 by score_bucket;

 var count;

 id bus_group;

run;

A printout of the resulting data set (put_tr) looks like this (what could be called a SAS pivot table):

 Transposed Data Based on "Bucket" Variable Summary

 score_bucket GROUPA GROUPB GROUPC GROUPD GROUPE

 620 - 659 26,434 18,238 4,997 411 .

 660 - 679 16,356 13,660 3,371 266 .

 680 - 699 17,682 17,732 4,233 272 .

 700 - 739 36,082 43,227 9,636 456 2

 740 - 779 45,588 64,350 12,998 386 .

 780+ 42,293 73,504 12,060 205 1

 LT 620 11,727 12,523 3,314 74 .

 Missing or Zero 3,148 4,701 73 . .

Now let’s try to do the same thing with the table created using the Virtual Bucket method:

proc sort data = fmt_method;

 by score bus_group;

proc transpose data = fmt_method out= fmt_method_tr (drop=_name_ _label_);

 by score;

 var count;

 id bus_group;

run;

 © 2012 Wells Fargo Home Mortgage All rights reserved.

 Transposed Data Based on Put(Format) Summary

score GROUPA GROUPB GROUPC GROUPD GROUPE

Missing or Zero 3,148 4,701 72 . .

LT 620 11,661 12,442 3,364 78 .

=620 - 659 26,434 18,354 4,969 406 .

660 - 679 16,422 13,652 3,347 265 .

680 - 699 17,604 17,645 4,225 281 .

700 - 739 36,295 43,093 9,694 439 1

740 - 779 45,509 64,577 12,985 407 1

780+ 42,237 73,471 12,026 194 1

Note: Depending on the data, you may get
incomplete results and errors when attempting this

step!!

Let’s try to isolate buckets by looking at records in the “620-659” category:

 Bucket Variable
 data query_600_659_bucket;

 set ifthen;

 where score_bucket = '620 - 659';

 Run;

 Virtual Bucket
 data query_600_659_bucket;

 set fmt_method;

 where score = '620 - 659';

 Run;

Aha! – Let’s see why our variables look the same, but don’t work that way. Running a Contents Procedure on the two
summary datasets gives us the answer:

Partial Proc Contents output for IFTHEN summary table (Bucket Variable):
 Alphabetic List of Variables and Attributes

 # Variable Type Len Format Label
 3 COUNT Num 8 Frequency Count

 4 PERCENT Num 8 Percent of Total Frequency

 2 bus_group Char 6

 1 score_bucket Char 15

Partial Proc Contents output for FMT_METHOD summary table (Virtual Bucket):
 Alphabetic List of Variables and Attributes

Variable Type Len Format Label

3 COUNT Num 8 Frequency Count

4 PERCENT Num 8 Percent of Total Frequency

2 bus_group Char 6

1 score Num 8 score_B.

The bucket variable was created as a character variable. The bucket created using the format method (virtual
bucket) did not in fact create a new variable, but what we are seeing is the formatted version of a numeric variable.

In this case, the data
appears to come through
intact, but is everything
as it seems? Are there
any hidden dangers?

600-659 Bucket from "Bucket" Variable Summary

score_ bus_

bucket group COUNT PERCENT

620 - 659 GROUPA 26,434 5.2868

620 - 659 GROUPB 18,354 3.6708

620 - 659 GROUPC 4,969 0.9938

620 - 659 GROUPD 406 0.0812

185 data query_600_659_bucket;

186 set fmt_method;

187 where score = '620 - 659';

ERROR: Where clause operator requires compatible variables.

188 run;

NOTE: The SAS System stopped processing this step because of

errors.

(partial log output)

 © 2012 Wells Fargo Home Mortgage All rights reserved.

BUCKETING WITHOUT CREATING A NEW VARIABLE – RESOLVING ISSUES

How do we make the Virtual Bucket version of the data usable for further data manipulation? Exactly the same way
we would have created a bucket variable in the source data - using a put statement:

data fmt_method;

 set fmt_method;

 score_bucket = put(score,score_b.);

 drop score;

run;

We can now manipulate the data without fear of formatting issues:

proc sort data = fmt_method;

 by score_bucket bus_line;

proc transpose data = fmt_method out=fmt_method_tr (drop=_name_ _label_);

 by score_bucket;

 var count;

 id bus_line;

run;

 Transposed Data Based on Put(Format) Summary

 Using "After-Summary" Bucket Description

 score_bucket GROUPA GROUPB GROUPC GROUPD GROUPE

 620 - 659 26434 18354 4969 406 .

 660 - 679 16422 13652 3347 265 .

 680 - 699 17604 17645 4225 281 .

 700 - 739 36295 43093 9694 439 1

 740 - 779 45509 64577 12985 407 1

 780+ 42237 73471 12026 194 1

 LT 620 11661 12442 3364 78 .

 Missing or Zero 3148 4701 72 . .

BUCKETING WITHOUT CREATING A NEW VARIABLE – WHY???

OK – I know what you’re thinking – I just took several steps just to accomplish the same thing I could have done by
creating a bucket variable in the first place. Why the extra programming effort? As long as the results are the same,
why the bother?

Remember the reasons we didn’t want to create an extra variable?

 Memory constraints

 Disk space constraints

 Time constraints

MEMORY AND DISK SPACE CONSTRAINTS:

Adding a single 15-character variable increased the size of my dataset by about 4.9MB.

 The sample used for this paper was 500k records, with 349 variables (adding one to make 350)

 Imagine the impact on the original data, with 22.4 Million records - ≈213MB for adding a single 15-character
variable.

 We summarize many different ways on many different continuous variables. If we create additional
variables for each of these, space could be quickly eaten up.

 © 2012 Wells Fargo Home Mortgage All rights reserved.

TIME CONSTRAINTS: Let’s look at the total time taken for the steps we’ve discussed:

 Using Bucket Variable

 Using Virtual Bucket

stepname realtime cputime

stepname realtime cputime

FORMAT 00:01.0 00:00.0

FORMAT 00:01.0 00:00.0

DATA 00:52.0 00:27.3

FREQ 00:08.0 00:05.8

FREQ 00:07.0 00:05.9

DATA 00:00.0 00:00.1

SORT 00:00.0 00:00.0

SORT 00:00.0 00:00.1

TRANSPOSE 00:00.0 00:00.0

TRANSPOSE 00:00.0 00:00.0

PRINT 00:00.0 00:00.0

PRINT 00:00.0 00:00.0

Total Time 01:00.0 00:33.2

Total Time 00:09.0 00:06.0

Even though we performed the same steps in both methods, we see a huge difference in time required.

 The data step creating a bucket variable was performed on the entire source dataset in the first example.

 The data step creating a bucket variable was performed only on the summary file in the second example.

 Especially in cases where we’re building a repeatable or automated process, a little extra effort is more than
worth it in terms of time.

EXAMPLE USING PROC SUMMARY/MEANS

Proc Freq works great for creating summaries involving counts. But if we want to sum dollar amounts, get average
ratios, etc., we must use something else. Do we face the same issues? Let’s look at an example using the Summary
Procedure:

proc summary data = swim_with_sharks_data sum nway;

 class bus_group score;

 var amount;

 output out=means_summ sum=;

 format score score_b. amount dollar21.;

run;

title 'Proc Summary Output Data';

proc print data = means_summ noobs;

 var bus_group score amount;

run;

 Proc Summary Output Data

 bus_

 group fico amount

 GROUPA Missing or Zero $2,096,210

 GROUPA LT 620 $1,842,525,243

 GROUPA 620 - 659 $4,669,617,796

 GROUPA 660 - 679 $3,134,782,381

 GROUPA 680 - 699 $3,610,553,964

 GROUPA 700 - 739 $7,946,741,496

 GROUPA 740 - 779 $10,629,403,672

 GROUPA 780+ $9,616,408,106

 GROUPB Missing or Zero $80,722,378

Do we have the same issue with the score field? We can tell quickly by re-printing the resulting data set using a
standard format for the “score” variable:

proc print data = means_summ noobs;

 var bus_group score amount;

 format score 6.2;

run;

(partial output)

 © 2012 Wells Fargo Home Mortgage All rights reserved.

 Proc Summary Output Data

 Re-Format score

 bus_

 group score amount

 GROUPA 90.00 $2,096,210

 GROUPA 300.00 $1,842,525,243

 GROUPA 620.00 $4,669,617,796

 GROUPA 660.00 $3,134,782,381

 GROUPA 680.00 $3,610,553,964

 GROUPA 700.00 $7,946,741,496

 GROUPA 740.00 $10,629,403,672

 GROUPA 780.00 $9,616,408,106

 GROUPB 90.00 $80,722,378

 GROUPB 300.00 $1,902,718,248

 GROUPB 620.00 $3,247,428,975

 GROUPB 660.00 $2,787,033,011

 GROUPB 680.00 $3,858,068,485

 GROUPB 700.00 $10,335,150,352

We can see that the SCORE variable is indeed numeric, and will indeed need to be treated with care.

CONCLUSION

Creating summary tables for later use can be done efficiently using formats to bucket continuous variables.

Once the summary table has been created, great care must be taken when handling the resulting values for further
manipulation. When the data is understood, the issues are easily overcome.

Especially when building processes that will be repeated and automated, hours of processing time and vast amounts
of memory and disk space can be saved by using this method.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Tom Bugg
Enterprise: Wells Fargo Home Mortgage
Address: MAC 2401-06A

1 Home Campus
City, State ZIP: Des Moines, IA 50328
Work Phone: (515)213-4309
Fax:
E-mail: thomas.b.bugg@wellsfargo.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

(partial output)

