
1

Paper 45-2012

Programming With CLASS:

Keeping Your Options Open

Arthur L. Carpenter

California Occidental Consultants

ABSTRACT
Many SAS

®
 procedures utilize classification variables when they are processing the data. These variables control

how the procedure forms groupings, summarizations, and analysis elements. For statistics procedures they are often

used in the formation of the statistical model that is being analyzed. Classification variables may be explicitly

specified with a CLASS statement, or they may be specified implicitly from their usage in the procedure.

Because classification variables have such a heavy influence on the outcome of so many procedures, it is essential

that the analyst have a good understanding of how classification variables are applied. Certainly there are a number

of options (system and procedural) that affect how classification variables behave. While you may be aware of

some of these options, a great many are new, and some of these new options and techniques are especially powerful.

You really need to be open to learning how to program with CLASS.

KEY WORDS
CLASS statement, classification variables, MISSING, DESCENDING, preloaded formats, ORDER, MLF

INTRODUCTION
A number of analysis and reporting procedures use classification variables as a part of their processing.

Classification variables allow the procedure to segment the data without it having been sorted. Within procedures

there are two general ways of implementing classification variables. Most procedures that utilize classification

variables declare them explicitly through the use of the CLASS statement. In a few other procedures, such as FREQ

and REPORT, the classification variable(s) are implied by their usage.

When the CLASS statement is used it can be specified as a single statement or it

can be broken up into a series of CLASS statements. The order of the CLASS

statements determines the overall order of the classification variables. The two

code boxes to the right are equivalent in that they declare the same classification

variables and in the same order.

CLASS STATEMENT OPTIONS
The CLASS statement now accepts options. Since a single class statement can be

replaced by a series of CLASS statements, we have additional ability to control

the application of CLASS statement options to specific classification variables.

One or more options are specified on a CLASS statement by preceding the option with a slash. While it is not

necessary to have multiple CLASS statements just to apply CLASS statement options, multiple CLASS statements

allow you to apply these options differentially. For instance when you use the MISSING option on the PROC

statement, it is applied to all of the classification variables. By using multiple CLASS statements along with the

MISSING option on the CLASS statement, you can choose which classification variables are to utilize the

MISSING option.

class race sex edu;

class race sex;

class edu;

class race sex;

class edu / missing;

2

CLASS statement options include:

 ASCENDING / DESCENDING

Analogous to the DESCENDING option in PROC SORT and other procedures, these options allow you to

reverse the order of the displayed values.

 GROUPINTERNAL and EXCLUSIVE

You can use these two options to control how formats associated with CLASS variables are to be used

when forming groups.

 MISSING

Observations with missing levels of the classification variables are normally excluded from the analysis.

This option allows missing values to represent valid levels of the classification variable.

 MLF

Multilabel formats allow overlapping formatted levels of the classification variable.

 ORDER=

This option allows you to control the order of the classification variable’s levels.

 PRELOADFMT and EXCLUSIVE

When formats are preloaded they can be used to establish data filters when forming groups.

The following example performs a simple SUMMARY

step and generates the data set STATS. In this step the

two classification variables (RACE and EDU) are used

to summarize the data for the two analysis variables

(HT and WT).

Examination of the partial listing below shows that only

75 (of the potential 77) observations were used in the

calculation of the summary statistics. At this point it is

not clear why two of the observations were excluded

from the analysis.

Single Class Statement

Obs race edu _TYPE_ _FREQ_ htmean wtmean htse wtse

 1 . 0 75 67.6000 161.200 0.40670 3.9272

 2 10 1 11 71.3636 194.091 0.96552 5.7532

 3 12 1 19 67.0526 168.105 0.65102 6.3628

 4 13 1 4 70.0000 197.000 1.15470 10.3923

 5 14 1 10 64.2000 108.400 0.13333 1.4236

 6 15 1 7 65.2857 155.571 0.86504 11.1160

 7 16 1 10 70.4000 165.200 0.54160 6.1946

 8 17 1 10 65.2000 145.200 0.74237 7.9342

 9 18 1 4 69.0000 174.000 2.30940 15.5885

 10 1 . 2 42 68.4762 176.143 0.58756 4.0053

 11 2 . 2 17 67.6471 162.000 0.76668 8.1633

. . . . portions of the output are not shown

title1 'Single Class Statement';

proc summary data=advrpt.demog;

 class race edu;

 var ht wt;

 output out=stats

 mean= htmean wtmean

 stderr=htse wtse

 ;

 run;

proc print data=stats;

 run;

3

MISSING and DESCENDING Options

Throughout SAS, when classification variables are missing, their associated observation is excluded from the

analysis. This is true for procedures with explicit CLASS statements, such as PROC MEANS and PROC GLM, as

well as for those with implicit classification variables, such as PROC FREQ and PROC REPORT. Sometimes this

is the behavior that you want; however, often it is important that these observations not be removed. The MISSING

option allows missing values to be valid levels of the classification variable.

The MISSING option can be used with most procedures that have either implicit or explicit classification variables.

This option can be used on a CLASS statement or for many procedures on the PROC statement. When used on the

PROC statement the option applies to all the classification variables; however, when it is used on the CLASS

statement it is only applied to those specific classification variables. In PROC FREQ the MISSING option is used

as an option on the TABLES statement, and in PROC REPORT it can appear on the DEFINE statement.

The data table ADVRPT.DEMOG has 77 rows; however, because of missing values in one or both of the

classification variables, only 75 observations have been used in the previous summary. From the LISTING above,

or even by inspection of the LOG, it is unclear which classification variable has the missing values.

In the next example, the DESCENDING option is applied to RACE and the MISSING option is applied to the

classification variable EDU.

 The groups formed by RACE are now shown in decreasing

(DESCENDING) order.

 A missing value for the variable EDU will now be considered

to be a valid level and will be included in the report. Any

observation with a missing value for RACE will still be

excluded.

The overall number of observations is now 76, and we can see that there is one observation with a missing value of

EDU (OBS=2 in the listing ). Since there are 77 observations in the data set, there must be an observation with a

missing value for RACE as well.

When a classification variable is both missing and formatted, even if the format maps missing values to text, the

observation with the missing value is excluded unless the MISSING option is applied.

proc summary data=advrpt.demog;

 class race/descending; 

 class edu/missing; 

 var ht wt;

 output out=stats

 mean= htmean wtmean

 stderr=htse wtse

 ;

 run;

Multiple Class Statements

MISSING and DESCENDING Options

Obs race edu _TYPE_ _FREQ_ htmean wtmean htse wtse

 1 . 0 76 67.6053 162.237 0.40135 4.0115

 2 .  1 1 68.0000 240.000 . .

 3 10 1 11 71.3636 194.091 0.96552 5.7532

 4 12 1 19 67.0526 168.105 0.65102 6.3628

 5 13 1 4 70.0000 197.000 1.15470 10.3923

 6 14 1 10 64.2000 108.400 0.13333 1.4236

 7 15 1 7 65.2857 155.571 0.86504 11.1160

 8 16 1 10 70.4000 165.200 0.54160 6.1946

 9 17 1 10 65.2000 145.200 0.74237 7.9342

 10  18 1 4 69.0000 174.000 2.30940 15.5885

 11 5 . 2 4 66.5000 147.000 0.86603 0.0000

 12 4 . 2 4 64.5000 113.500 0.28868 0.8660

 13 3 . 2 8 65.0000 112.000 0.65465 4.5826

 14 2 . 2 18 67.6667 166.333 0.72310 8.8325

 15 1 . 2 42 68.4762 176.143 0.58756 4.0053
. . . . portions of the table are not shown

4

GROUPINTERNAL Option

When a classification variable is associated with a format, that format is used in the formation of the groups. In the

next example, the EDULEVEL. format maps the years

of education into levels of education.

 The EDULEVEL. format maps years of education

into three ranges.

 In the SUMMARY step the FORMAT statement has

been used to create the association between EDU and

the EDULEVEL. format.

 The MISSING option has not been applied;

consequently missing values of EDU will not be

included in the summary.

A PROC PRINT LISTING of the

resulting data table shows that the

SUMMARY procedure has used the

format to collapse the individual levels of EDU into the three levels of the formatted classification variable.

To use the original data values (internal values) to form the groups, rather than the formatted values, the

GROUPINTERNAL option is added to the CLASS statement.

Notice that although the original values

of EDU are used to form the groups,

the formatted values are still displayed.

In this example we could have

achieved similar results by using the

ORDER=INTERNAL option shown

next.

title1 'CLASS Statement Options';

proc format;

 value edulevel 

 0-12 = 'High School'

 13-16= 'College'

 17-high='Post Graduate';

 run;

title2 'GROUPINTERNAL not used';

proc summary data=advrpt.demog;

 class edu; 

 var ht wt;

 output out=stats

 mean= MeanHT MeanWT

 ;

 format edu edulevel.; 

 run;

proc print data=stats;

 run;

class edu/groupinternal;

CLASS Statement Options

Using GROUPINTERNAL

Obs edu _TYPE_ _FREQ_ MeanHT MeanWT

 1 . 0 76 67.5526 160.461

 2 High School 1 11 71.3636 194.091

 3 High School 1 19 67.0526 168.105

 4 College 1 4 70.0000 197.000

 5 College 1 11 64.1818 108.091

 6 College 1 7 65.2857 155.571

 7 College 1 10 70.4000 165.200

 8 Post Graduate 1 10 65.2000 145.200

 9 Post Graduate 1 4 69.0000 174.000

CLASS Statement Options

GROUPINTERNAL not used

Obs edu _TYPE_ _FREQ_ MeanHT MeanWT

 1 . 0 76 67.5526 160.461

 2 High School 1 30 68.6333 177.633

 3 College 1 32 67.0938 147.438

 4 Post Graduate 1 14 66.2857 153.429

5

ORDER= Option

When procedures create ordered output, often based on the classification variables, there are several different

criteria that can be used to determine the order. The ORDER= option is used to establish the scheme, which

establishes the ordering criteria. The ORDER= option can generally appear on the PROC statement where it

applies to all the classification variables (implicit or explicit), or as an option on the CLASS statement where

it can be applied to selected classification variables.

These schemes include:

 DATA order is based on the order of the incoming data

 FORMATTED values are formatted first and then ordered

 FREQ the order is based on the frequency of the class level

 INTERNAL same as UNFORMATTED or GROUPINTERNAL

The default ordering is always INTERNAL (whether or not the variable is formatted) except for PROC REPORT.

In PROC REPORT, formatted variables have a default order of FORMATTED.

ORDER= FREQ

Using the ORDER=FREQ option on

the CLASS statement in a MEANS

or SUMMARY step causes the table

to be ordered according to the most

common levels of education.

In this table EDU has been left

unformatted. Notice that the order

of the rows for EDU is based on the

frequency of the level of EDU

(value of _FREQ_).

ORDER= INTERNAL

This is typically the order of the variable as if it had been sorted with PROC SORT, and is usually the procedure’s

default. The alias of INTERNAL is UNFORMATTED. When

the ORDER= option is not specified the default order for all

classification variables is ORDER=INTERNAL. As a result, in

this example,

the symptoms

will appear in

alphabetical

order as the

variable SYMP

is character.

class edu/order=freq;

title1 'Controlling Order';

title2 'ORDER=INTERNAL';

proc tabulate data=advrpt.demog;

 class SYMP/order=internal;

 class sex;

 var wt;

 table sex*wt=' '*n=' '

 ,symp

 /box='Patient Counts'

 row=float

 misstext='0';

 run;

CLASS Statement Options

Using ORDER=FREQ

Obs edu _TYPE_ _FREQ_ MeanHT MeanWT

 1 . 0 76 67.5526 160.461

 2 12 1 19 67.0526 168.105

 3 14 1 11 64.1818 108.091

 4 10 1 11 71.3636 194.091

 5 17 1 10 65.2000 145.200

 6 16 1 10 70.4000 165.200

 7 15 1 7 65.2857 155.571

 8 18 1 4 69.0000 174.000

 9 13 1 4 70.0000 197.000

6

ORDER= FORMATTED

When the ORDER=FORMATTED option is used the values are first formatted and then ordered.

 When the ORDER=FORMATTED option is used on the PROC statement, rather than on the CLASS statement,

it is applied to all classification variables (here there is only one).

 The user defined format $SMPTOM. is applied to the classification variable SYMP.

The formatted values now determine the order of the rows for the classification variable.

ORDER= DATA

The order of the classification variables will reflect their order in the data itself.

The first level detected will be written first. The data do not have to be in any

particular order.

Symptom 02 (coughing) is the

first symptom in the data,

followed by 10 and 06.

proc format;

 value $SYMPTOM

 '01'='Sleepiness'

 '02'='Coughing'

 '03'='Limping'

 '04'='Bleeding'

 '05'='Weak'

 '06'='Nausea'

 '07'='Headache'

 '08'='Cramps'

 '09'='Spasms'

 '10'='Shortness of Breath';

 run;

title2 'order=formatted';

proc means data=advrpt.demog

 n mean

 order=formatted; 

 class symp;

 var ht;

 format symp $symptom.; 

 run;

title2 'order=data';

proc means data=advrpt.demog

 n mean

 order=data;

 class symp;

 var ht;

 run;

7

UNIVARIATE AND THE CLASS STATEMENT

The UNIVARIATE procedure now accepts the CLASS statement, however there are both limitations and

extensions that are specific to this procedure.

As is the case with a number of other summary and analysis procedures, multiple CLASS statements and CLASS

statement options are supported. However, unlike other summary procedures, you can only specify up to two

classification variables.

One of the CLASS statement options used specifically with UNIVARIATE is the KEYLEVEL= option. This

option can be used to control plot order by specifying a primary or key value for the classification variable(s). The

selected level will be displayed first.

The single CLASS statement used here

could have been rewritten as two

statements, one for each classification

variable.

When using a CLASS

statement, the printed

output is also broken

up into each

combination of

classification

variables.

In the plot, notice that

RACE level ‘3’ and

SEX level ‘M’ are

positioned first.

Through the

KEYLEVEL= option,

they have been

designated as the

KEYLEVELs.

title1 f=arial

 'KEYLEVEL Plots by PROC UNIVARIATE';

proc univariate data=advrpt.demog;

class race sex/keylevel=('3' 'M');

var ht;

histogram /nrows=5 ncols=2

 intertile=1 cfill=cyan vscale=count

 vaxislabel='Count';

run;

quit;

class race / keylevel='3';

class sex / keylevel='M';

8

IMPLICIT CLASS VARIABLES

A number of procedures make use of classification variables, but do not support the CLASS statement. These

procedures use implied classification variables and this means that it is not possible to assign the previously

described options using the CLASS statement.

PROC FREQ does not support the CLASS statement, but that does not mean that does not mean that it does not use

classification variables. In a PROC FREQ step the classification variables are implied by usage in the TABLE

statement.

The variables making up the table requests (SYMP and EDU in this example) are implicit classification variables.

However since there is no CLASS statement, the options discussed previously are applied differently. Some of the

options that are to be applied to a classification variable are specified on the PROC statement; others are specified

on the TABLE statement.

 This ORDER= option would be applied to all classification

variables on all TABLE statements. The ORDER= option cannot

be used on the TABLE statement.

 The MISSING option applies to all classification variables on

this particular TABLE statement. For PROC FREQ, the

MISSING option cannot be used on the PROC statement.

For procedures with implicit classification variables, you will need to experiment and read the documentation to

determine how a specific option is applied.

Like in a PROC FREQ step, the CLASS statement is

not used with the REPORT procedure. The

classification variables are determined by their usage

on the DEFINE statement. The REPORT step allows

several different types of classification variables,

consequently the CLASS statement is not flexible

enough.

In this example the variables REGION (define usage

of GROUP) and SEX (define usage of ACROSS) are

both implicit classification variables. Notice the use

of the MISSING and ORDER= options on the

DEFINE statement. It is also possible to specify

these options on the PROC statement, however the

use of the DEFINE statement offers a great deal more

flexibility.

proc freq data=advrpt.demog

 order=formatted ;

 table symp / missing ;

 table edu;

 format symp $symptom.;

 run;

proc report data=demog nowd;

column region sex,ht;

define region / group order=data;

define sex / across missing;

define ht / analysis mean;

run;

9

title1 'Multilabel Formats';

proc tabulate data=advrpt.demog;

 class edu / mlf ;

 class sex;

 var wt;

 table edu=' ' all,

 sex*wt*(n*f=2.

 mean*f=5.1

 stderr*f=6.2)

 /box=edu;

 format edu edlevel.;

 run;

MULTILABEL FORMATS

Multilabel formats allow overlapping ranges for formatted classification variables. Usually when you create

formats, format ranges with overlapping values are neither allowed nor desirable. However overlapping ranges for

classification variables can have distinct advantages. Multilabel formats are created using the MULTILABEL

option on the VALUE statement, and they are used with the MLF CLASS statement option.

Not all procedures can take advantage of multilabel formats the primary data summary and reporting procedures

that can take advantage of this type of format include TABULATE, MEANS, SUMMARY, and REPORT. In each

case the format is implemented by associating it with the classification variable and the use of the MLF option.

Procedures that do not utilize overlapping format values (do not support the MLF option) will only use the primary

range of the format.

Creating a Multilabel Format

In the following example we summarize across the years of education of each patient by grouping them into high

school and college. At the same time we want to see the graduate school subset of those attending college. This can

easily be accomplished using a multilabel format.

 The MULTILABEL option sets up the format to be used

with the MLF option on the CLASS statement.

 The ranges for ‘College’ and ‘Graduate Studies’ overlap

(are not distinct). Without the MULTILABEL option,

PROC FORMAT would generate an error and the format

would not be created.

Using a Multilabel Format

The MLF option is used to associate a given multilabel format with a classification variable.

 The MLF option appears on the CLASS statement

associated with the formatted variable. Without this

option ‘Graduate Studies’ will not be displayed as a level

of EDU.

 PROC TABULATE correctly counts and totals the

number of persons in each education category. Notice

that the count for ‘Graduate Studies’ does not

contribute to the overall total.

 The MLF option can also be used with CLASS

variables in REPORT, MEANS, and SUMMARY procedures. In future releases of SAS it may be implemented in

other procedures as well.

proc format;

 value edlevel (multilabel) 

 9-12 = 'High School'

 13-high='College'

 17-high='Graduate Studies'; 

 run;

10

data control(keep=fmtname start end label hlo);

 retain fmtname 'avg' 

 hlo 'M'; 

 do start=1 to 14;

 end=start+2; 

 label=cats('VisitGrp', put(start,z2.)); 

 output Control;

 end;

 hlo='O'; 

 label='Unknown';

 output;

 run;

proc format cntlin=control; 

 run;

proc summary data=advrpt.lab_chemistry;

 by subject;

 class visit / mlf; 

 format visit avg.; 

 var potassium;

 output out=rollingAVG

 mean= Avg3Potassium;

 run;

Calculate a Rolling Average Using a Multilabel Format

There are a number of ways to calculate a rolling or moving average within SAS. The use of multilabel formats

provides a quick and easy programming solution to this often taxing problem. In this example we would like to

calculate a three-visit rolling average of the patient’s potassium levels. The numeric variable VISIT can take on the

values of 1 - 16.

The AVG. format, which is generated

using the CNTLIN= option to the left, is

effectively defined as is shown in the

FORMAT step above.

 A format control data set containing the

value pairs, labels, and format name (AVG.) is created.

 The HLO variable is used to designate this as a multilabel format. On the VALUE statement this would be the

MULTILABEL option.

 START is the lower bound of the moving average and END is the upper bound. In this example the width will

contain up to three visits.

 The label is assigned a value. For the group starting with visit 4, LABEL will be VisitGrp04, which will be the

average of visits 4, 5, and 6.

 Although not needed here, it is always a good idea to

specify the ‘OTHER’ group.

 PROC FORMAT creates the format using the CONTROL

data set.

 The overlapping ranges of a multilabel format are ignored

unless the MLF option is specified.

 The format is associated with the classification variable.

If the data set (WORK.ROLLINGAVG) created by

SUMMARY is printed we can see that the individual visits

have been summarized into the various groups. This method

does not control for repeat visits. Examination of the

frequencies for subject 200 in some of the groups shows that this subject had a number of repeat visits.

proc format;

 value avg (multilabel)

 1 - 3 = 'VisitGrp01'

 2 - 4 = 'VisitGrp02'

 3 - 5 = 'VisitGrp03'

 4 - 6 = 'VisitGrp04'

 5 - 7 = 'VisitGrp05'

 6 - 8 = 'VisitGrp06'

 7 - 9 = 'VisitGrp07'

 8 - 10= 'VisitGrp08'

 9 - 11= 'VisitGrp09'

 10- 12= 'VisitGrp10'

 11- 13= 'VisitGrp11'

 12- 14= 'VisitGrp12'

 13- 15= 'VisitGrp13'

 14- 16= 'VisitGrp14'

 other = 'Unknown';

 run;

11

CLASS VARIABLES AND PRELOADED FORMATS

For the TABULATE, MEANS, SUMMARY, and REPORT procedures, preloaded formats can be used to

manipulate what appears in the resultant table or data set by both adding rows that are not represented in the data

or by eliminating rows that do not meet the format’s criteria.

The two primary options that you will need to know when using preloaded formats is PRELOADFMT and

EXCLUSIVE. Their usage will depend on whether or not the procedure you are using supports the CLASS

statement. There are also a number of supporting options that vary by procedure as well.

 PRELOADFMT Loads the format levels prior to execution. This option will always be present when using

 preloaded formats.

 EXCLUSIVE Only data levels that are included in the format definition are to appear in table.

As the name implies preloaded formats key off of what is generally a

user-defined format. The formats $REGX., $GENDERU., and

$SYMP., which are defined here, are used in some of the examples

that follow. Each contains one level that is not in the data , and both

$REGX. and $SYMP. exclude levels that are found in the data. The

format $REGX. is used with the variable REGION, which ranges from

‘1’ through ‘10’. The format $SYMP. is used with the variable SYMP,

which ranges from ‘01’ through ‘10’. The format $GENDERU. is used

with the variable SEX which takes on the values of ‘F’ and ‘M’.

Using a Preloaded Format with REPORT

Preloading formats with the EXCLUSIVE option allows only those levels that are on the format and in the data. In

PROC REPORT these options, which are to be associated with the classification variable, are applied on the

DEFINE statement.

Using the format $REGX.

along with these two options

causes only regions 1 and 2 to

appear in the report, as these

are the only two regions that

are both in the format and in

the data.

proc format;
 value $regx

 '1'=' 1'

 '2'=' 2'

 'X'=' X' ; 

 value $genderu

 'M'='Male'

 'F'='Female'

 'U'='Unknown'; 

 value $symp

 '00'= 'Unspecified' 

 '01'= 'Sleepiness'

 '02'= 'Coughing'

 '03'= 'Limping';

 run;

title2 'Using PRELOADFMT with EXCLUSIVE';

proc report data=demog nowd;

 column region sex,(wt=n wt);

 define region / group

 format=$regx6.

 preloadfmt exclusive;

 define sex / across format=$Genderu. 'Gender';

 define n / analysis n format=2.0 'N';

 define wt / analysis mean format=6.2 'Weight';

 run;
Preloading Formats in PROC REPORT

Using PRELOADFMT with EXCLUSIVE

 Gender

 Female Male

 region N Weight N Weight

 1 . . 4 195.00

 2 6 109.67 3 105.00

12

The capability to add rows to a table without first modifying the original data set can be especially useful. In this

example Visit three never appears in the data,

but we want it to appear in the report that is

to be generated. Let’s assume that we need

to generate a report of mean lab chemistry

values for lab visits. The report must contain

the first 10 visits regardless of whether or not

they appear in the data.

A format is created which contains each of

the first 10 visits.

 The COMPLETEROWS option, which is

unique to PROC REPORT, is used to ensure

that every row in the preloaded format will

appear in the report.

 The PRELOADFMT option will always

be present when using preloaded formats.

Here the PRELOADFMT option is

associated with the format to be preloaded by

placing both on the DEFINE statement. The

implied classification variable VISIT (define

usage of GROUP) receives the preloaded format.

A portion of the resultant report is shown here. Notice

that VISIT 3 appears in the table although it is never in

the data.

proc format; 

 value visits

 1='1'

 2='2'

 3='3'

 4='4'

 5='5'

 6='6'

 7='7'

 8='8'

 9='9'

 10='10';

 run;

proc report data=advrpt.lab_chemistry nowd

 completerows;

 column visit sodium potassium chloride;

 define visit / group

 f=visits. preloadfmt 

 'Visit' order=data;

 define sodium /analysis mean f=5.2;

 define potassium /analysis mean f=5.3;

 define chloride/analysis mean f=5.1;

 run;

13

Using a Preloaded Format with TABULATE

When using preloaded formats with the TABULATE procedure the PRELOADFMT and EXCLUSIVE options are

applied on the CLASS statement. As with the REPORT procedure these two options interact.

In each of the examples in this section the user-defined format, $SYMP. is used. This format, which is defined

earlier, contains only three of the 10 possible values that can occur in the data, and one additional value that does

not occur in the data.

 The PRELOADFMT and

EXCLUSIVE options appear on the

CLASS statement associated with the

classification variable that is to receive

the preloaded format.

 The appropriate format is assigned

to the classification variable.

 The PRINTMISS option allows the

display of missing values in a PROC

TABULATE table. Without including this

option, levels added by the preloaded format,

which would necessarily always be missing,

would not be displayed.

The PRELOADFMT and EXCLUSIVE

options used together eliminate all values of

SYMP that are not on the format, while

including values on the format that are not in

the data.

Because the PRINTMISS option  has been

used, the “Unspecified” row appears in the

table with the appropriate values for N.

title2 'Using PRINTMISS With the EXCLUSIVE option';

proc tabulate data=advrpt.demog;

 class symp /preloadfmt exclusive; 

 var ht wt;

 table symp,

 (ht wt)*(n*f=2. min*f=4.

 median*f=7.1 max*f=4.)

 / printmiss; 

 format symp $symp.; 

 run;

14

Using a Preloaded Format with MEANS and SUMMARY

As was the case with PROC TABULATE, the PRELOADFMT and EXCLUSIVE options appear on the CLASS

statement, when they are used with the MEANS and SUMMARY procedures.

Preloading with the CLASS statement options PRELOADFMT and EXCLUSIVE limits the levels of the

classification variable to those that are both on the format and in the data. Essentially the format acts as a filter

without resorting to either a subsetting IF statement or a WHERE clause. However unlike PROC TABULATE, this

combination of CLASS statement options does NOT insert a row for the formatted value of SYMP that is not in the

data (SYMP=’00’). To add this level using the MEANS and SUMMARY procedures, the COMPLETETYPES

option must also be included.

The PROC statement option COMPLETYPES will interact with the PRELOADFMT and EXCLUSIVE options.

As a result of this interaction, levels of the classification variable that are not in the data, but are on the format are

now included in the summary. However, because of the use of the EXCLUSIVE option, levels not on the format

are still not included in the table.

The ‘Unspecified’ level for SYMP now appears in

the report even though it is not in the data

(_FREQ_=0).

SUMMARY
Very often when we think of classification variables we think in terms of those variables that are specified on the

CLASS statement, however this way of looking at classification variables limits what we can do with them.

Classification variables can be explicitly specified on the CLASS statement in procedures such as MEANS and

TABULATE. They can also be implicitly specified through their usage as in PROC FREQ. PROC REPORT uses

more than one type of classification variable and the usage is specified on the DEFINE statement associated with the

classification variable.

When the CLASS statement is used, it can be broken up into multiple CLASS statement, and broken up or not,

options can be specified on the CLASS statement. These options allow us to control how the classification variables

are to be used. Procedures that do not support the CLASS statement, but still utilize classification variables, often

implement many of these same options using different syntax.

Get to know how to take full advantage of classification variables and their associated options. Your tables and

reports can generate the information that you need when you know how to program with class.

title2 'With EXCLUSIVE and COMPLETETYPES';

proc summary data=advrpt.demog

 completetypes;

 class symp / preloadfmt

 exclusive;

 var ht;

 . . . code not shown

15

ABOUT THE AUTHOR
Art Carpenter’s publications list includes five books, and numerous papers and posters presented at SUGI, SAS

Global Forum, and other user group conferences. Art has been using SAS
®
 since 1977 and has served in various

leadership positions in local, regional, national, and international user groups. He is a SAS Certified Advanced

Professional Programmer and through California Occidental Consultants he teaches SAS courses and provides

contract SAS programming support nationwide.

AUTHOR CONTACT
Arthur L. Carpenter

California Occidental Consultants

10606 Ketch Circle

Anchorage, AK 99515

(907) 865-9167

art@caloxy.com

www.caloxy.com

REFERENCES
Many of the examples in this paper have been borrowed (with the

author’s permission) from the book Carpenter’s Guide to Innovative

SAS
®
 Techniques by Art Carpenter (SAS Press, 2012).

TRADEMARK INFORMATION
SAS, SAS Certified Professional, SAS Certified Advanced Programmer, and all other SAS Institute Inc. product or

service names are registered trademarks of SAS Institute, Inc. in the USA and other countries.

® indicates USA registration.

www.caloxy.com
https://support.sas.com/pubscat/bookdetails.jsp?pc=62454
https://support.sas.com/pubscat/bookdetails.jsp?pc=62454

