
1

PROC TABULATE:
Getting Started

Art Carpenter
California Occidental Consultants

ABSTRACT
Although PROC TABULATE has been a part of Base SAS® for a very long time, this powerful analytical and
reporting procedure is very under utilized. TABULATE is different; it’s step statement structure is unlike any other
procedure. Because the programmer who wishes to learn the procedure must essentially learn a new programming
language, one with radically different statement structure than elsewhere within SAS, many do not make the effort.

The basic statements will be introduced, and more importantly the introduction will provide a strategy for learning
the statement structure. The statement structure relies on building blocks that can be identified and learned
individually and in concert with others. Learn how these building blocks form the structure of the statement, how
they fit together, and how they are used to design and create the final report will be presented.

Once the foundation is laid a number of intermediate level techniques, options, and statements that provide the
TABULATE programmer with a wide range of power and flexibility are presented. These techniques include those
that are often underutilized even by the more experienced TABULATE programmer.

KEY WORDS
TABULATE, TABLE statement, CLASSLEV, KEYWORD, Style override option

INTRODUCTION
PROC TABULATE has its roots in a table generation program that had been developed by the Bureau of Labor
Statistics (Rhodes, 2005). Much of the statement structure and syntax was directly adapted into PROC TABULATE.

The procedure primarily is used to generate data summary tables. Since TABULATE uses the same underlying
statistical summarization engines as are used by REPORT and MEANS/SUMMARY, the same basic list of statistics
are available in reports generated by TABULATE.

In addition to the PROC statement you will need to be familiar with three other primary statements:

• VAR list the analysis variables
• CLASS list the classification variables
• TABLES define the table analysis and structure

The VAR and CLASS statements are used in TABULATE in the same way as they are in MEANS/SUMMARY.
And do not require any special knowledge to make use of them in TABULATE. They are, however, almost always
required.

The TABLES statement is at the heart of the TABULATE procedure. It is this statement that defines the report
table, what it contains, and what its structure will contain. It is the TABLE statement that requires a specific
understanding in order to design and create a report.

2

table <page definition,> <row definition,> column definition;

Example 1a

title1'Singular Table';
proc tabulate data=tabdat.clinics;
class region;
var wt;
table region,wt;
table wt,region;
run;

Example 1b

TABLE STATEMENT - BASIC STRUCTURE
The TABLE statement (the keyword TABLE and TABLES are interchangeable) is used to define the structure of the
report. There definitions that you might use:

• page definition used only when the report is to span multiple pages
• row definition defines the rows of a report within a page
• column definition defines columns of a report

Within the TABLE statement these three definitions are separated by commas. The statement may or may not
contain a page definition (most do not). The row definition is also optional, however most TABLE statements will
have a row definition. All TABLE statements will have a column definition.

The individual page, row, and column definitions are made up of building blocks and the building blocks are made
up of items. The items can be analysis variables (VAR statement), classification variables (CLASS statement),
formats, text, or other options. The building blocks themselves come in three forms:

• singular the item appears by itself table region, weight;
• nested two items are joined by an asterisk table region*sex, weight;
• concatenated two items are joined by a space table region sex, weight;

Creating a Singular Table
In the first TABLE statement associated with this example a single classification variable (REGION) is included in

the row definition and
a single analysis
variable (WT) is
included in the column
definition. The
resulting table is
singular in both the
row and column
definitions.

Exchanging the
position of these two variables in the TABLE statement creates a table that has a
horizontal orientation.

As is shown here, using two TABLE statements allows you to create multiple
reports with a single PROC step. This can be very beneficial if the incoming
data set is large as the data only has to be read into the procedure once.

In both cases the default statistic is
the SUM. As was mentioned
earlier we are not limited to this
statistic. As a matter of fact most
of the statistics that are available in
MEANS/SUMMARY are also
available in TABULATE.

3

Example 2aExample 2b

proc tabulate data=tabdat.clinics;
 class race sex;
 var wt;
 table race*sex,wt;
 table race*wt,sex;
 run;

proc tabulate data=tabdat.clinics;
 class race sex;
 var wt;
 table sex race,wt;
 run;

Example 3

Creating a Nested Table
Items are nested by separating them with an asterisk. In the first TABLE statement in this example, two
classification variables are nested (SEX within RACE) to form the row definition.

The asterisk is used to nest items so there is no reason why you cannot also nest analysis variables within
classification variables. Either way the statistics represent the data from the interaction of RACE and SEX. The
second TABLE statement (Example 2b) does this by nesting WT under RACE (in the row definition), while SEX
appears as a singular item in the column definition.

The duplicated text that is associated with WT and the SUM statistic can thankfully be controlled, as is shown in a
later example.

Creating Concatenated Tables
When a space, rather than an asterisk, is used to separate items in the TABLE

statement, the
two items are
concatenated.
If these items
are
classification
variables, a
concatenated
table is

generated. The concatenated items are stacked and their statistics are
calculated independently.

In Example 3, the two classification variables SEX and RACE are separated
by a space and the resulting table includes the independent results for both of
these variables.

4

Example 4

proc tabulate data=tabdat.clinics;
class race sex;
var wt;
table race,sex*wt*median;
run;

proc tabulate data=tabdat.clinics;
class race sex ;
var wt ht;
table race, sex*(wt ht)*(n mean stderr);
run;

Example 5

FORMING THE TABLE
The table is created by using combinations of singular, concatenated, and nested items. Often new users of the
TABULATE procedure find it helpful to sketch out the general form of the table (rows and columns). From this
sketch the first pass of the TABLE statement can be created. Further refinement of the table through formatting and
the use of some of the other options shown below, can be applied on successive trials until the desired table is
achieved. Most users quickly find that the ‘trial and error’ process shortens the learning curve substantially.
Practice and soon you will find that you are creating tables that are very close to the desired outcome on the first try!

Selecting Statistics
TABULATE is very good at creating data summaries and univariate statistics. Any of the standard set of univariate

statistics can be
generated from
within
TABULATE.
These statistics
include not
only N, MEAN,
and
VARIANCE,

but also MEDIAN and several percentiles. These are generally specified by
nesting them under the analysis variable to which they are to be applied. In
this example the classification variables RACE and SEX are used to form the
row and column definitions respectively. Notice that the analysis variable is
nested within SEX, and that the MEDIAN statistic is tied to the analysis
variable by nesting it to WT.

Using Parentheses to Form Groups
Concatenated items are joined using a space, and two or more concatenated items can be grouped by surrounding
them with parentheses. Actually the group can contain any number or types of items including variables, statistics,
formats, and options.

The following example contains a group of two analysis variables (WT and HT), which are nested under SEX, and a
group of three statistics that are nested under
the group of analysis variables. The nesting
process creates a hierarchy in the table. For the
column definition in this example SEX is listed
first and is therefore at the top of the hierarchy.
The two concatenated analysis variables are

nested within SEX
which allows us to
examine the statistics
for these analysis
variables for each of
the values of SEX.
Nesting is also used
to associate the
statistics with the
analysis variables.
Again the columns
associated with the
statistics will be nested
under those of the
analysis variables
because in the
TABLE statement,

the statistics are nested under the analysis variables. As was shown in an earlier example this nesting can be used on
the row definition as well.

5

proc tabulate data=tabdat.clinics;
class race sex ;
var wt ht;
table race all, (sex all)*ht*(n mean);
run;

Example 6

title1 'Assigning Formats';
proc format;
 value $gender
 'M' = 'Male'
 'F' = 'Female';
 run;
proc tabulate data=tabdat.clinics
 format=8.3;
class sex;
var wt;
table sex all,wt*(n*f=2.0 mean stderr);
format sex $gender.;

Example 7

Using ‘ALL’ To Form Overall Statistics
The keyword ALL can be used to request statistics that are
to be calculated across classification rows and columns.
This gives us the ability to form group and subgroup
statistics. The ALL keyword is used as if it was a
classification variable and is concatenated onto the item
over which you want to calculate the summary statistics.

In this example, ALL is concatenated to both the column
and row classification variables. The table shows the
summarizations for both these variables for the requested
statistics.

ASSIGNING CELL ATTRIBUTES
Although we have been able to generate useful summary tables using the few options and techniques already shown,
the table is still not ready for final presentation. We will want to be able to control all aspects of the formation of the
cells of the table, including text, formatting, cell size, labels, and much more. The following examples demonstrate a
variety of these options, taken together they provide the necessary tools to generate tables that are ready to show the
boss.

There are a number of options that were developed to control the table appearance for what is now known as the
LISTING destination. Since most TABULATE users are now delivering their tables to other ODS destinations,
these options will for the most part be ignored here.

Using Formats
You can use any of three primary ways to format the cells of a tabulate table. If a variable is already formatted or if
you want to assign a format to a variable, the FORMAT statement can be used in TABULATE just as it is in
virtually every other SAS procedure. You can also provide a default format for the numeric summarization cells on
the PROC statement through the use of the FORMAT= option. Thirdly you can use an asterisk to associate (nest) a
format with a statistic.

6

proc tabulate data=tabdat.clinics
format=8.3;
class sex;
var wt;
table sex all,
 wt*(n*f=2.0 mean stderr)
 /box='Initial Conditions';
format sex $gender.;
run;

Example 8

Example 9

proc tabulate data=tabdat.clinics;
 class race sex;
 var wt;
 table race*wt*mean*f=5.1,
 (sex all='Across Gender');
 run;

In Example 7 a format has been created for use with the variable SEX. It is then assigned using the traditional
FORMAT statement. The cells associated with the summary statistics (N MEAN MEDIAN) are given a default
format (8.3) with the FORMAT= option to control the number of decimal places. Since N will be an integer, it
should not have any decimal places, they are removed by associating the format 2.0 with that specific statistic.

Row Title Space
The term Row Title Space ,or RTS, refers to the area above the row headers. By default this area is left blank,
however you can control its contents through the use of the BOX= option on the TABLE statement. Notice that this
is a TABLE statement option, and as such, it follows a slash at the end of the table definitions.

You can also place the label of a variable in the RTS by using
the variable name as the argument to the BOX option instead of
the constant text. For this example we might have used the
option /box = sex; and the label for the variable SEX
(“patient sex”) would have appeared in the RTS.

Customizing Text
You can replace headings, labels, and other text by specifying it directly on the TABLE statement. Attach the text to
the item of interest by using an equal sign followed by a quoted string. In this example we replace the word ALL
with the string ‘Across Gender’.

The text can also be attached to other items on the
TABLE statement including variables, options, and
statistics.

7

Example 10

proc tabulate data=tabdat.clinics;
 class race sex;
 var wt;
 table race*wt=' '*mean=' '
 ,sex
 /row=float box='Mean Weight';
 run;

proc tabulate data=tabdat.clinics;
 class race sex;
 var wt;
 table race
 ,sex*wt=' '*(n=' ' mean=' ')
 /box='Mean Weight'
 misstext='0';
 run;

Example 11a
proc format;
 value mzero
 . ='----'
 other=[6.2];
 run;

Removing Repeated Text
The ROW=FLOAT option can be used to collapse the row header space when a statistic or constant text is nested

within row definitions. You probably noticed in
Example 9 that the label and the statistic associated

with the rows were repeated. This is, of course, very
distracting. We can use the technique shown in the
previous example to change the text to a blank, however
the cells themselves will not go away. To remove the cells
we use the ROW=FLOAT option. The FLOAT option
removes columns that only contain blanks by dividing the
RTS equally among non-blank columns.

Notice that the MEAN statistic is nested within WT even
though WT has a text string associated with it.

Replacing Missing Values
A table created by TABULATE, such as the one in Example 10, may contain missing values. These may or may not
accurately reflect what you want to have displayed. In Example 10 there were no males of RACE=4 in the study, so
a missing value is desirable, however if we were also showing the values of N, it would be correct to display these
values as 0. We can force the replacement of missing values using the MISSTEXT= option.

The MISSTEXT option inserts the

specified text string for each missing value in the table. Since it is
applied to all missing values, this option is not very flexible.
Fortunately, as is shown in the next example, user defined formats can
be used to provide the needed flexibility.

In Example11b the MZERO.
format is defined so that it can be
applied to the MEAN values.
Missing values are mapped to a
series of dashes and all other values are passed to the 6.2 format. The formatted
value, ‘----‘ for missing values, will override the value supplied by the
MISSTEXT option.

8

Example 11b

proc tabulate data=tabdat.clinics;
 class race sex;
 var wt;
 table race
 ,sex*wt=' '*(n=' '
 mean=' '*f=mzero.)
 /box='Mean Weight'
 misstext='0';
 run;

Example12a

proc format;
 value $DIAGNOSIS
 '1'='Fracture'

'2'='Flu'
'3'='Ulcer'
'4'='Laceration'
'5'='Heart Disease'
'6'='Cancer'
'7'='Diabetes';

 run;

proc tabulate data=tabdat.clinics;
 class diag sex;
 var wt;
 table sex*wt=' '*n=' '
 ,diag
 /box='Patient Counts'
 row=float
 misstext='0';
 format diag $diagnosis.;
 run;

The MISSTEXT= option has replaced the missing values for the N
statistic, while the format MZERO. has been used for the MEAN
statistic.

ORDERING THE HEADINGS
The ordering of the values of classification variables is based on the internal order of the unformatted values. This
can be changed through the use of the ORDER= option. This option can take on the following values.

• internal order of the unformated values (default)
• data order of the data itself
• formatted order based on the formatted values
• freq order based on the frequency

By default, the order is determined by the unformatted values. In the following step one of the two classification
variables has been supplied with a format, however the format has not altered the order of the rows or columns.

The values for the diagnosis code are in the order of the
codes themselves (ORDER=INTERNAL). If we want to
change the order to alphabetical based on the formatted
value, the ORDER= option is set in the PROC statement.
The following tables show the other alternatives.

9

Example 12b Example 12c

Example 12d

class diag sex / missing order=internal;

class diag / missing;
class sex / order=internal;

proc tabulate data=tabdat.clinics;
 class diag / order=formatted
 missing;
 class sex / order=freq;
 var wt;
 table (sex all)*wt=' '*n=' '
 ,diag
 /box='Patient Counts'
 row=float
 misstext='0';
 format diag $diagnosis.;
 run;

When the ORDER= option is applied to the PROC statement it is applied equally to all of the classification
variables. This can be a problem when we want the order to be determined differently for each of the classification

variables. Fortunately we can now also apply the
ORDER= option on the CLASS statement, as well as on
the PROC statement. CLASS statement options follow
a slash, which follows the list of one or more
classification variables.

USING MULTIPLE CLASS STATEMENTS
The CLASS statement can be broken up into multiple
statements and the individual statements can receive
options. This increases our flexibility by applying
specific options to specific classification variables. Some of these options mimic those that can be used on the
PROC statement, while others are only used on the CLASS statement. Options available on the CLASS statement
include:

• ASCENDING Control the order of values (usually ASCENDING is the default)
• DESCENDING Control the order of values
• EXCLUSIVE Limits values to those in the format
• PRELOADFMT Can be used to build missing classification groups from a format
• MISSING Missing values are valid levels (can also be used on the PROC statement)
• ORDER Define ordering criteria (can also be used on the PROC statement)

The two options on this CLASS statement will
apply to both of the classification variables.
However, this single CLASS statement could be
rewritten as two separate CLASS statements,

each with its own (and in this case different) options.

In Example 13, two CLASS statements are used to assign
options to the classification variables. The variable DIAG
has two options and SEX has one.

Example 13

10

data selectlevels(keep=race symp);
 set tabdat.clinics(where=(race in('1','4')
 & symp in('01','02','03')));
 output selectlevels;
 if _n_=1 then do;
 race='0';
 symp='00';
 output selectlevels;
 end;
 run;

proc tabulate data=tabdat.clinics
 classdata=selectlevels;
 class race;
 class symp;
 var wt;
 table (race all)*wt=' '*n=' '
 ,symp all
 /box='Patient Counts'
 row=float
 misstext='0';
 run;

Example 14b

proc tabulate data=tabdat.clinics
 classdata=selectlevels
 exclusive;

Example 14a

USING CLASSDATA= AND EXCLUSIVE TO FILTER DATA
The CLASSDATA= option is used to identify a data set that contains levels of the classification variables that are to
be included in the table. More than a fancy WHERE clause, the data set can also contain levels that are to appear in
the report even if they do not appear in the data!

In this example the data set WORK.SELECTLEVELS has been created from a subset of the available levels of
symptom (SYMP) and race
(RACE). Additionally a
level for each of these
variables has been included
which does not appear in
the actual data.

This data set will be used
as a filter by associating it
with the CLASSDATA
option on the PROC
statement.

The resulting table has all the values from the two
classification variables, and additionally the level for each
variable that is not otherwise in the data. This technique can
be used when you must have a level in the table that may or

may not
appear in the data.

Simply adding the EXCLUSIVE option to the PROC statement radically
changes the table. The EXCLUSIVE option interacts with the
CLASSDATA data set to give only those levels identified in the
CLASSDATA data set.

You can also add or eliminate levels of the classification variables by
using the preloaded format techniques described next.

11

proc format;
 value $symp
 '01' = 'Sleepiness'
 '02' = 'Coughing'
 '00' = 'Bad Code' ;
 value $gender
 'M','m' = 'Male'
 'F','f' = 'Female'
 ' ' = 'Unknown';
 run;

proc tabulate data=tabdat.clinics;
 class sex / preloadfmt;
 class symp / preloadfmt;
 var wt;
 table (sex all)*wt=' '*n=' '
 ,symp all
 /box='Patient Counts'
 row=float
 misstext='0' printmiss;
 format sex $gender. symp $symp.;
 run; Example 15a

PRELOADING FORMATS
In much the same way as the CLASSDATA option can be used as a super filter, preloaded formats can be used to
control levels of classification variables. Within TABULATE, formats - especially user defined formats, can be
used in several non-traditional ways, including data filters and report templates. The techniques are collectively
known as “preloaded” or “preloading” formats. Although the implementation is somewhat different among different
procedures, these techniques are available in several other procedures including MEANS, SUMMARY, and
REPORT.

The first step in the process is to define a format for each classification
variable that you wish to control. Levels can be included that do not
exist in the data set (SYMP=’00' and SEX=’ ‘). The format $SYMP.
excludes values of SYMP (‘03' - ‘10')

In TABULATE formats that are to be preloaded are identified on the
CLASS statement using the PRELOADFMT option. The
PRELOADFMT option will be ignored if one of the following options
is not also present:

ORDER=DATA option (on the CLASS
statement)

ORDER=INTERNAL option (on the CLASS statement)
PRINTMISS option (on the TABLE statement)
EXCLUSIVE option (on the CLASS statement).

We take advantage of the two formats defined above by specifying the PRELOADFMT option on both of the
classification variables. Notice the use of the PRINTMISS option on the TABLE statement.

The resulting table shows the three formatted values of SYMP as well as the other unformatted values that appear in
the data. Notice that there is also a column for SYMP=’00' (Bad Code), which never appears in the data. Notice,
however that although the same options are applied to SEX, the corresponding extra level (‘Unknown’) does not
appear. This level does not show up because it was coded to a missing value, and by default the level associated
with a missing value is excluded from the table. We can change this behavior with the MISSING option (Examples
13 and 15b).

12

proc tabulate data=tabdat.clinics;
 class sex / preloadfmt
 exclusive
 missing;
 class symp / preloadfmt
 exclusive;
 var wt;
 table (sex all)*wt=' '*n=' '
 ,symp all
 /box='Patient Counts'
 row=float
 misstext='0' printmiss;
 format sex $gender. symp $symp.;
 run;

Example 15b

title1 'TABULATE Using the Default Style';
proc tabulate data=tabdat.demog;
class sex;
var ht wt;
table sex*(ht wt), (n min median max);
run;

The previous example has been slightly adjusted by adding the EXCLUSIVE option to both CLASS variables and
the MISSING option to SEX so that the ‘Unknown’ row
will be included.

With the addition of the EXCLUSIVE option, levels of
the classification variable that are not on the format are
excluded from the table . The format is now acting like
a template by both excluding and creating columns for
the table.

USING THE STYLE OVERRIDE OPTION
PROC TABULATE accepts a STYLE= option in several of its statements. This option allows the user to control
ODS attributes by replacing the attribute value supplied by the ODS style. The style override option can be applied
to virtually any part of the table generated by the procedure.

The STYLE= Option
Styles can be applied to a number of areas within the table from general down to the specific cell.

Table Area STYLE= used on

ì Box Cell BOX= option

í Class Heading CLASS statement

î Class Levels CLASSLEV statement

ï Analysis Variable Headings VAR statement

ð Statistics Headings (keywords) KEYWORD statement

ñ Value Cells PROC & TABLE statements

ñ Individual Cells PROC & TABLE statements

This simple TABULATE step was used to
generate the following table (Example 16a)
using the DEFAULT style and the HTML
destination.

The callout numbers correspond to the items in
the table above and to the locations on the
report shown below (Example 16b).

13

Example 16a

proc tabulate data=tabdat.clinics;
class sex / style={font_style=italic} í;
var ht / style={font_weight=bold ï
 font_size=8pt};
table sex, ht*(n min
 median*{style={background=white}} ñ
 max)
 / box={label='Gender'
 style={font_face=helvetica}}; ì
run;

Example16b

The attributes of each of these
locations on the TABULATE
output is determined by
attributes that are defined by the
style used by ODS. There are
literally hundreds of these
attributes associated with
various parts of the table.

The STYLE= override option is
used to change these attributes.
There are too many attributes to
cover in this short space,
however a few that are
commonly used are shown in the
following table.

Controls STYLE= Possible Values

Font font_face= times, courier, (other fonts supported by the OS)

Text size font_size= 6, 8 10 (sizes appropriate to the font)

Text style font_style= italic, roman

Text density font_weight= bold, medium

Text width font_width= narrow, wide

Foreground color foreground= color (color printers)

Background color background= color (color printers)

The availability of some
values can be dependent on
both the destination and
operating system
characteristics. The
following code adds a
number of override options
to give you a sense of the
effect of each one. Notice
the use of the curly braces.

ì The font for the box text is set to
helvetica.
í The label for SEX is italicized.
ï Two attributes are set in a single
option.
ñThe background color for this one
statistic is set to white.

14

proc tabulate data=tabdat.clinics;
 class sex race;
 var ht;
 keylabel all='Total';
 table (race all)*(sex all),
 ht*(n mean);
 run;

Example 17

proc tabulate data=tabdat.clinics;
class sex ;
classlev sex/ style={font_style=italic
 background=yellow};
var ht;
keyword n min max / style={background=white};
table sex=' ', ht*(n min median max)
 / box='Gender';
run;

Using the KEYLABEL Statement
The KEYLABEL statement is used enhance the text associated with key words used in the TABLE statement.
These can include statistics and other key words such as ALL.
In this example all of the text associated with the keyword
ALL is changed in one location using the KEYLABEL
statement.

Using the CLASSLEV and KEYWORD Statements
The CLASSLEV and KEYWORD statements can be used to
further refine the attributes associated with specific statistics
(KEYWORD) or classification variables (CLASSLEV).

The CLASSLEV statement is used to set the attributes associated with the classification variable SEX. Like the
CLASS statement the CLASSLEV statement can be broken up into multiple statements.

The KEYWORD statement assigns attributes to the heading associated with the selected statistics. Notice that the
MEDIAN has been excluded from the list of statistics in this KEYWORD statement.

15

proc format;
 value wtback
 low-100 = 'yellow'
 235-high= 'red';
 value wtfore
 235-high= 'white';
 value $genback
 'M' = 'cyan'
 'F' = 'pink';
 run;

proc tabulate data=tabdat.clinics;
 class sex ;
 classlev sex/ style={background=$genback.};
 var wt;
 table sex=' ',
 wt*(n median
 (min max)*{style={background=wtback.
 foreground=wtfore.}})
 / box='Gender';
 run;

Example 18

 Code not shown
 proc format;
 value $genlnk ì
 'M' = '#Males'
 'F' = '#Females';
 run;

ods pdf anchor='Master';
ods proclabel='Overall';
proc tabulate data=tabdat.clinics;
 class sex ;
 classlev sex/ style={url=$genlnk. í
 foreground=blue};
 var wt;
 table sex=' ',
 wt*(n median min max)
 / box='Gender';
 run;

ods pdf anchor='Males'; î
ods proclabel='Males'; ï
title2 link='#Master' c=blue 'Males'; ð
proc print data=tabdat.clinics;
 where sex='M'; ñ
 var lname fname ht wt;
 run;
 Code not shown

Assigning Attributes with Formats - Traffic Lighting
Attributes can be assigned explicitly as has been done in the previous examples or they can be assigned based on the

values contained in the table.
This conditional assignment of
attributes is extremely
powerful, and it is
implemented with user defined
formats. In this example,
foreground and background
colors are assigned based on
the values displayed in the
table.

The STYLE= option on the
CLASSLEV statement changes
the value of the background
color differentially for males
and females.

The minimum and maximum

values in the data are used with the ranges in the WTBACK. and
WTFORE. formats to set the colors for the foreground and
background. Notice that the STYLE option has been nested
under the statistics to which it is to be applied.

Creating Links

When creating electronic documents, we often
want to be able to create links to other
documents or to other locations within the
current document. Within a TABULATE
report it is possible to make virtually any set of
characters a link by using the STYLE override
option with the URL attribute. In the following
example a PDF document is created that
contains the output from a TABULATE and
two PRINT procedure steps. The three reports
are linked.

ì A format is being used to assign the link
location. The pound sign (#) identifies the link
location as internal to the current file. Internal
locations are specified with the ANCHOR=
option î.

í The name of the file or, in this case, the
internal location to which we will link is
assigned using the URL attribute. Since this
STYLE override option is on the CLASSLEV
statement, the levels of the classification
variables will be the links.

16

Example 19a

Example 19b

Example 19c

î The ANCHOR= option marks an internal location in the current document to which we can link.

ï The ODS PROCLABEL statement changes how the results of this procedure are labeled in the PDF bookmarks.

ð The LINK= option can be used to create links in titles and footnotes.

ñ A WHERE statement is used to create the listing for the males.

When using SAS9.2 under Windows, internal link locations and pointers for PDF documents should all be
designated in lower case. In SAS9.1.3 mixed case is acceptable. The behavior may change in future releases of
SAS9.2. The problem stems from the conversion of all the anchor locations to lower case when the document is
rendered.

17

proc tabulate data=tabdat.clinics;
class race;
var wt;
table race all,wt*(n colpctn mean sum colpctsum);
run;

Example 20

CALCULATING PERCENTAGES
Because we have to determine the appropriate denominator, calculating percentages can tend to be problematic. The
denominator can be based on the entire report, a page, or more commonly on a specific row or column.
TABULATE supports several percentage generation statistics, which are tailored to determine the appropriate
denominator.

Percentage
applies to:

Percent
Frequency (N)

Percent Total
(SUM)

Report reppctn reppctsum

Page pagepctn pagepctsum

Column colpctn colpctsum

Row rowpctn rowpctsum

Column Percentages
Column percentages can be generated by using the COLPCTN and the COLPCTSUM statistics. The percentages

are based on the value in a given
row using the denominator for the
entire column. Although this
example uses the ALL keyword, it
is not required to use these
statistics.

The resulting table has a column
for both the percentage based on
the frequency (COLPCTN) and the
total value (COLPCTSUM).

In this particular example,
summing the weights of all the
patients for each level of RACE is
a rather silly thing to do, but it
does demonstrate the way that the
COLPCTSUM value is calculated.

18

proc tabulate data=tabdat.clinics;
 class sex edu;
 table sex*(n='Patients' ì
 pctn<edu>='% of row' í
 pctn<sex>='% of col' î
 pctn='Overall' ï
),
 edu;
 format edu edulvl.;
 run;

Example 21

Determining the Denominator
A specific denominator can be specified for a percentage statistic by using angle brackets to enclose the

classification variable on which the
denominator is to be based. In this
example the PCTN statistic is used to
calculated percentages based on three
different denominators.

ì The number of patients is displayed.

í Counting across levels of EDU, which
forms columns, gives the row denominator.

î The denominator for the column
percentage is based on counts across the
two levels of SEX (rows).

ï No denominator is specified so all
observations are counted.

SUMMARY
Although complex, the TABULATE procedure is powerful and flexible. Fortunately you do not have to ‘know it
all’ to make use of its capabilities. Even mastering the few techniques described in this paper will allow you to
create summarizations and reports that go far beyond the limitations of most other procedures.

Practice, experiment, try combinations of statements and options. There is a lot to learn, but there is so very much
that you can accomplish.

ABOUT THE AUTHOR
Art Carpenter’s publications list includes four books, and numerous papers and posters presented at SUGI, SAS
Global Forum, and other user group conferences. Art has been using SAS® since 1977 and has served in various
leadership positions in local, regional, national, and international user groups. He is a SAS Certified Advanced
Professional Programmer, and through California Occidental Consultants he teaches SAS courses and provides
contract SAS programming support nationwide.

AUTHOR CONTACT
Arthur L. Carpenter
California Occidental Consultants
10606 Ketch Circle
Anchorage, AK 99515

(907) 865-9167
art@caloxy.com
www.caloxy.com

19

REFERENCES
Bruns, Dan, 2000, “The Power and Simplicity of the TABULATE Procedure”, Proceedings of the Twenty-fifth

Annual SAS® Users Group International Conference, Cary, NC: SAS Institute Inc., 1624 pp.

Chapman, Tasha, 2009, “How to Use PROC TABULATE”, Proceedings of the Pacific Northwest Confernce, Cary,
NC: SAS Institute Inc.,
http://www.sascommunity.org/mwiki/images/4/49/Proc_Tabulate_how_to_-_version_2.0.pdf

Coleman, Ron, 1998, “The Building Blocks of PROC TABULATE”, Proceedings of the Twenty-third Annual SAS®

Users Group International Conference, Cary, NC: SAS Institute Inc., 1660 pp.

Haworth, Lauren, 1999, PROC TABULATE by Example, Cary, NC: SAS Institute Inc., 392 pp.
http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=56514

Haworth, Lauren, 2000, “Anyone Can Learn PROC TABULATE, v2.0”, Proceedings of
the Twenty-fifth Annual SAS® Users Group International Conference, Cary, NC:
SAS Institute Inc., 1624 pp.

Haworth, Lauren, 2000, “Elegant Tables: Dressing Up Your TABULATE Results”,
Proceedings of the 2000 Annual Conference of the Pacific Northwest SAS® Users
Group, Cary, NC: SAS Institute Inc., and in the Proceedings of the 8th Annual
Western Users of SAS® Software Conference, Cary, NC: SAS Institute Inc.

Rhodes, Diane Louise, 2005, “Speaking Klingon: A translator’s guide to PROC
TABULATE”, Proceedings of the Thirtieth Annual SAS® Users Group
International Conference, Cary, NC: SAS Institute Inc., paper 258-30.
http://www2.sas.com/proceedings/sugi30/258-30.pdf

TRADEMARK INFORMATION
SAS, SAS Certified Professional, SAS Certified Advanced Programmer, and all other SAS Institute Inc. product or
service names are registered trademarks of SAS Institute, Inc. in the USA and other countries.
® indicates USA registration. Other brand and product names are trademarks of their respective companies.

