
1

Paper CC-04
Managing Datasets at Library Level via

Dynamically Constructed, DICTIONARY Tables-Driven SAS Code

Jingxian Zhang; Quintiles; Overland Park, KS, USA

Abstract

The SAS System read-only DICTIONARY tables contain valuable information about metadata
such as SAS libraries, table names, column names, etc. Integrating the information into SAS
programming helps create dynamic and efficient scripts to manage datasets. In this paper, I will
first discuss how the DICTIONARY tables are accessed and what information is available to
SAS users. Then I will show how to dynamically construct DICTIONARY tables-driven code
via three approaches - SQL select into macro-variable method, call execute method, and
generate-and-include an external file method. The three macros developed by the author using
the above approaches manage all datasets at the library level - capitalize all character data, dump
all data into an excel file with each datasets being its own tab in excel, and query all character
data with certain length. Using the basic techniques present in these macros, SAS programmers
can develop their own dynamic scripts to accomplish other tasks.

Introduction

SAS programmers in Data Management of pharmaceutical industry program and format CDMS
(for example, Phase Forward Inform, Medidata Rave, Oracle Clinical) database data and external
vendor data such as laboratory test results and EKG data to STDM-like datasets per CDISC or
sponsors’ specification. A clinical trial or study typically has 20 to 30 SAS datasets. During data
validation and review processes, SAS programmers often face the challenging questions from the
data reviewers: Can you provide a list of all character variables that have data length >= 190?
Can you change all character data to upper case? Can you present the data in excel format
instead of datasets for the ease of data review? If you had only one or two small datasets, you
might accomplish these tasks by updating each individual program used to generate these
datasets. But if you have 30 datasets with hundreds of variables, are you going to use the above,
tedious approach?

The purpose of this paper is to find a better solution that can accomplish the above tasks. I will
first discuss how SAS DICTIONARY tables and their corresponding SASHELP views are
accessed and what information is available to SAS users. Then I will show how to dynamically
construct SAS DICTIONARY tables–driven code via three approaches – SQL select into macro-
variable method, call execute method, and generate-and-include an external file method. The
code generated manages datasets at the library level.
__
Abbreviations: CDISC, Clinical Data Interchange Standards Consortium, a non-profit group that defines
clinical data standards for the pharmaceutical industry; CDMS, Clinical Data Management System, a tool
used in clinical research to manage the data of a clinical trial. The clinical trial data gathered at the
investigator site in the case report form are stored in the CDMS. EKG, Electrocardiogram (e-lek-tro-KAR-
de-o-gram), also called ECG, a simple, painless test that records the heart's electrical activity; STDM,
Study Data Tabulation Model, defines a standardized structure for data tabulations that are to be sent
to the FDA as part of a regulatory submission.

SAS DICTIONARY Library

The SAS System read-only DICTIONARY tables and corresponding SASHELP views provide
valuable information about SAS libraries, datasets, columns and attributes, catalogs, indexes,
macros, system options, titles, views, and more. This information has been used to verify dataset
structures and attributes (Teng and Wang, 2006) and data inconsistencies in multiple datasets
(Murphy, 2011).

DICTIONARY is a special case of a SAS library. DICTIONARY tables are special read-only
PROC SQL tables or views. DICTIONARY tables are accessed only by PROC SQL. Based on
the DICTIONARY tables, SAS provides PROC SQL views that can be used in other SAS
procedures and in the DATA step. These views are stored in the SASHELP library and are
commonly called SASHELP views.

To see what tables the DICTIONARY has, one can use the following code, which, if ran at SAS
9.2, would return a list of 29 tables (Table 1). Table names are meaningful so that you know
what they are about.

2

PROC SQL;
 SELECT UNIQUE memname FROM DICTIONARY.dictionaries;
 QUIT;

Table 1 DICTIONARY Tables and Their Corresponding SASHELP Views (SAS 9.2)
Dictionary Table SASHELP Views Dictionary Table SASHELP Views
CATALOGS VCATALG INFOMAPS VINFOMP

CHECK_CONSTRAINTS VCHKCON LIBNAMES VLIBNAM

COLUMNS VCOLUMN MACROS VMACRO

CONSTRAINT_COLUMN_USAGE VCNCOLU MEMBERS VMEMBER

CONSTRAINT_TABLE_USAGE VCNTABU OPTIONS VOPTION

DATAITEMS VDATAIT PROMPTS VPROMPT

DESTINATIONS VDEST PROMPTSXML VPRMXML

DICTIONARIES VDCTNRY REFERENTIAL_CONSTRAINTS VREFCON

ENGINES VENGINE REMEMBER VREMEMB

EXTFILES VEXTFL STYLES VSTYLE

FILTERS VFILTER TABLES VTABLE

FORMATS VFORMAT TABLE_CONSTRAINTS VTABCON

FUNCTIONS VFUNC TITLES VTITLE

GOPTIONS VGOPT VIEWS VVIEW

INDEXES VINDEX

To see what views SASHELP views have, one can use the following syntax:

PROC SQL;
 SELECT DISTINCT memname
 FROM SASHELP.vsview WHERE libname='SASHELP'AND memname like 'V%';
 QUIT;

To see how each DICTIONARY table or SASHELP view is defined, submit a DESCRIBE
TABLE statement. For example, the following code would show the definition of
DICTIONARY.columns. The results are written to the SAS log, which has the variable
names and their attribute information (Table 2).

PROC SQL;
 DESCRIBE TABLE DICTIONARY.columns;
 QUIT;

Table 2 Definition of DICTIONARY.COLUMNS (SAS 9.2)

create table DICTIONARY.COLUMNS(
 libname char(8) label='Library Name',
 memname char(32) label='Member Name',
 memtype char(8) label='Member Type',
 name char(32) label='Column Name',
 type char(4) label='Column Type',
 length num label='Column Length',
 npos num label='Column Position',
 varnum num label='Column Number in Table',
 label char(256) label='Column Label',
 format char(49) label='Column Format',
 informat char(49) label='Column Informat',
 idxusage char(9) label='Column Index Type',
 sortedby num label='Order in Key Sequence',
 xtype char(12) label='Extended Type',
 notnull char(3) label='Not NULL?',
 precision num label='Precision',
 scale num label='Scale',
 transcode char(3) label='Transcoded?');

To examine the contents of each view, one can use the following syntax:

PROC CONTENTS DATA = SASHELP.view_name;
RUN;

For more information about DICTIONARY information, readers are referred to Eberhardt
and Brill (2006), Thornton (2011) and CodeCrafters, Inc. (2010).

SQL Select Into Macro-Variable Approach

3

It is pretty easy to check data length via length function. Basic syntax of checking if a variable
has data length >= 100 could be like: < Data step approach: DATA test; SET dataset_name; IF
LENGTH(variable) GE100; RUN;> or <SQL approach: PROC SQL; SELECT variable FROM
dataset_name WHERE LENGTH (variable) >= 100; QUIT; >. These two approaches work if
there are only a few variables to worry. However, it would be tedious or impossible to implement

if one needs to deal with hundreds of variables. Using the DICTIONARY.columns and dynamic
programming techniques, I have developed the following macro %query_length to accomplish
such tasks.

%MACRO query_length(mylib=, maxlen=);
 PROC SQL;
 /**** Section I ****/
 CREATE TABLE columns as
 SELECT memname, name, length, type
 FROM DICTIONARY.columns
 WHERE libname = "%upcase(&mylib)" and
 memtype="DATA" and
 type="char";

 %LET cnt = &sqlobs;

 /**** Section II ****/
 SELECT "SELECT UNIQUE '" || STRIP(memname) || "' as ds_name,'"
 || STRIP(name) || "' as var_name, subjid, length(strip("
 || STRIP(name) || ")) as max_len, "
 || STRIP(name) || " as datavalue FROM &mylib.."
 || STRIP(memname) || “
 WHERE length(strip("|| STRIP(name) || ")) >= &maxlen.; "
 INTO :select1-:select&cnt
 FROM columns;

 /**** Section III ****/
 CREATE TABLE tempds
 (DSNAME char(10),
 VARNAME char(10),
 SUBJID char(20),
 DATALENGTH num,
 DATAVALUE char(200));

 %DO i=1 %TO &cnt;
 INSERT INTO tempds
 &&select&i;
 %END;
 QUIT;
 %MEND query_length;

Note: For this specific macro, the variable subjid(subject ID) must exist in all datasets at
mylib library because I want to know which subjid has the queried results.

The macro %query_length queries all character variables that have data length >= a specified
number. The DICTIONARY.columns table used in section I shows dataset information at the
variable level (Table 2). Section I in the macro is to get the memname (dataset name), name

4

(variable name), length (variable defined length) and type (variable data type) on all character
variables at a given library. Using the returned information from section I, section II dynamically
constructs SQL query code which will be used to populate a dataset tempds in section III. The
macro call gives output for the SELECT statement for each variable that has data length >=
&maxlen. Table 3 below shows what has been returned on the test data I used.

 Table 3 Macro QUERY_LENGTH call with &maxlen >= 190

Dataset Variable Patient Data Length

EG EGORRES 99994-006

ABNORMAL, BUT NOT CRITICAL. NOT DONE
PREDOSE NOR BEFORE LAB DRAW. STAFF FORGOT
TO HOLD AM DOSE AND PT UNCOOPERATIVE WITH
INITIAL ATTEMPT TO COMPLETE EKG. ALL OTHER
PROCEDURES COMPLETED THEN REA 194

FA FACOM 99993-007

THIS IS NOT DONE DUE TO SAMPLE PROBLEM.
IMPRESSION: STATUS POST VERTEBRAL BODY
AUGMENTATION OF T011 AND T012. STABLE
COMPLETE COLLAPSE OF THE T10 VERTEBRAL BODY.
INTERVAL LOSS OF VERTEBRAL LAB ONE 197

LB LBNAM 99993-010

THIS IS MIDWEST SAS LAB TWO FOR TEST DATA.
THIS IS THE TEST LAB CENTER USED TO CREATE THE
TEST DATA USED FOR THIS PRESENTATION. DUE TO
REGULATIONS, THIS LAB MAY OR MAY NOT BE USED
FOR PATIENTS. HOW, 199

The key code of the macro is the SELECT INTO statement that has the following syntax:

SELECT Column(s)
 INTO :<Macro Variable name1> -:<Macro Variable name9999>
 FROM Table-name | View-Name;

The SELECT statement stores returned row values in a list of user-defined macro variables. Only
the required number of macro variables will be created. A number large enough to hold the
number of observations returned from the SELECT statement must be specified if system macro
variable SQLOBS is not used.

The syntax of string concatenation needs a little explanation. The following statement:

<"SELECT UNIQUE '" || STRIP(memname) || "' as ds_name,'"
 || STRIP(name) || "' as var_name, subjid, length(strip("
 || STRIP(name) || ")) as max_len, "
 || STRIP(name) || " as datavalue
 FROM &mylib..”|| STRIP(memname) || "
 WHERE length(strip("|| STRIP(name) || ")) >= &maxlen.;">

will be dynamically decoded to the following code after execution if memname = AE and name
= STUDYID and &maxlen = 100:

5

SELECT UNIQUE 'AE' as ds_name, 'STUDYID' as var_name, subjid,
 length(strip(STUDYID)) as max_len, STUDYID as datavalue
FROM LIBREF.AE WHERE length(strip(STUDYID)) >= 100;

Similar SELECT statements for other variables will be dynamically generated and are kept under
macro variable selecti (where i is between 1 and SQLOBS. For my test data, SQLOBS = 639).
This is accomplished via dynamic variables used in the macro. Basic dynamic variables <'" ||
VARIABLE || "'> and <'" || VARIABLE || "'> are commonly used in dynamic sql code
generation and they are different. When 'variable' is needed in the generated script, '" ||
VARIABLE || "' should be used. When VARIABLE is needed in the generated script, " ||
VARIABLE || " should be used. For example, if memname is AE and you want 'AE' to show up
in the script, then you need to use '" || memname || "'; However, if you want AE to show up as a
variable in the script, then you need to use " || memname || ".

Generate-and-Include an External File Approach

After I have programmed 23 datasets, I got a request to have all character data to be capitalized.
Instead of modifying each individual program generating its corresponding datasets, we can use
the dictionary metadata to do the capitalization. Here I have used a different approach. Using the
DICTIONARY metadata information, the macro generates SAS code via put statement and then
writes them to an external file. To execute the macro %upcase_ds, one can run it and then use the
%includes statement to include the file (i.e., upcase_chardata.sas) generated from the macro call.

%MACRO upcase_ds(mylib=, _filepath=);
 PROC SQL;
 CREATE TABLE columns as
 SELECT memname as member, name as variable
 FROM dictionary.columns
 WHERE libname = "%upcase(&mylib)" and memtype="DATA" and type="char“
 ORDER by member, variable;
 QUIT;

 DATA _null_;
 SET work. columns end=EOF;
 BY member variable;
 FILE "&_filepath.\upcase_chardata.sas";
 dlm = byte(9);
 IF _n_ =1 then do;
 PUT 'PROC SQL;';
 END;
 PUT dlm +(-1) 'UPDATE ' "&mylib.." member ' SET ' variable '
 = UPCASE(' variable +(-1) ');';
 if EOF then do; put 'QUIT; ';
 END;
 RUN;
%MEND upcase_ds;

6

The following is part of the UPDATE statements contained in the dynamically generated file
upcase_chardata.sas when the macro is called (AE is one of the datasets present in the mylib
LIBREF). For my test data, I have 23 SAS datasets and 639 char variables. That means 639
update statements will be generated if the macro is called. You can see how powerful this
technique is.

PROC SQL;
 UPDATE LIBREF.AE SET AEACN = UPCASE(AEACN);
 UPDATE LIBREF.SET AEACNOTH = UPCASE(AEACNOTH);
 UPDATE LIBREF.SET AEACNX = UPCASE(AEACNX);
 << Total 639 UPDATE statements will be generated for the test data used>>
 QUIT:

In case readers wonder how this task can be done using SQL select into macro-variable method,
here is the code:

%MACRO upcase_chardata(mylib);
PROC SQL;
 CREATE TABLE columns as
 SELECT memname, name, length, type
 FROM DICTIONARY.COLUMNS
 WHERE libname = "%upcase(&mylib)" and memtype="DATA" and type="char";
 %let cnt = &sqlobs;

 SELECT "update &mylib.."||lstrip(memname)||" set "||name||" = upcase("||strip(name)||");"
 INTO :update1-:update&cnt
 FROM columns;

 %DO i=1 %TO &cnt;
 &&update&i;
 %END;

QUIT;
%MEND upcase_chardata;

Call Execute Approach

When exporting multiple SAS datasets to Excel files, the traditional method is to write multiple
steps as below.

PROC EXPORT DATA = LIBREF.ae DBMS =excel2000
 OUTPUT = "_outpath\ae.xls" REPLACE; SHEET = "AE";
RUN;
PROC EXPORT DATA = LIBREF.cmDBMS =excel2000
 OUTPUT = "_outpath\cm.xls" REPLACE; SHEET = "CM";
RUN;

7

Consider the scenario that one wants to dump all the datasets in the library to one excel file with
each tab corresponding to a dataset. Instead of writing this block of code many times for
exporting each datasets, I have developed a sas_to_excel macro (mylib= , _outpath = , _project
=) by using SASHELP view VTABLE and CALL EXECUTE routine, where mylib is libref,
_outpath specifies output folder and _project is the excel output file name.

%MACRO sas_to_excel(mylib= , _outpath = , _project =);
 %Macro printds(libname,dsname) ;
 PROC EXPORT DATA = &libname..&dsname DBMS = excel2000
 OUTFILE = "&_outpath.\&_project..xls" REPLACE; SHEET = "&dsname";
 RUN;
 %MEND printds;

 DATA _null_ ;
 SET sashelp.vtable ;
 WHERE libname = "%upcase(&mylib)";
 CALL EXECUTE('%printds('||strip(libname)||','||strip(memname)||')') ;
 RUN;
%MEND sas_to_excel;

Note that CALL EXECUTE is used within a data step and has the following syntax: CALL
EXECUTE (argument). The macro uses the %printds as the argument for CALL EXECUTE and
gets LIBREF and MEMNAME from SASHELP.VTABLE. Any DICTIONARY tables that have
the LIBREF and MEMNAME can be used here to replace VTABLE. For other uses of CALL
EXECUTE, readers are referred to Ruelle and Moses (2006) and Michel(2005).

Conclusion

The author used three case study macros to demonstrate how SAS code is dynamically built
based on the DICTIONARY metadata. The techniques presented maximize procedural efficiency
and lighten the workload of routine processing. Based on their expertise, SAS programmers may
select a proper method and develop their own dynamic scripts to accomplish programming tasks.

References

CodeCrafters, Inc., 2010. Summary of SAS DICTIONARY Tables and Views.
http://www.codecraftersinc.com/pdf/DICTIONARYTablesRefCard.pdf

Eberhardt, P. and Brill, I. (2006) How Do I Look it Up If I Cannot Spell It:An Introduction to
SAS® Dictionary Tables. SUGI 31 Proceedings 2006, San Francisco, California

Michel, D. 2005. CALL EXECUTE: A Powerful Data Management Tool. SUGI 30 Proceedings,
2005, Philadelphia, Pennsylvania

Murphy, W.C. 2011. Who Do You Have? Where Are They? SAS Global Forum 2011, Las
Vegas, Nevada.

Ruelle, A. and Moses, K. (2006). CALL EXECUTE: A Primer. PharmaSUG 2006, Bonita
Springs, Florida.

8

http://www.codecraftersinc.com/pdf/DictionaryTablesRefCard.pdf

9

Teng, C and Wang, W. 2006. Simple Ways to Use PROC SQL and SAS DICTIONARY
TABLES to Verify Data Structure of the Electronic Submission Data Sets. PharmaSUG 2006,
Bonita Springs, Florida.

Thornton, P. 2011. SAS® DICTIONARY: Step by Step. SAS Global Forum 2011, Las Vegas,
Nevada.

Acknowledgements

I would like to thank David Corliss, Coders Corner Section Chair, for accepting my abstract and
paper and Jill Jenia for reviewing this paper and providing her helpful remarks.

Contact information

Your comments and questions are valued and encouraged. Contact the author at:

Jingxian Zhang
Quintiles, Inc.
6700 W. 115th St.
Overland Park, KS 66223
Phone: 913-708-6674
Fax: 913-871-9569
Email: jing.zhang@quintiles.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their respective
companies.

mailto:jing.zhang@quintiles.com

