
How to Use SDTM Definition and ADaM Specifications Documents  

to Facilitate SAS Programming 
 

Yan Liu 
Sanofi Pasteur 

 
 

ABSTRCT 
SDTM and ADaM implementation guides set strict requirements for SDTM and 
ADaM variable attributes, including their names, labels, types, formats etc. Without a 
good programming solution, this can make clinical SAS programming time 
consuming and prone to mistakes. This paper introduces a simple method that utilizes 
SDTM definition and ADaM specifications documents to improve clinical SAS 
programming efficiency and accuracy.  
 
 
KEY WORDS 
SDTM, ADaM, EXCEL, MACRO, VARIABLE ATTRIBUTE, %SYSCALL SET 
 
 
INTRODUCTION 
The implementation of CDISC standards has greatly improved the efficiency of new 
drug development in the pharmaceutical industry. Common standard among the 
industry makes new drug application review easier for the regulators and makes 
global exchange smoother. In the meantime, CDISC standards make more demands 
for clinical SAS programming because of the strict variable attribute requirements set 
by the SDTM and ADaM Implementation Guides. Directly coding all the label, length 
and format statements in SAS for so many variables in so many data sets can be 
tedious and prone to mistakes. 
 
This paper introduces a simple and efficient method to meet SDTM and ADaM 
Implementation Guide requirements and make clinical SAS programming easier. In 
the following sections of this paper, I’ll first introduce how to use SAS macro to 
convert SDTM definition and ADaM specifications documents into useful SAS data 
sets. Then I’ll introduce how to use SAS macro to retrieve variable attributes from the 
data sets converted and apply them to SDTM domain or ADaM analysis data sets that 
will be submitted to regulators for new drug application.  
 
 
CONVERT THE SDTM AND ADAM DOCUMENTS INTO SAS SYSTEM 
 
SDTM definition and ADaM specifications documents come in Excel files. Separate 



worksheets are used for each SDTM domain or ADaM analysis data set. On each of 
these worksheets, information about the variables for each SDTM domain and ADaM 
data set is listed, including the variable name, label, type, length, format, source etc. 
The followings are two examples of such documents.  
 

A Sample of SDTM definition document in Excel format 

 
 

A Sample of ADaM specifications document in Excel format 

 

 2



 
In order to make use of these documents in SAS programming, the first thing that 
needs to do is to convert the information listed on these two documents into SAS data 
sets. The simple way to do this is to use the PROC IMPORT procedure in the SAS 
macro. Since the variable information for each data set is listed on separate 
worksheets, a SAS macro parameter should be created to select which worksheet the 
SAS should convert. In this paper, I name this parameter as dsnme. The first row of 
the excel work sheet will be kept as the data set variable names. So the GETNAMES 
option in the PROC IMPORT procedure should be set to Yes. If the layouts of the 
excel file is not as neat as the above samples and the file has extra rows on the top 
with extra specifications information. Then only those parts that contain variable 
attributes should be converted into a SAS data set. In such case, the RANGE option of 
the PROC IMPORT procedure should be used to specify which part of the 
spreadsheet SAS should convert. For example, the following statement will instruct 
SAS to convert only the area of the specified spreadsheet covering A12 to H50.  
 
 RANGE="&dsnme.$A12:H50"; 
 
RETRIEVE VARIABLE ATTRIBUTES AND APPLY TO SDTM DOMAIN OR 
ADAM ANALYSIS DATA SETS 
 
The following SAS macro code is used to retrieve variable attributes from the 
temporary data set created and apply them to the SDTM domain or ADaM analysis 
data sets to be submitted to the regulator.  
 
 

    %let id=%sysfunc(open(_temp));  
    %let NOBS=%sysfunc(attrn(&id,NOBS));   
    %syscall set(id); 
  
    data &dsout(label="&label"); 
        %do i=1 %to &NOBS;   
            %let rc=%sysfunc(fetchobs(&id,&i)); 
 
   %if %upcase(&type)=CHAR %then %do;  
    format &Variable_Name %sysfunc(compress($&length..)) ; 
    length &Variable_Name %sysfunc(compress($&length..)) ; 
   %end; 
   %else %if %upcase(&type)=NUM %then %do;  
   %if %index(&Controlled_Terms_or_Format, .) %then %do;  
                format &Variable_Name %sysfunc(compress(&Controlled_Terms_or_Format..)) ; 
                length &Variable_Name %sysfunc(compress(&length..)) ; 
   %end;  
   %else %do;  format &Variable_Name %sysfunc(compress(&length..)); %end; 

 3



             %end; 
 
   label &Variable_Name= "&Variable_Label"; 
            keep &Variable_Name; 
        %end; 
            set &dsin; 
    run; 
  
    %let id=%sysfunc(close(&id));   
 
The %SYSCALL SET routine in the above SAS code creates a macro variable for 
each of the variable listed in the worksheet, with the macro variable names being 
exactly the same. The FETCHOBS function in the %DO loop retrieves variable 
attributes one by one and store them into the corresponding macro variables 
%SYSCALL SET routine created. These variable attributes stored in the macro 
variables then are applied through the label, length and format statements to the 
variables in the final data set.  
 
Since the SAS format and length statement syntax for numeric and character variables 
are different, %if conditions are used. The format statement for character variables 
can use the value provided by the “length” column in the work sheet. But for the 
numeric variables, that will not be enough. If a numeric variable contains more than 
just integral and has decimal points, additional %if conditions are used to make sure 
the values in the “control terms of format” column are used as input.  
 
The KEEP statement in the above code keeps only those variables that specified in the 
documents and in the same sequence as they are listed. All the other variables either 
temporarily created during programming or retrieved from the source data will be 
dropped, because they are not the needed STDM or ADaM variables. If there is a 
variable specified in the documents but doesn’t exist in the data set. Such variable will 
still be generated by the macro. But a warning of uninitialized variable will show up 
in the SAS log and the variable will have all null values. These will prompt the 
programmer to correct any forgotten variables.  
 
A sample call of the macro looks like this, 
 
 %attrb(dsnme=DM, dsin=_dm, dsout=db.dm, Path=”z:\SDTM_MTA72.xls”) 
 
Where, dsnme is the name of the worksheet for the data set; dsin is the data set to 
which you want to apply the variable attributes; dsout is the name for the final data set 
with the required variable attributes; Path is the location of the SDTM or ADaM 
documents. 
 
 

 4



 
CONCLUSION 
Compared with coding variable attributes directly in SAS statements, this method I 
introduced here has many advantages. First, by utilizing the SDTM definition and 
ADaM specifications documents, it saves a lot of time and makes the SAS codes look 
more compact. Second, by using this method, I don’t need to worry about whether I 
forgot to drop a not-needed variable or whether I forgot to create a needed variable 
that is specified in the documents. In addition, all the new variables will be ordered in 
the exact sequence as they show in the Implementation Guide. At last, since all the 
variables and their attributes are listed in worksheets, it is much easier to check for 
mistakes and make corrections once any mistakes are found. Therefore it greatly 
improves programming accuracy and efficiency. 
 
 
 
 
REFERENCE 
1. CDISC SDTM Implementation Guide V3.1.1 Final, http://www.cdisc.org/  
2. the Analysis Data Model, Version 2.1, the ADaM Implementation Guide, Version 
1.0, http://www.cdisc.org  
 
 
AUTHOR CONTACT 
Yan Liu 
Sanofi Pasteur 
108 Jianguo Road, Beijing, China 
chris.liu@sanofipasteur.com  
 
 
TRADEMARK INFORMATION 
SAS, SAS Certified Professional, SAS Certified Advanced Programmer, and all other 
SAS Institute Inc. product or service names are registered trademarks of SAS Institute, 
Inc. in the USA and other countries. 
 
® indicates USA registration. 

 5

http://www.cdisc.org/
http://www.cdisc.org/
mailto:chris.liu@sanofipasteur.com

