
Paper 25-2010 
 

Summaries by Class and Interval 
Nathan Lindquist, St. Louis Park, MN 

 
Abstract  
 
Building a two dimensional report using PROC TABULATE or PROC MEANS may require several data steps.  In 
some cases, PROC SQL can produce similar results using a simpler process.  This paper presents a method for 
creating summaries by class and interval using PROC SQL.   

 
Introduction 
 
A two dimensional report presents a summarized statistic using two types of segmentation – one on the vertical axis 
and one on the horizontal axis.  Two dimensional reports provide a concise way to align like segments and compare 
statistics.  Reports with two or more dimensions of summary variables are commonly used in many industries.   
 
To create effective two dimensional reports, start by designing a final report template that best meets your needs and 
work back through the reporting process.  The final report should be designed to display the most useful statistics and 
segmentations in a meaningful way.  Examples of two dimensional reports are shown below.  The examples are 
taken from the finance industry.   
 
Example Report - Credit Exposure  
Credit exposure reports are a useful tool for monitoring risk exposure by product type.  This example shows how a 
table of application data might be summarized to report on exposure by product type and credit score band.   
 
App # Product FICO Line
1000 $0 Fee, 9.99% 785 $15,000 Product 000-649 650-699 700-749 750-950
1001 $39 Fee, 19.99% 642 $1,500 $0 Fee, 9 .99% $2 $3 $83 $77
1002 $0 Fee, 14.99% 738 $8,000 $0 Fee, 14.99% $4 $23 $109 $61
1003 $0 Fee, 19.99% 764 $12,000 $0 Fee, 19.99% $9 $46 $27 $31
… … … … $39 Fee, 14.99% $27 $26 $7 $6

Total Exposure (millions) by Credit Score

 
 
Example Report – Application Volume (Code Example) 
Comparisons between a recent period and an older period are useful for monitoring changing trends.  This example 
shows how a table of application data might be summarized to report by school and time interval.   
 
App Mth App ID School Status
200806 1000 Duke Appr Jun09 - Jun08 - Jun09 - Jun08 - Jun09 - Jun08 -
200806 1001 Michigan St Deny School May10 May09 May10 May09 May10 May09
200806 1002 Michigan St Appr Michigan St 67 50 33           30           49% 60%
… … … … W est Virginia 20 27 12         11           60% 41%
201005 1200 West Virginia Appr Duke 15 13 9           8             60% 62%
201005 1201 Butler Deny Butler 4 5 3             2             75% 40%

Applied Approved Approval Rate

 
 
Reporting Steps 
 
Two dimensional reports are frequently coded in SAS using three or more data steps.  A standard process might 
include a step for each of the following: 

- A data step to define reporting classes and intervals  
- PROC TABULATE to summarize variables 
- A second data step to label and format fields 

The resulting code can be challenging to understand and difficult to modify.   
 
In many cases, using PROC SQL can reduce code and simplify reporting processes.  Presented below is the SAS 
code used to create an application volume report similar to the one shown above.   
 

1 



Sample Data Code 
Reads in sample application data to summarize 
 

DATA Data_Source; 
INPUT @01 App_Mth  6.  

     @08 App_ID   4.  
     @13 School   $13.  
     @27 Status   $4.; 

CARDS; 
200806 1000 Duke  Appr  
201005 1011 Butler Deny  
Full Sample Not Shown 
; 
RUN; 

 
Basic Report Code 
Creates a report on application and approval volume by school using proc sql 
 

PROC SQL; SELECT 
School, 
  
/* Sum records that fall into the required reporting interval:                   */ 
SUM(CASE WHEN 200906 <= App_Mth <= 201005 THEN 1 ELSE 0 END) AS "Applied 0906-1005"n, 
 
/* A second method that requires less code but is more cryptic:                  */ 
SUM(200806 <= App_Mth <= 200905) AS "Applied 0806-0905"n, 
/* "200906 <= App_Mth <= 201005" returns 1 if true and 0 if false                */ 
 
SUM((200906 <= App_Mth <= 201005) AND (Status = "Appr")) AS "Approved 0906-1005"n, 
SUM((200806 <= App_Mth <= 200905) AND (Status = "Appr")) AS "Approved 0806-0905"n 
 
FROM Data_Source GROUP BY School 
 
/* Sort to prioritize key segments:                                              */ 
ORDER BY "Applied 0906-1005"n DESC;     

QUIT; 
 
Code Output: 

 
 
Rolling Report Code 
Creates a formatted, rolling report using proc sql and SAS Macros 

 
%LET Cur_Mth = 201005;       

 
/* The Add_Mths macro returns the result of adding to a month value in YYYYMM format:   */ 
%INCLUDE "\\SASDrive\SAS Macros\Add_Mths.sas" / NOSOURCE;  
/* The Fmt_Mth macro requires a YYYYMM value and returns the corresponding MMMYY value: */ 
%INCLUDE "\\SASDrive\SAS Macros\Fmt_Mth.sas" / NOSOURCE;  

    
/* The macro variables below will update automatically based on Cur_Mth:                */ 
%LET Y1_Beg = %Add_Mths(&Cur_Mth, -11);              /* Y1_Beg equals "200906"          */ 
%LET Y1_End = &Cur_Mth;                              /* Y1_End equals "201005"          */ 
%LET Y1_Sfx = %Fmt_Mth(&Y1_Beg)-%Fmt_Mth(&Y1_End);   /* Y1_Sfx equals "Jun09-May10"     */ 

 
%LET Y2_Beg = %Add_Mths(&Cur_Mth, -23);              /* Y2_Beg equals "200806"          */ 
%LET Y2_End = %Add_Mths(&Cur_Mth, -12);              /* Y2_End equals "200905"          */ 
%LET Y2_Sfx = %Fmt_Mth(&Y2_Beg)-%Fmt_Mth(&Y2_End);   /* Y2_Sfx equals "Jun08-May09"     */ 

 

2 



PROC SQL;  
CREATE TABLE Source_Summary AS SELECT 

School, 
 
/* The macro variables are used to set the intervals and the field names          */ 
SUM(&Y1_Beg <= App_Mth <= &Y1_End) AS "Applied &Y1_Sfx"n, 
SUM(&Y2_Beg <= App_Mth <= &Y2_End) AS "Applied &Y2_Sfx"n, 
SUM((&Y1_Beg <= App_Mth <= &Y1_End) AND (Status = "Appr")) AS "Approved &Y1_Sfx"n, 
SUM((&Y2_Beg <= App_Mth <= &Y2_End) AND (Status = "Appr")) AS "Approved &Y2_Sfx"n 
 
FROM Data_Source GROUP BY School 
/* Order by the num of apps received last year:                                   */ 
ORDER BY "Applied &Y1_Sfx"n DESC 

;   
 

/* Add approval rate calculations to the report:                                       */ 
SELECT  

*, 
CASE WHEN "Applied &Y1_Sfx"n > 0 THEN "Approved &Y1_Sfx"n / "Applied &Y1_Sfx"n 
ELSE 0 END AS "Appr_Rate &Y1_Sfx"n FORMAT=PERCENT5.,  
CASE WHEN "Applied &Y2_Sfx"n > 0 THEN "Approved &Y2_Sfx"n / "Applied &Y2_Sfx"n 
ELSE 0 END AS "Appr_Rate &Y2_Sfx"n FORMAT=PERCENT5. 
 
/* Keep only the top two schools by application volume:                           */ 
FROM Source_Summary (OBS=2) 

;  
QUIT; 
 
Code Output: 

 
 
Macro Code 
Code for the Add_Mths and Fmt_Mth macros included above 
 

%MACRO Add_Mths(Mth, Num_Mths); 
/* The Add_Mths macro returns the result of adding or subtracting a given        */ 
/* number of months to a SAS text value in YYYYMM format.                        */ 
/* Mth: A month value in YYYYMM format.                                          */ 
/* Num_Mths: The number of months to add (a negative value for subtraction).     */ 
%LOCAL Num_Yrs; 
%LET Num_Yrs = %SYSFUNC(floor((%SUBSTR(&Mth, 5, 2) + &Num_Mths - 1) / 12)); 
%EVAL(&Mth + 88 * &Num_Yrs + &Num_Mths); 

%MEND Add_Mths; 
 

%MACRO Fmt_Mth(Mth); 
/* The Fmt_Mth macro returns the result of reformatting a SAS text value from    */ 
/* YYYYMM format to MMMYY format.                                                */ 
/* Mth: A month value in YYYYMM format.                                          */ 
 
%LOCAL MM YY;  
%LET MM = %SUBSTR(&Mth, 5, 2);  
%LET YY = %SUBSTR(&Mth, 3, 2); 
      %IF &MM = 01 %THEN Jan&YY; %ELSE %IF &MM = 02 %THEN Feb&YY; 
%ELSE %IF &MM = 03 %THEN Mar&YY; %ELSE %IF &MM = 04 %THEN Apr&YY; 
%ELSE %IF &MM = 05 %THEN May&YY; %ELSE %IF &MM = 06 %THEN Jun&YY; 
%ELSE %IF &MM = 07 %THEN Jul&YY; %ELSE %IF &MM = 08 %THEN Aug&YY; 
%ELSE %IF &MM = 09 %THEN Sep&YY; %ELSE %IF &MM = 10 %THEN Oct&YY; 
%ELSE %IF &MM = 11 %THEN Nov&YY; %ELSE %IF &MM = 12 %THEN Dec&YY; 

%MEND; 

 

3 



Conclusion  
 
When summarizing data, the features offered by PROC SQL can help reduce code and simplify reporting processes.  
SQL can do all of the following in one step: 

- Conditional Assignments    
- Data Aggregation 
- Field Labeling 
- Field Ordering 
- Sorting / Prioritization 

PROC SQL also has several SAS-inherited capabilities not available to standard SQL.  The combination of SQL and 
SAS features provides unique advantages. 

 
Acknowledgements 
 
The reporting processes presented in this paper were developed with support from fellow SAS users.  Special thanks 
to Andrew Larsen, Donalee Wanna, Dale Robinson, Grant Walker, James Jenson, Neil Davies, and Scott Pierson for 
their review and considerable feedback. 

 
Contact Information  
 
Your comments and questions are valued and encouraged.  Please contact the author at: 
 
Nathan Lindquist 
4820 Park Commons Drive #219, St. Louis Park, MN 55416 
(952) 922-2481 
nathan.lindquist.mn@gmail.com 
 
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are 
trademarks of their respective companies. 

4 


