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Introduction

Pharmaceutical product development consists of a research phase, called Drug Discovery,
and an applied phase where clinical studies are performed. In both areas, sophisticated
and expensive software is extensively utilized to provide analytic power and database
management. In the research phase, there are very many steps where simpler methods
and less costly software may be utilized for a variety of studies. Although academe,
where much of the research is done, favors such freeware as R and various ‘roll-your-
own’ software, industry and government often use commercial grade software such as
JMP® where powerful analytics are paired with sophisticated graphics in easy to use
format. This paper delves into two areas of Discovery, gene expression, and ligand
efficiency indices as they relate to mapping Chemico-biological space.

Methods I: Gene Expression

Genomic Datasets tend to be large and need to be statistically treated to properly convey
the true nature of the underlying physical processes. These treatments include numerous
issues of statistical normalization and multi-sample testing as well as biochemical
variability, probe-sample pairing, and gene nomenclature which are not the subject of this
brief presentation. As we wish to concentrate on the actual multivariate analysis of the
data, we begin after the initial step of identifying the minimal gene set thought to be
responsible, or at least contributory to the effect under study.

In this section, we employ the Multivariate platform in IMP®8 to analyze tumor cell line
resistance to analyze tumor cell line resistance to a metabolic inhibitor (1,2). Specifically
this platform is used to i) separate resistance classes by Discriminant analysis and
Clustering, and ii) further examine these differences by Principal Components Analysis
(PCA). It further employs the Partition and Fit Model techniques to verify results. These
types of strategies have been employed in many instances in drug discovery and find
widespread use in molecular biology. Studies such as these are now implemented and
greatly extended in JMP® Genomics 5.0.

It is the purpose of this paper to show how straightforward multivariate methods may
shed light on the relative importance of various genes and gene groups. The data are from



a microarray study and represent fluorescence intensities from a microarray reader. The
study compared expression of a family of pro-apoptotic genes and sensitivity to an anti-
tumor drug in a panel of small cell lung carcinoma (SCLC), leukemia, and lymphoma cell
lines, grouped as sensitive, intermediate, or resistant to anti-tumor drugs. The analytic
methods here, from the Multivariate Methods, Modeling, and Fit Model Platforms are:

Clustering (a multivariate grouping technique that joins groups having similar
properties. Ward’s method is used for small tables of less than a few thousand rows.
Numeric variables are utilized where numeric differences make sense physically)

Discriminant Analysis (useful to group variables by predicting class membership). The
class variables may be nominal or ordinal but the predictor variables must be continuous.
JMP uses a common covariance matrix for all groups and calculates the distance between
points and their multivariate means.

PCA (employs linear combinations of the standardized variables to reduce
dimensionality of complex data sets and separate groups on the basis of variance vectors)

Partition Analysis (partitions data according to a relationship between the X and Y
values and determine groupings of X values that best predict a Y value)

Fit Ordinal Logistic Model (the Fit Model platform utilizes the ordinal logistic fitting
personality to model non-continuous data)

These methods are used to i) asses their ability to cleanly separate the three groups
(levels) of drug resistance and ii) be used as a model to predict resistance in new drugs.

Data

A portion of the data set is displayed below:
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The cell lines are identified in the first column, the sensitivity class in the second column
and all others are the gene designations for the minimal gene set identified by ANOVA.

To see if we can really (cleanly) separate the drug sensitivity classes by the gene
expression changes, a first step is to cluster the data. This is a rough-cut technique and
depends upon the technique utilized. We choose Hierarchical clustering as it is
appropriate to small samples and we choose Ward’s method as the best general
compromise for a preliminary analysis. The results displayed below, indicate that one
group (sensitive) is completely separated, while the other two (moderately sensitive and

resistant) are not.

) S _ Cell Line Group |201042_at | 201129_at | 201925_s_at | 202151_s_at
) 1|Rs11380-1 1 -38.883| 1399.233 471.64 770.352
= 2|Rs11380-2 1 -10.789 1159.47 406.521 423311
* 3|Rs11380-3 1 -27.482| 1111.201 417.208 501.813
L= 4 [MOLT-4-1 1 -25.088| 1183.808 47.3 295.193
L= 5|MOLT-4-2 1 -1.78 1310 421 300
L= 6| MOLT-4-3 1 -9.033 | 1243.021 42181 328191
o 7 |Raiji-1 3 -8.527 | 1084.566 524.417 355.994
) & |Raji-2 3 -20.412| 1033318 587 464 460.958
w2 9|Raji-3 3 -5.077 799.105 422316 300431
o) 10 [SUDHL4-1 1 -13.611] 1090.276 71.988 321417
* 11 [SUDHL4-2 1 -18.419 952.186 68.881 373.839
* 12 [SUDHL4-3 1 -19.204| 1356.178 105.092 491.87
[ = 13 [WSU-NHL-1 2 -12.211 368.534 51.543 253.564
[ = 14 [WSU-NHL-2 2 -5.282 423687 54.639 23230
[ = 15 [WSU-NHL-3 2 -12.189 433.006 50.937 221264
L= 16 | CEMIC1-1 1 -5.385| 1778.348 17.623 453361
L= 17 [CEMIC1-2 1 -22.47 | 1728.214 10436 569.611
(= 18 [CEMIC1-2 1 -26.252| 1650.192 19.643 493.366
o) 19 |Reh-1 1 -36.512| 1340.025 74.533 521.19
* 20 [Reh-2 1 -7.342 | 1162.944 46.011 432173
* 21(Reh-3 1 -17.788| 1492352 6212 442028
L= 22 [HL-60-1 1 -23.899 711.747 121.647 353.681
L= 23 [HL-60-2 1 -16.226 | 1115.161 202.37 435712
L= 24 [HL-60-3 1 -26.411| 1395.484 250.333 623791
L= 25 [DOHH2#1 1 161.796 896.552 110.847 232736
L= 26 ([DOHH2%3 1 220483 800.524 119.335 212747
B 27 [RPMIS226#2 2 -18.289 434.843 250.06 329.808
L 28 [RPMIS226#3 2 -18.257 465.617 322.371 346.916
# 29 (Meg01-1 3 727184 711.66 645516 1688.252
D 30 [Meg01-2 3 446.561 407.283 437146 984031




¥ ~ Hierarchical Clustering
Method = Ward
¥ Dendrogram
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The list can be further clustered in 2D showing a heat map and separation both by
sensitivity group and genes. This type of clustering might uncover important similarities
in pathway action by the different genes.



¥ ™ 2-Way Clustering with Heat Map
Method = Ward
¥ Dendrogram
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Another way to approach the class separation problem is Discriminant Analysis and will
usually make a cleaner cut. DA will “measure the distance from each point in the data set
to each group's multivariate mean (often called a centroid) and classifies the point to the
closest group. The distance measure used is the Mahalanobis distance, which takes into
account the variances and covariances between the variables’ (3). For this separation a
linear DA was used where ‘it is assumed that the Y's are normally distributed with the
same variances and covariances, but that there are different means for each group defined
by X* (3).



~ Discriminant Analysis
Discriminant Method: Linear
¥ Canonical Plot
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¥ Discriminant Scores

Number Misclassified 0
Percent Misclassified 0
-2LogLikelihood 0

Row Actual SgDist{Actual) Prob(Actual) -Log(Prob) Predicted  Prob(Pred)
101 56.05424 1.0000 0.000 1 1.0000
2 1 5410786 1.0000 0.000 1 1.0000

The finest cut is usually made with Principal Components Analysis. This highly
mathematical method will use as many dimensions as necessary to effect a clean
separation. Luckily, in most cases, only 2 or 3 are needed so the results may be
interpreted physically. PCA is very useful to derive a small number of independent linear
combinations of a set of variables that capture as much of the variability in the original
variables as possible.

‘Using principal component analysis reduces the dimensionality of a set of data. Principal
components (PC’s) are a way to picture the structure of the data as completely as possible
by using as few variables as possible.

For n original variables, n principal components are formed as follows:

e The first principal component is the linear combination of the standardized
original variables that has the greatest possible variance.

e Each subsequent principal component is the linear combination of the
standardized original variables that has the greatest possible variance and is
uncorrelated with all previously defined components.

Each principal component is calculated by taking a linear combination of an eigenvector
of the correlation matrix with a standardized original variable. The eigenvalues show the
variance of each component’ (3).



In JIMP we can easily visualize the group separations with a score plot, that shows how
the first two principal components are used to separate them

¥ Score Plot
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At the same time, JMP produces diagnostics that let us know that two PC’s are sufficient
for the separation (Scree Plot) and the relative importance of the individual genes in
forming the vectors (Loading Plot).



¥ = Principal Components [ Factor Analysis

¥ Scree Plot
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We can also produce a rotateable 3D scatterplot to better visualize the separation. This is
important when placing new, unknown drugs into the calculations.



¥ Scatterplot 3D
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Finally, Partition Analysis and Logistic Regression may be used as alternative ways to i)
separate the classes and ii) gain a deeper understanding of which genes may be driving
the separation and thus drug sensitivity or resistance. Recursive partitioning is especially
useful for preliminary exploration when there is a large data set with no prior model. The
results are straightforward to interpret. Logistic regression is useful for fitting non-
continuous x-axis (predictor) data and can be effective with a single predictive factor.



* = Partition for Group
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Count G*2 LogWorth
64 126.53646 17.313788
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¥ Whole Model Test
Model -LogLikelihood DF ChiSquare Prob>ChiSq
Difference 17455787 1 3491157 =.0001*
Full 45.812443
Reduced 63.268230
RSquare (U) 0.2758
Observations (or Sum Wats) 64
Converged by Gradient
¥ Lack Of Fit
Source DF -LogLikelihood ChiSquare
Lack Of Fit 125 45812443 91.62489
Saturated 126 0.000000  Prob=ChiSq
Fitted 1 45.812443 0.9890
¥ Parameter Estimates
Term Estimate  Std Error ChiSquare Prob>ChiSq
Intercept[1]  1.48067465 0.4310496 11.80 0.0006*
Interceptf2]  3.14934281 0.6093211 26.71 =.0001*
202201_at -0.0059032 0.0019535 9.13 0.0025*
¥ Effect Likelihood Ratio Tests
LR
Source Nparm DF  ChiSgquare Prob=ChiSq
202201_at 1 1 349115739 =.0001*
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Methods Il: Ligand Efficiency Indices (Mapping of Chemo-Biological Space)

Yet another approach now being developed in drug discovery is the use of Ligand
Efficiency lindices (LEI’s) to produce maps of chemical/biological properties of
compounds, drug fragments and actual approved drugs. When new fragments (or
chemical entities) are placed upon the map they may indicate the new fragments
‘similarity’ (i.e., proximity) to an approved, on-market drug and thus suggest the
probability that this fragment may successfully complete clinical trials. Although the
chemistry runs deep and requires a multidimensional optimization of chemical structure
integrating enzymology and cellular and organismic biology, the mathematics behind it is
straightforward and the results easy to understand, interpret, and implement by the
medicinal chemist (4).

Historically it was realized that a more streamlined and efficient process for drug
discovery was needed as increasingly, more money and effort is being used to less effect.
As Lipinski’s “Rule of Five” is limited in several ways and becoming less relevant to the
discovery process, attention was focused on the potency of ligands to receptors (e.g., Ki)
and evaluation of the fragments properties such as molecular weight, solubility, polar
surface area (PSA), and ClogP. Beyond simple filtering there was a need to construct a
numerical framework capable of predictive ability to maximize the probability of
identifying a viable drug candidate.

Ligand efficiency (LE) was originally defined in terms of AG and the number of non-
hydrogen atoms N in the compound (5): LE = AG/N, where AG is the familiar Gibbs free
energy and defined as AG= -RTInK; Utilizing the importance of molecular weight (MW),
the concept was extended to the use of binding affinities (4). As initial calculations
demonstrated the efficacy of directly relating the potency (Ki, 1C50, or related
measurements) to the MW (in kDa) and PSA of the ligands, these became the basis of the
development of maps of the chemo-biological space that provide enhanced understanding
of the distribution of compounds in terms of PSA/MW across the polarity-efficiency vs
size-efficiency (SEI-BEI) plane (4,6). Moreover this representation suggests that
compounds with both large values of SEI and BEI, optimize both variables
simultaneously (6). In time the concepts were expanded to include related factors such as
the number of heavy (non-Hydrogen) atoms and the number of polar atoms (i.e., O and
N).

When we do this, we derive some very useful tools. Basically, the maps are constructed
on sound chemical principles to display the nBEI-NSEI space (7) that nicely display the
fragments and compounds along lines of distinct slope defined by the number of polar
atoms in the chemical entity. These maps then, with descriptive annotation, suggest the
probabilities of a fragment becoming a successful drug as successful drugs placed on the
map suggest that there is i) an area on the lower left where there is little probability that a
molecular entity will become a drug and ii) the further out and up in the lines that a new
candidate lies, the greater is the probability of successful drug development. A more
rigorous analysis is being undertaken to estimate probabilities for different targets.
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Bivariate Fit of NBEI By NSEI
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Fig. 1.

Y-axis: nBEI ; X-axis: NSEI. Representation of a limited sample of 200 marketed drugs
in the nBEI-NSEI plane. The slope of the lines is equal to the number of polar atoms (N
plus O) in the chemical compound. The limited dataset courtesy of the ChEMBL
database (European Bioinformatics Institute, Hinxton, Wellcome Trust Campus,

Cambridge, UK). See references (4, 6-7) for details.
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Actual by Predicted Plot
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Actual by Predicted Plot
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SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are registered trademarks or trademarks of their respective companies.
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