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Introduction 
 
Pharmaceutical product development consists of a research phase, called Drug Discovery, 
and an applied phase where clinical studies are performed.  In both areas, sophisticated 
and expensive software is extensively utilized to provide analytic power and database 
management.  In the research phase, there are very many steps where simpler methods 
and less costly software may be utilized for a variety of studies.  Although academe, 
where much of the research is done, favors such freeware as R and various ‘roll-your-
own’ software, industry and government often use commercial grade software such as 
JMP® where powerful analytics are paired with sophisticated graphics in easy to use 
format.  This paper delves into two areas of Discovery, gene expression, and ligand 
efficiency indices as they relate to mapping Chemico-biological space. 
 
 
Methods I: Gene Expression 
 
Genomic Datasets tend to be large and need to be statistically treated to properly convey 
the true nature of the underlying physical processes.  These treatments include numerous 
issues of statistical normalization and multi-sample testing as well as biochemical 
variability, probe-sample pairing, and gene nomenclature which are not the subject of this 
brief presentation.  As we wish to concentrate on the actual multivariate analysis of the 
data, we begin after the initial step of identifying the minimal gene set thought to be 
responsible, or at least contributory to the effect under study. 
 
In this section, we employ the Multivariate platform in JMP®8 to analyze tumor cell line 
resistance to analyze tumor cell line resistance to a metabolic inhibitor (1,2). Specifically 
this platform is used to i) separate resistance classes by Discriminant analysis and 
Clustering, and ii) further examine these differences by Principal Components Analysis 
(PCA). It further employs the Partition and Fit Model techniques to verify results.   These 
types of strategies have been employed in many instances in drug discovery and find 
widespread use in molecular biology.  Studies such as these are now implemented and 
greatly extended in JMP® Genomics 5.0.  

 
It is the purpose of this paper to show how straightforward multivariate methods may 
shed light on the relative importance of various genes and gene groups. The data are from 
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a microarray study and represent fluorescence intensities from a microarray reader. The 
study compared expression of a family of pro-apoptotic genes and sensitivity to an anti-
tumor drug in a panel of small cell lung carcinoma (SCLC), leukemia, and lymphoma cell 
lines, grouped as sensitive, intermediate, or resistant to anti-tumor drugs. The analytic 
methods here, from the Multivariate Methods, Modeling, and Fit Model Platforms are: 
 
Clustering (a multivariate grouping technique that joins groups having similar 
properties. Ward’s method is used for small tables of less than a few thousand rows. 
Numeric variables are utilized where numeric differences make sense physically) 
 
Discriminant Analysis (useful to group variables by predicting class membership). The 
class variables may be nominal or ordinal but the predictor variables must be continuous. 
JMP uses a common covariance matrix for all groups and calculates the distance between 
points and their multivariate means. 
 
PCA (employs linear combinations of the standardized variables to reduce 
dimensionality of complex data sets and separate groups on the basis of variance vectors) 
 
Partition Analysis (partitions data according to a relationship between the X and Y 
values and determine groupings of X values that best predict a Y value) 
 
Fit Ordinal Logistic Model (the Fit Model platform utilizes the ordinal logistic fitting 
personality to model non-continuous data) 
 
These methods are used to i) asses their ability to cleanly separate the three groups 
(levels) of drug resistance and ii) be used as a model to predict resistance in new drugs. 
 
Data 
 
A portion of the data set is displayed below: 
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The cell lines are identified in the first column, the sensitivity class in the second column 
and all others are the gene designations for the minimal gene set identified by ANOVA. 
 
To see if we can really (cleanly) separate the drug sensitivity classes by the gene 
expression changes, a first step is to cluster the data.  This is a rough-cut technique and 
depends upon the technique utilized.  We choose Hierarchical clustering as it is 
appropriate to small samples and we choose Ward’s method as the best general 
compromise for a preliminary analysis.  The results displayed below, indicate that one 
group (sensitive) is completely separated, while the other two (moderately sensitive and 
resistant) are not. 
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The list can be further clustered in 2D showing a heat map and separation both by 
sensitivity group and genes.  This type of clustering might uncover important similarities 
in pathway action by the different genes. 
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Another way to approach the class separation problem is Discriminant Analysis and will 
usually make a cleaner cut.  DA will ‘measure the distance from each point in the data set 
to each group's multivariate mean (often called a centroid) and classifies the point to the 
closest group. The distance measure used is the Mahalanobis distance, which takes into 
account the variances and covariances between the variables’ (3).  For this separation a 
linear DA was used where ‘it is assumed that the Y's are normally distributed with the 
same variances and covariances, but that there are different means for each group defined 
by X’ (3). 
 
 
 



 6 

 
 
 
 

The finest cut is usually made with Principal Components Analysis.  This highly 
mathematical method will use as many dimensions as necessary to effect a clean 
separation.  Luckily, in most cases, only 2 or 3 are needed so the results may be 
interpreted physically.  PCA is very useful to derive a small number of independent linear 
combinations of a set of variables that capture as much of the variability in the original 
variables as possible.  

‘Using principal component analysis reduces the dimensionality of a set of data. Principal 
components (PC’s) are a way to picture the structure of the data as completely as possible 
by using as few variables as possible. 

For n original variables, n principal components are formed as follows: 

• The first principal component is the linear combination of the standardized 
original variables that has the greatest possible variance.  

• Each subsequent principal component is the linear combination of the 
standardized original variables that has the greatest possible variance and is 
uncorrelated with all previously defined components.  

Each principal component is calculated by taking a linear combination of an eigenvector 
of the correlation matrix with a standardized original variable. The eigenvalues show the 
variance of each component’ (3). 
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In JMP we can easily visualize the group separations with a score plot, that shows how 
the first two principal components are used to separate them 

 
 
 
 

 
 
 
 
 
 
 
 
 
At the same time, JMP produces diagnostics that let us know that two PC’s are sufficient 
for the separation (Scree Plot) and the relative importance of the individual genes in 
forming the vectors (Loading Plot). 
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We can also produce a rotateable 3D scatterplot to better visualize the separation.  This is 
important when placing new, unknown drugs into the calculations. 
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Finally, Partition Analysis and Logistic Regression may be used as alternative ways to i) 
separate the classes and ii) gain a deeper understanding of which genes may be driving 
the separation and thus drug sensitivity or resistance.  Recursive partitioning is especially 
useful for preliminary exploration when there is a large data set with no prior model.  The 
results are straightforward to interpret.  Logistic regression is useful for fitting non-
continuous x-axis (predictor) data and can be effective with a single predictive factor. 
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Methods II:  Ligand Efficiency Indices (Mapping of Chemo-Biological Space) 
 
Yet another approach now being developed in drug discovery is the use of Ligand 
Efficiency Iindices (LEI’s) to produce maps of chemical/biological properties of 
compounds, drug fragments and actual approved drugs.  When new fragments (or 
chemical entities) are placed upon the map they may indicate the new fragments 
‘similarity’ (i.e., proximity) to an approved, on-market drug and thus suggest the 
probability that this fragment may successfully complete clinical trials. Although the 
chemistry runs deep and requires a multidimensional optimization of chemical structure 
integrating enzymology and cellular and organismic biology, the mathematics behind it is 
straightforward and the results easy to understand, interpret, and implement by the 
medicinal chemist (4). 
 
Historically it was realized that a more streamlined and efficient process for drug 
discovery was needed as increasingly, more money and effort is being used to less effect. 
As Lipinski’s “Rule of Five” is limited in several ways and becoming less relevant to the 
discovery process, attention was focused on the potency of ligands to receptors (e.g., Ki) 
and evaluation of the fragments properties such as molecular weight, solubility, polar 
surface area (PSA), and ClogP.  Beyond simple filtering there was a need to construct a 
numerical framework capable of predictive ability to maximize the probability of 
identifying a viable drug candidate. 
 

Ligand efficiency (LE) was originally defined in terms of ΔG and the number of non-
hydrogen atoms N in the compound (5): LE = ΔG/N, where ΔG is the familiar Gibbs free 
energy and defined as ∆G= -RTlnKi.  Utilizing the importance of molecular weight (MW), 
the concept was extended to the use of binding affinities (4).  As initial calculations 
demonstrated the efficacy of directly relating the potency (Ki, IC50, or related 
measurements) to the MW (in kDa) and PSA of the ligands, these became the basis of the 
development of maps of the chemo-biological space that provide enhanced understanding 
of the distribution of compounds in terms of PSA/MW across the polarity-efficiency vs 
size-efficiency (SEI-BEI) plane (4,6).  Moreover this representation suggests that 
compounds with both large values of SEI and BEI, optimize both variables 
simultaneously (6). In time the concepts were expanded to include related factors such as 
the number of heavy (non-Hydrogen) atoms and the number of polar atoms (i.e., O and 
N). 
 
When we do this, we derive some very useful tools. Basically, the maps are constructed 
on sound chemical principles to display the nBEI-NSEI space (7) that nicely display the 
fragments and compounds along lines of distinct slope defined by the number of polar 
atoms in the chemical entity.  These maps then, with descriptive annotation, suggest the 
probabilities of a fragment becoming a successful drug as successful drugs placed on the 
map suggest that there is i) an area on the lower left where there is little probability that a 
molecular entity will become a drug and ii) the further out and up in the lines that a new 
candidate lies, the greater is the probability of successful drug development.  A more 
rigorous analysis is being undertaken to estimate probabilities for different targets. 
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Fig. 1.  
Y-axis: nBEI ; X-axis: NSEI. Representation of a limited sample of 200 marketed drugs 
in the nBEI-NSEI plane. The slope of the lines is equal to the number of polar atoms (N 
plus O) in the chemical compound.  The limited dataset courtesy of the  ChEMBL 
database (European Bioinformatics Institute, Hinxton, Wellcome Trust Campus, 
Cambridge, UK). See references (4, 6-7) for details.  
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