
1

Paper 74-2010

SGPANEL: Telling the Story Better

Chuck Kincaid, COMSYS, Portage, MI

INTRODUCTION

SAS/GRAPH® has been a standard in analytical reporting since the early days. Over the years it has improved in
many ways. One of the recent improvements has been the addition of the Graphics Template Language (GTL).
Based on the templates used for the Output Delivery System, the GTL gives users amazing control over the look and
feel of the graphics that they create. However, the GTL is not necessarily for the faint of heart. To help people use
this capability more easily, SAS has created the Statistical Graphics (SG) procedures: SGPLOT, SGPANEL,
SGSCATTER, and SGRENDER. With thoughtful default values for color and layout, these procedures allow the user
to create powerful graphics pretty easily.

The SGPANEL procedure, in particular, introduces the new capability of the Panel. The concept of the panel is not
new and many SAS Global Forum papers have been written over the years to implement the panel concept, usually
using PROC GREPLAY. SGPANEL removes the headaches that have been associated with creating multiple,
related graphs. This paper will explain the concepts, the capabilities, the do’s and the don’ts with using SGPANEL
and particularly its PANELBY statement. Once the concepts and techniques are mastered you’ll never look at graphs
the same way again.

COPLOTS

WHAT IS A COPLOT?

The Coplot is a graphical device that has its origins in E. R. Tufte’s small
multiples. Tufte discusses this graphic technique in his book The Visual
Display of Quantitative Information (1983). He compares them to frames of a
movie: “a series of graphics, showing the same combination of variables,
indexed by changes in another variable.” By keeping the design of the
graphic constant throughout all the frames, the viewer can focus on the
changes in the data as they visually move from one frame to another.

Figure 1 below shows an example of small multiples that compares the
distribution of Age of Herring Catches each year from 1908 to 1913. The
shift of the peak (representing the tremendous number of herring that were
spawned in 1904) throughout the years can be easily seen, showing the
power of this type of plot.

William S. Cleveland brought his ideas together with other research and
introduced the concept of the conditioning plot or coplot in Visualizing Data
(1993). Figure 2 shows the first coplot Cleveland introduces. This figure has
the characteristic given panel across the top of the graph, and the
dependence panels in the center.

Figure 1 Tufte’s small multiples example

2

Figure 2 Cleveland's Rubber Example

Each dependence panel graphs, in this case, two variables, Abrasion Loss vs Tensile Strength for a specific range
of values for Hardness. One can easily see the conditional dependence of the relationship between Abrasion Loss
and Tensile Strength upon Hardness. Most of the panels show a particular nonlinear “hockey-stick” relationship,
except for the top-right panel which shows an inversion of the relationship.

Different software applications each have a different way of presenting this powerful graphing technique. In this
paper we will look at what SAS does in SGPANEL and what you can do with it.

SGPANEL VS SGPLOT

SGPLOT is available for creating the typical one panel plot. It is a step above the GPLOT procedure in the way that
ODS is a step above the DATA _NULL_. It is based on the Graphics Template Language (GTL) which became
production in SAS 9.2. Two of the nice things about it are the wide variety of plot capabilities that can be easily
implemented, and the well-thought out defaults for colors, fonts, line sizes, etc. You can find many good papers from
the User Group meetings about SGPLOT and related topics. Delwiche and Slaughter (WUSS 08) have a good
overview along with an example for each type of plot.

All of the plot types that SGPLOT can create, except the ELLIPSE plot, are available in SGPANEL. Not all of them
work with each other, though. See the SAS Documentation for specifics.

The primary difference between SGPLOT and SGPANEL is that the former gives you one plot in one panel, while the
latter gives you multiple plots laid out in multiple panels. The way you control the layout is with the PANELBY
statement which we’ll go into below. Other documented differences include

 No TMPLOUT=”filename” option for SGPANEL. This option writes the GTL code to a file for you to modify
and use later on. However, even though it’s not documented, it does work if you use it.

 No UNIFORM= option. This option specifies how to control axis and markers with the BY statement. You can
use the BY statement with SGPANEL and there are some times where it’s better to do so. However, the
UNIFORM option is not accepted. Because of the panel concept, SGPANEL makes the group values and axis
scaling consistent by default. However, you can control the scaling as described below.

 KEYLEGEND. The user has less control over the legend, with KEYLEGEND, in SGPANEL. The legend in
SGPLOT can be placed either inside or outside the graph. For SGPANEL the legend is relevant to all panels, so
it only makes sense to have it “outside” all of the panels, but within the plot region. Also, the possible positions

3

for the legend in SGPANEL are BOTTOM, LEFT, RIGHT, and TOP, whereas SGPLOT can use some
combinations.

SGPANEL AND PANELBY

SGPANEL displays the relationship among specified variables (cf. dependence panels, above) at given levels of
another variable (cf. given panel, from above). The variable being conditioned is expected to be a class variable
where the levels are its unique values. Numeric variables can be used, but the procedure will attempt to make a
chart for each unique value, so be careful!

First let’s review the terminology of the SG Procedures. There are potentially three levels of SG output. (Not to be
confused with levels of a class variable.) The most basic is the cell. The cell is what has been traditionally called a
graph such as created with PLOT, GPLOT or even SGPLOT. The panel is the set of all cells that the procedure
generates. Finally, the graph is one page of output. For example, when a panel is split across multiple pages, each
page is a graph.

The labels at the top, in this case, of each cell are the headings or header. Figure 3 provides visual examples for
each of these terms.

THE PANELBY STATEMENT

The PANELBY statement is required and must be the first statement before any plot, axis or legend statements. The
procedure will use what you specify in the PANELBY statement to define the overall layout of the panel. The syntax
for PANELBY is

PANELBY variable(s) </ option(s)>;

 option(s) can be one or more of the following:

 BORDER | NOBORDER

 COLHEADERPOS= TOP | BOTTOM | BOTH

 COLUMNS= n

 LAYOUT= LATTICE | PANEL | ROWLATTICE | COLUMNLATTICE

 MISSING

 NOVARNAME

 ONEPANEL

 ROWHEADERPOS= RIGHT | LEFT | BOTH

 ROWS= n

 SPACING= n

Page 1 == Graph 1 Page 2 == Graph 2

Figure 3. Terminology Example

Cell

Headin

g

Panel

4

 SPARSE

 START= TOPLEFT | BOTTOMLEFT

 UNISCALE= ROW | ALL

In this paper we will cover many of these options and explore what benefit they provide the user.

LAYOUT= LATTICE | PANEL | ROWLATTICE | COLUMNLATTICE

One of the more important options is the LAYOUT. The two primary forms of the panel layout are LATTICE and
PANEL (the default). Here is an example of the PANEL layout using the Orion Sales data in SASHELP.

proc sgpanel data=sashelp.orsales;

 panelby product_line;

 dot year / response=profit;

run;

This default layout arranges the cells alphabetically according to the classification variable. The order is by row from
left to right and top to bottom with the headings placed at the top of each cell. The example panel is shown in Figure
4. This layout can be controlled with the START= option below. The number of columns per row is determined by the
number of levels of the classification variable. Right now the procedure uses each level of the classification variable
to create a cell. Eventually, it may take numeric variables and create intervals that it could use for the classification.
Cleveland called this slicing we’ll discuss it more later in the paper.

The PROC tries to make intelligent decisions about how to divide the panels into rows and columns.

Table 1 shows the default numbers of rows, columns and pages given the number of panels. As you can see, unless
you override the number of rows or columns, the procedure keeps them to 3 and under.

Table 1 Default Layout for PANEL Option

Figure 4 Default Panel Layout

5

of

Panels

of

Rows

of

Columns

of

Pages

of

Panels

of

Rows

of

Columns

of

Pages

2 1 2 1 8 2 2 2

3 2 2 1 9 1 2 5

4 2 2 1 10 1 2 5

5 2 3 1 11 2 3 2

6 2 3 1 12 2 2 3

7 1 2 4

The layout can be controlled by the options, COLUMNS, ONEPANEL, and ROWS, as we’ll see. The panel layout is
useful for single PANELBY variables. The PANELBY could be used with two variables and controlling the number of
columns or rows, however it’s easier to do this with the LATTICE layout. The LATTICE layout uses the first variable
to define the columns and the second to define the rows. Thus, if the first variable has 2 levels and the second has 3
levels, then SGPANEL will create a layout with 2 columns and 3 rows.

By default the following number of cells gives the corresponding numbers of rows, columns and pages.

Table 2 Default Layout for LATTICE Option

of

Levels

1
st

 Var

of

Levels

2
nd

 Var

of

Rows

of

Columns

of

Pages

of

Levels

1
st

 Var

of

Levels

2
nd

 Var

of

Rows

of

Columns

of

Pages

2 2 2 2 1 4 2 2 2 2

2 3 2 3 1 4 3 3 2 2

2 4 2 2 2 4 4 1 2 8

2 5 1 2 5 4 5 1 2 10

3 2 2 3 1 5 2 2 1 5

3 3 1 3 3 5 3 3 1 5

3 4 2 3 2 5 4 2 1 10

3 5 1 3 5 5 5 2 3 6

Note that certain layouts can leave some cells blank depending on the number of levels of the given variables. For
example, dividing five columns into two pages will mean three columns on each page. (It tries to keep things
uniform). This arrangement will then give one blank column on the second page.

As mentioned the layout can be controlled by using the COLUMNS, ROWS or ONEPANEL option in the following
manner.

COLUMNS= N

ROWS= N

These options control the number of columns and/or rows in the layout. You don’t have complete control with these
options. The procedure will still make its own decisions about the layout if the settings don’t fit well into the page.
Also, these options have no effect if you use the ONEPANEL option and the LATTICE layout. Only one of them will
have an effect if you use the ONEPANEL and the PANELBY layout. In that case, if you specify both COLUMNS= and
ROWS=, then the COLUMNS= value will be used and the ROWS= value ignored.

ONEPANEL

The ONEPANEL option on the PANELBY statement makes the entire panel fit into a single graph, which is a single
page. If the panel has many cells, the graph is going to be cluttered, so this option is typically recommended when

6

there are only a small number of cells. However, many cells can be okay if the pattern of the relationship in each cell
and across cells is what is important and not the actual relationship. An example of this from the web is by Dr.
Andrew Gelman, Professor of Statistics and Political Science and Director of the Applied Statistics Center at
Columbia University.

Figure 5 Small Multiples Example 1 (Gelman)

Notice that it’s not the individual graphic that we’re interested in as much as how the graphic changes as the given
variables along the top and side change.

An example of this same thing with SGPANEL can be seen in Figure 6. We could even remove the tick labels here,
since they are not of much interest. By using the LOESS statement with NOMARKERS, we can see the overall
relationship between the Systolic and Diastolic variables for each of the levels of Cause of Death and Smoking
Status. Most seem similar to each other, but there are a few that stand out.

7

Figure 6 SGPANEL Small Multiples

When used with discretion, this option can be a valuable tool either with many or few cells in your graph. Note,
however, that if the panel becomes too large for the output image, then a blank image is created. Finally, with this
option and the PANEL layout, you cannot specify both the ROWS= and COLUMNS= values. If you do, then
COLUMNS= will be used and ROWS= will be ignored. Neither of these, ROWS= or COLUMNS=, have an effect with
ONEPANEL and the LATTICE layout.

BORDER | NOBORDER

This option is pretty straightforward depending on the ODS style in use at the time. The typical styles (Analysis,
Statistical, Listing, Journal, Journal2) all have borders by default. BORDER adds borders around each cell in the
panel and NOBORDER removes them. Note that this is around each cell and not around the graph as a whole. Here
is an example of each with the Journal style.

Table 3 BORDER vs NOBORDER

Border with Journal Style No Border with Journal Style

8

COLHEADERPOS= TOP | BOTTOM | BOTH

ROWHEADERPOS= RIGHT | LEFT | BOTH

These options, which (obviously) control the position of the column and row headings, can be used with the
LATTICE layout. For the PANEL layout, the headings are always across the top. The default positions (TOP and
RIGHT) are the most useful, because the axes can “interfere” with the BOTTOM and LEFT positions. BOTTOM and
LEFT can be useful with small multiples if the axes are not displayed as we can see with the small multiples heart
data example above (see Figure 7)

MISSING

Most procedures by default can not use records with missing values. PROC REG, for example, will drop
observations that have missing values for any of the variables in the model. However, sometimes it’s helpful to
explore the behavior of the non-missing variables for these records. The missing option can help by treating the
missing values of the PANELBY classification variable as a valid level and a cell will be drawn.

NOVARNAME

The NOVARNAME option is used in almost every graph the author creates, because it removes the variable name
and the “=” symbol from the cell headings. This style provides clean heading labels by avoiding the redundant
information. If there are two PANELBY variables that have the same levels, however, then the variable name may be
necessary.

SPACING= N

This option controls the number of pixels between the cells. The author hasn’t used this option.

SPARSE & MISSING

The SPARSE option is useful when not all combinations of the PANELBY classification variables are there. We
return to the Orion Sales Data to explain. We’ll create a horizontal bar chart with two classification variables.
PRODUCT is the first classification variable, so it is on top and “moves” the slowest. REGION is the second
classification variable, so it is under PRODUCT and “moves” faster. That is, SGPANEL cycles through the levels of

Figure 7 Cell Headers on BOTH Sides

9

REGION within each level of PRODUCT; very similar to the behavior of PROC SORT. Figure 8 shows our sales
example with the data for the BED & EAST and SOFA & EAST combinations deleted (PRDSALE_SUB). Without the
SPARSE option the levels are all adjacent. Note that it leaves blank cells at the end to balance the graphs.

proc sgpanel data=prdsale_sub;

 title "Yearly Sales by Division w/o Sparse";

 panelby product region / novarname columns=5;

 hbar Division / response=actual;

run;

It is interesting to note the order of the cells in Figure 8. Remember that the order of the levels within a classification
variable is alphabetical. The order of the levels within the second classification variable is set by their behavior in the
first level of the first classification variable. Because the BED x EAST combination is missing, WEST is first within
BED. That makes WEST first within all the other levels of PRODUCT.

When we add the SPARSE option,

proc sgpanel data=prdsale_sub;

 title "Yearly Sales by Division w/ Sparse";

 panelby product region / sparse novarname columns=5;

 hbar division / response=actual;

run;

the missing combinations are included in the grid as shown in Figure 9.

Figure 8 Missing Levels without SPARSE

10

Figure 9 Missing Levels with SPARSE

Note that the order of the cells is essentially the same as before. The cell for the missing combination BED x EAST
is displayed after all the other levels for REGION. (In this case there is only WEST.)

In Figure 9 the order is WEST then EAST because the BED x EAST combination is missing. Since that occurred
under BED (the first level of PRODUCT) all of the other PRODUCTS are WEST then EAST. If instead, the CHAIR x
EAST combination had been missing (or any of the PRODUCTS other than the first), then all of the PRODUCTS
would have had EAST then WEST.

This layout is sort of similar to the LATTICE layout which shows all combinations by default. See Figure 10.

proc sgpanel data=prdsale_sub;

 title "Yearly Sales by Division w/ Lattice";

 panelby product region / layout=lattice novarname columns=5;

 hbar Division / response=actual;

run;

Figure 10 Missing Levels with Lattice Layout

The MISSING option and the SPARSE option sound similar to one another and they are. The difference is in what’s
missing. Suppose we have a data set with classification variables A and B that we’ll use for defining our cells which
will plot X vs Y. The SPARSE option is useful when no records exist (i.e. no data for X and Y) for some combinations

11

of A and B. The MISSING option would be useful when we have data records with values for X and Y, but the values
for A and/or B are missing.

START= TOPLEFT | BOTTOMLEFT

This option determines the order of the cells in the graphs by specifying the location of the first cell. TOPLEFT
(default) is how we read tables and BOTTOMLEFT is graphical order. From the SAS Documentation we have these
diagrams.

UNISCALE= COLUMN | ROW | ALL

The default value for this option is ALL and most of the time that’s the appropriate one. Specifying either COLUMN or
ROW scales just the column axes or row axes, respectively, to be identical. These may be helpful if the scales for
the levels of the other dimension are radically different.

COLAXIS AND ROWAXIS

Most of the axis options behave the same with PROC SGPANEL as they do with SGPLOT. We mentioned the
DISPLAY=NONE option above when discussing the ROWHEADERPOS and COLHEADERPOS options.

The ALTERNATE option will “interfere” with the row and column headings when using the LATTICE layout. The
PANEL layout can benefit from this option, though, particularly if there are a large number of columns or rows. This
option will add reference ticks to each side (Top and Bottom, or Left and Right) of the panel and alternates the tick
values between the two sides, depending on whether you use COLAXIS or ROWAXIS.

CONTINUOUS VARIABLES

The procedures at this time allow only qualitative or classification variables. If we want to use a quantitative variable
instead, we have a little work to do. A very good way to create cells with a quantitative variable is through slicing
(Cleveland). The process slices the values of the quantitative variables into particular intervals based on the number
of values in each interval. Ideally, it also overlaps the values in the neighboring intervals which gives a smoother
transition. It simulates, in a static way, the concept of the Grand Tour which moves along a particular dimension
passing some data points and adding others as you move forward.

We will use a format to slice the quantitative variable into ranges based on its percentiles. The following code takes
a simple approach to achieving this. First we calculate the desired percentiles using PROC UNIVARIATE. The
percentiles will be based on the number of intervals you desire, which, in turn, will be based on the number of data
points. Too many intervals will break the data into small groups, and too few may have too much data in each.

proc univariate data=rubber_ndup;

 var hardness;

 output out=Pctls

 pctlpts = 17 33 50 67 84

 pctlpre = hrd

 ;

run;

The resulting percentiles will be used to create a format.

proc format;

 value hardgp

 low - 59 = '< 59'

 60 - 64 = '60 - 64'

 65 - 71 = '65 - 71'

 72 - 80 = '72 - 80'

 81 - 83 = '81 - 83'

 84 - High = '84 - High';

run;

12

This code gives us the following breakout for each category. In this example, we see one of the pitfalls of this,
incomplete method, since some of the groups have pretty small numbers.

hardness Frequency Percent

< 59 7 23.33

60 - 64 3 10.00

65 - 71 7 23.33

72 - 80 4 13.33

81 - 83 5 16.67

84 - High 4 13.33

The format will be applied to the quantitative variable in the SGPANEL procedure.

proc sgpanel data=rubber_ndup noautolegend;

 format hardness hardgp.;

 panelby hardness / start=bottomleft;

 scatter y=abrasion_loss x=tensile_strength;

 loess y=abrasion_loss x=tensile_strength / smooth=0.75 degree=1;

run;

This code gives us the following graph.

Figure 11 Slicing of Continuous Variable

Notice how “choppy” the graphs are. They do not give the same smooth story as when we overlap the categories.
Instead of looking at consecutive frames of a movie, it’s almost like looking at every 10

th
 frame.

For us to create the process with the overlap would mean duplicating records. The simple way to do that is to break
the data up into multiple data sets, create an index in each and then set them back together. The index would be
used to create the cells rather than the original quantitative variable.

13

ORDERING LEVELS

Another valuable technique is to specify the order of one or more of the qualitative variables. These can be the levels
used to create the individual cells or the levels on one of the plot axes. For example, the HEART data in the
SASHELP library has the variables DEATHCAUSE, indicating cause of death, and SMOKING_STATUS, indicating
the how much the person smoked. SMOKING_STATUS has a natural order to it that is not kept when the levels are
plotted alphabetically. We can convert the qualitative levels to numeric levels with an informat.

proc format;

 invalue smoke_stat

 'Non-smoker' = 5

 'Light (1-5)' = 4

 'Moderate (6-15)' = 3

 'Heavy (16-25)' = 2

 'Very Heavy (> 25)' = 1;

run;

data heart;

 set sashelp.heart;

 smoke_stat_order = input(smoking_status,smoke_stat.);

run;

Then, another format is used to put the original labels back on.

proc format;

 value smoke_stat_num

 5 = 'Non-smoker'

 4 = 'Light (1-5)'

 3 = 'Moderate (6-15)'

 2 = 'Heavy (16-25)'

 1 = 'Very Heavy (> 25)';

run;

proc sgpanel data=heart noautolegend;

 format smoke_stat_order smoke_stat_num.;

 panelby deathcause smoke_stat_order / layout=lattice novarname onepanel;

 loess x=diastolic y=systolic / nomarkers;

run;

The resulting graph is shown in Figure 12. Note that the headers on the right side are now in increasing order from
bottom to top, which is consistent with how we typically think of graphs. Using this method the order could be
presented any way you’d like.

14

Figure 12 Ordering of Smoking Status

The other reason we may want to order qualitative variables is to display them according to some quantitative
characteristic. Cleveland’s animal example orders the countries and animal categories by the median value of some
variable. Here is the code to create the plot without the ordering.

proc sgpanel data=livestock;

 panelby livestock_type / novarname ;

 dot country / response=count;

 colaxis type=log logbase=10 logstyle=logexponent alternate;

 rowaxis alternate fitpolicy=thin;

run;

We’ve also used the COLAXIS and ROWAXIS statements. For the counts (which, on the dotplot, is modified with
COLAXIS even though it shows up horizontal axis) we used a log10 axis showing only the exponent

15

Figure 13 Livestock plot with no ordering

It’s hard to tell if anything is going on, isn’t it?

Now let’s redo the plot with the ordering. We’ll order the countries according to their median count of livestock across
types of livestock.

proc means data=livestock median;

 class country;

 var count;

 output out=cty_med(where=(_type_=1)) median=cmed;

run;

/*

 Sort the medians and convert them to a format.

*/

proc sort data=cty_med(drop=_type_ _freq_);

 by cmed;

run;

data cty2num;

 set cty_med;

 fmtname = "cty2num";

 type = "I";

 label = _N_;

 rename country = start;

run;

proc format cntlin=cty2num;

run;

quit;

/*

 Create a format to label the numbers.

*/

16

data cty_fmt;

 set cty_med;

 by cmed;

 start = _N_;

 rename country=label;

 fmtname = "Country";

 type = "n";

run;

proc format cntlin=cty_fmt;

run;

We will repeat the process for livestock type, so that the livestock type will be sorted by their median count of
livestock across countries, instead of alphabetical.

/*

 Use the format to convert the text to a number.

*/

data livestock2;

 set livestock;

 countryn = input(country,cty2num.);

 lstockn = input(livestock_type,lst2num.);

run;

The country with the smallest median overall count of livestock will be at the top and largest at the bottom. The
livestock type with the smallest median overall count across countries will be in the upper left and the largest in the
lower right. From the graph, we see that countries have the fewest horses overall and the most poultry. I hope you
can see the graph. In order to show all of the countries, the height of the image had to be set to 14 inches.
Unfortunately, that makes the font pretty small.

*ods graphics on / reset=all height=14in;

17

Figure 14 Livestock Plot with Ordering

A better comparison can be made with the second plot. We can see that there is a pretty good relationship between
median overall counts and most of the types of livestock. Sheep however, does not have as nice a pattern as the
others. We can also better see the data points with odd behavior, such as the sheep in West Germany, or horses in
Greece.

CONCLUSION

The SGPANEL procedure is a very powerful part of the Statistical Graphics family. It allows the intuitive display of
complex, high-dimensional information. Knowing how to use the many options will help you customize your graphs to
best present your data. I hope this paper will help you in doing so.

REFERENCES

 Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, 1983.

 William S. Cleveland. Visualizing Data. Hobart Press. 1993.

 Lora D. Delwiche, Slaughter, Susan J. Using PROC SGPLOT for Quick High Quality Graphs. WUSS 2008.
http://www.wuss.org/proceedings08/08WUSS%20Proceedings/papers/how/how05.pdf

 Andrew Gelman. Who wants school vouchers? June 8, 2009
http://www.stat.columbia.edu/~cook/movabletype/archives/2009/06/estimated_suppo.html

ACKNOWLEDGMENTS

Thank you to the SAS ODS Development team for their ideas in the conception of this paper and for answering
questions along the way. Thank you, also, to Jack Fuller for his careful review and suggestions.

18

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Chuck Kincaid
COMSYS Business Analytics Practice
5220 Lovers Lane
Portage, MI 49002
269-553-5140
ckincaid@comsys.com
www.comsys.com/analytics

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

