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ABSTRACT 
In the financial service industry, discriminant analysis and its variants based upon binary outcome, such as logistic 
regression or neural networks, are largely used to develop predictive models. However, the two-state assumption of 
such models over-simplifies customers’ behavioral outcomes and ignores the existence of multi-level risk. In many 
situations, the financial impact of a certain customer is directly related to the frequency and the severity of his/her 
adverse behaviors. Therefore, it is of interest to model and predict such multi-level risks. Several modeling 
techniques, from Poisson to Ordered Logit models, have been widely discussed in numerous research literatures 
about how to predict the multi-level risks. Our paper is also an attempt contributed to this end. Several modeling 
strategies together with their SAS implementations and related scoring scheme will be illustrated. Our purpose is to 
demonstrate an application of these complex statistical models with the business touch and how to implement them in 
a production environment. 

METHODOLOGY 
In retail banking and credit card industries, it is a key interest to predict the probability of customer’s adverse 
behaviors, such as delinquencies or defaults. A widely accepted practice in the industry is to classify customers into 2 
groups, the good and the bad, based upon the presence of certain adverse behaviors and then to model this binary 
outcome with discriminant models. For instance, a customer will be classified as the bad if he/she misses payments 
during a valuation horizon of one year. In SAS community, most efforts contributed to the improvement of these 
prediction models so far have been focusing on discovering the relationship between the outcome and predictors 
through either parametric or nonparametric statistical methods. Li (2006) compared discriminant analysis and logistic 
regression in the credit risk modeling. Liu and Cela (2007) demonstrated how to use Generalized Additive Models to 
capture the nonlinear relationship in a credit scoring model. However, an obvious limitation of discriminant models 
based upon the binary outcome is that the two-state classification over-simplifies adverse behaviors of customers. To 
the best of our knowledge, what financially impact a financial institute are not only the presence of a certain adverse 
behavior but also the frequency and the severity of such behavior. As a result, it is advantageous to differentiate 
different levels of the risk and evaluate the probability of each risk level.  
 
In the definition of binary outcome, it is important to notice that customers are classified mainly based upon the 
adverse behaviors such as delinquencies and defaults, which can also be measured directly as frequencies or counts. 
Therefore, instead of modeling the binary outcome, we propose that a more sensible alternative is to model the 
frequency of adverse behaviors by a customer within a given valuation horizon. In the statistical content, a genuine 
model for count outcome is Poisson regression model with probability function 
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It is assumed that each observed count Yi is drawn from a Poisson distribution with the conditional mean λi on a given 
covariate vector Xi for case i. In Poisson model, a strong assumption is that the mean is equal to the variance such 
that E(Yi|Xi) = Var(Yi|Xi) = λi, which is also known as Equi-Disperson. However, in practice, this Equi-Dispersion 
assumption is too restrictive for many empirical applications. In the real-world count data, the variance often exceeds 
the mean, namely Over-Dispersion, due to various reasons such as excess zeroes or long right tail. For instance, in a 
credit card portfolio, majority of cardholders should have zero delinquency at any point in time, while a few might have 
more than 10. With the similar consequence of heteroskedasticity in a linear regression, Over-Dispersion in a Poisson 
model will lead to deflated standard errors of parameter estimates and therefore inflated t-statistics. Therefore, 
Poisson model is often inadequate and practically unusable.  
 
Considered a generalization of basic Poisson model, Negative Binomial model accommodates Over-Dispersion in 
data by including a dispersion parameter. In a Negative Binomial model, it is assumed that the conditional mean λi of 
Yi for case i is determined not only by the observed heterogeneity explained by the covariate vector Xi but also by the 
unobserved heterogeneity denoted as εi that is independent of Xi such that 
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While there are many variants of Negative Binomial model, the most common one is Negbin 2 model proposed by 
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Cameron and Trivedi (1966) with probability function 

          ( ) ( )
( ) ( ) parameter dispersion is   where,

1Y

Y
X|Yf

i
1

i

i
1

1

1
i

1
i

ii

1

α
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

λ+α

λ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

λ+α

α

αΓ⋅+Γ

α+Γ
=

−

α

−

−

−

−
−

          (1.3)   

For Negbin 2 model, its conditional mean E(Yi|Xi) is still λi, while its variance Var(Yi|Xi) becomes λi + α λi
2. Since both 

λi > 0 and α > 0, the variance must exceed the mean and therefore the issue of Over-Dispersion has been fixed.  
  
One major limitation of standard count data models, such as Poisson and Negative Binomial model, is that all data 
are assumed to be generated by a single process. However, in many cases, it is more appropriate to assume that 
data might be governed by two or more processes. For instance, it is believed that the risk driver of the 1st time 
defaulter might be very different from the one of a person who had defaulted for multiple times. Therefore, we can 
assume that all data might be generated by multiple processes and the empirical distribution of data can be 
considered a mixture of multiple components. From the business standpoint, the assumption of multiple components 
is particularly attractive in that it provides the potential to segment the whole portfolio into two or more sub-groups 
based upon their adverse behaviors and personal characteristics. In the rest of this section, we would discuss 3 
models under the assumption of multiple components, namely Hurdle Poisson (Mullahy 1986), Zero-Inflated Poisson 
(Lambert 1992), and Latent Class Poisson models (Wedel 1993).  
 
Also known as the two-part model, Hurdle Poisson model assumes that count data come from two systematically 
different statistical processes, a Binomial distribution determining the probability of zero counts and a Truncated-at-
Zero Poisson governing positive outcomes. The probability function can be expressed as 
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In the modeling framework, the first process of Hurdle model can be analyzed by a Logit model and the second 
process can be reflected by a Truncated-at-zero Poisson model. It is interesting to notice that the traditional two-state 
Logit model is actually the sub-model for the 1st process in a Hurdle model. The advantage of Hurdle Poisson Model 
is that it is so flexible as to efficiently model both Over-Dispersed data with too many zeroes and Under-Dispersed 
data with too few zeroes. Another major motivation of Hurdle Poisson model is that a customer tends to behave 
differently after committing an adverse behavior for the first time, which is in line with our observation on human 
behaviors.  
 
Alike to Hurdle Poisson model, Zero-Inflated Poisson model is another way to model count data with excess zeroes 
under the assumption of 2 components. However, it is slightly different from Hurdle Poisson model in the sense that it 
assumes zero counts coming from two different sources, one generating only zero counts and the other generating 
both zero and nonzero counts. Specifically, a Binomial distribution decides if an individual outcome is from the 
Always-Zero or the Not-Always-Zero group and then a standard Poisson distribution describes counts in the Not-
always-zero group. The probability function of Zero-Inflated Poisson model is given as 
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With the similar idea to Hurdle Poisson model, Zero-Inflated Poisson model can be represented jointly by two different 
sub-models as well. A Logit model is used to separate the Always-Zero group from the Not-Always-Zero group and a 
basic Poisson model is applied to individuals in the Not-always-zero group. From a business prospective, Zero-
Inflated Poisson Model describes an important fact that some not-at-risk customers are well established such that 
they will never financial problems, while the other at-risk ones might have chances to get into troubles during the 
tough time. Therefore, risk exposures and underlying matrices for customers with same outcomes at zero count might 
still be differentiable.  
 
In practice, a sharp dichotomization between at-risk group and not-at-risk group might not be realistic.  Even a 
customer with the good financial condition might be exposed to risks in a certain situation. Therefore, it might make 
sense to split the whole portfolio into a couple segments with different levels of risk-exposure. A Latent Class Poisson 
model provides such flexibility by assuming that the population of interest is actually a mixture of S ≥ 2 latent 
(unobservable) components and each individual is considered a draw from one of the these latent groups.  The 
probability function of a Latent Class Poisson model with S classes can be obtained as 
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Each latent component in the mixture is assumed to have a different parameter λ, which will account for the 
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unobserved heterogeneity in the population. For instance, in the case of S = 2, we can assume that the whole 
portfolio is actually a mixture between a high risk group and a low risk one. In a Latent Class Poisson model, impacts 
of predictors are allowed to differ across different latent groups, providing a possibility of more informative and flexible 
interpretations. For instance, it has long been observed that customers with different risks would have different 
sensitivities to changes in income and spending.  
 
Besides models we discussed above, it is also worth to point out that the discrete choice model, such as Logit or 
Probit, has also been widely used to model count data as well. However, such discrete choice model needs to be 
based upon sequential or ordered instead of multinomial response, namely ordered Logit, which will take the form of 
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APPLICATION 
 
To demonstrate models discussed in the previous section, we used a credit card dataset analyzed in Econometric 
Analysis (Greene 1992) with the approval by Professor William Greene. This dataset is original obtained from an 
anonymous credit card vendor and includes 1319 accounts. The outcome variable of our primary interest in this 
application is the number of major derogatory reports of an individual account. A major derogatory report is defined as 
a 60-day delinquency in payment to the credit card account. In the model development sample, there are 11 
explanatory variables. A summary of both outcome and explanatory variables is given below. 
 
Table 3.1, Variable Summary 
 

Variable Desc. Mean Std.Dev. Min Max.
MAJORDRG  Major Derogatory Reports 0.46 1.35 0.00 14.00
ACTIVE  Number of active credit card accounts 7.00 6.31 0.00 46.00
AGE  Age in years as of November, 1989 33.21 10.14 0.17 83.50
AVGEXP  Average monthly credit card expense 185.06 272.22 0.00 3100.00
CUR_ADD  Number of months living at current address 55.27 66.27 0.00 540.00
DEPNDT  Number of dependents 0.99 1.25 0.00 6.00
EXP_INC  Average monthly credit card expense/Average monthly income 0.07 0.09 0.00 0.91
INC_PER  Monthly income divided by 1 + DEPNDT 2.16 1.36 0.07 11.00
INCOME  Self reported income, in $10,000s 3.37 1.69 0.21 13.50
MAJOR  Binary indicator of whether applicant has a major credit card 0.82 0.39 0.00 1.00
OWNRENT  Binary indicator of whether applicant owns their home 0.44 0.50 0.00 1.00
SELFEMPL  Binary indicator of whether the applicant is self-employed 0.07 0.25 0.00 1.00  
 
It is clear that the variance of our dependent variable, MAJORDRG, is about four times as much as the mean, a 
strong indication of Over-Dispersion. In this situation, it is always helpful to do a more careful explanatory data 
analysis (EDA) on the dependent variable.  
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Figure 3.1, Distribution of Derogatory Reports for the Portfolio 
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In Figure 3.1, the distribution of MAJORDRG shows that more than 80% cardholders in the portfolio have zero 
derogatory report, while the worst accounts could have more than 10. In this case, it is evident to us that the basic 
Poisson Model is not able to provide a sufficient fit for the data and therefore is not worth our time for further 
discussion in this paper. For more details of statistical tests for Over-Dispersion in a Poisson model and related 
implementations in SAS, please refer to Liu and Cela (2008) 
 
As introduced in the previous section, Negative Binomial Model is a major alternative to accommodate Over-
Dispersion in count outcomes. Based upon its probability function, it is easy to derived the log likelihood function as 
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In SAS/STAT, NLMIXED procedure provides a flexible way to develop a model using its log likelihood function 
directly.  
 
Demo 3.1, Modeling and Scoring Code of Negative Binomial Model 
 
/* STEP 1: MODEL DEVELOPMENT */ 
proc nlmixed data = credit; 
  parms B_Intercept = -.8908 B_Age     = -.0002 B_Income   = -.1269 B_Exp_inc = -16.9391 
        B_Avgexp    = 0.0012 B_Ownrent = -.7568 B_Selfempl = -.0857 B_Depndt  = 0.2089  
        B_Inc_per   = 0.1565 B_Cur_add = 0.0025 B_Major    = -.0021 B_Active  = 0.0776; 
  mu = exp(B_Intercept + B_Age * Age + B_Income * Income + B_Exp_inc * Exp_inc +  
           B_Avgexp * Avgexp + B_Ownrent * Ownrent + B_Selfempl * Selfempl +  
           B_Depndt * Depndt + B_Inc_per * Inc_per + B_Cur_add * Cur_add +  
           B_Major * Major + B_Active * Active); 
  ll = lgamma(MajorDrg + 1 / alpha) - lgamma(MajorDrg + 1) - lgamma(1 / alpha) +  
       MajorDrg * log(alpha * mu) - (MajorDrg + 1 / alpha) * log(1 + alpha * mu); 
  model MajorDrg ~ general(ll); 
  predict mu out = nb_out1 (rename = (pred = Yhat)); 
run; 
 
/* STEP 2: CALCULATE PROBABILITY AT EACH LEVEL OF COUNT OUTCOMES */ 
data nb_out2; 
  set nb_out1; 
  do count = 0 to 14; 
    prob = pdf('negbinomial', count , (1 / 3.5161) / (Yhat + (1 / 3.5161)), (1 / 3.5161)); 
    output; 
  end; 
run; 
 
/* STEP 3: PREDICT PORTFOLIO FIT */ 
proc summary data = nb_out2 nway; 
  class count; 
  output out = nb_sum(drop = _freq_ _type_) mean(prob) =; 
run; 
 
/* STEP 4: PREDICT INDIVIDUAL SCORES */ 
proc sort data = nb_out2 sortsize = max; by id MajorDrg; run; 
 
proc transpose data = nb_out2 out = nb_out3(drop = _name_) prefix = prob_; 
  by id MajorDrg; 
  id count; var prob; 
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run; 
 
data nb_out4; 
  set nb_out3; 
  prob_1plus = 1 – prob_0;                      /* score for majordrg >= 1 */ 
  prob_2plus = 1 – sum(prob_0, prob_1);         /* score for majordrg >= 2 */ 
  prob_3plus = 1 – sum(prob_0, prob_1, prob_2); /* score for majordrg >= 3 */ 
run; 

 
After the model development, the goodness-of-fit of a count data model should be assessed at both the portfolio level 
and the account level. At the portfolio level, we need to exam if the predicted count outcomes are consistent with the 
observed ones, as shown in Figure 3.2 below. It is clear that Negative Binomial model is able to provide a sufficient fit 
for data at the overall portfolio level.  
 
Figure 3.2, Prediction of Negative Binomial Model at Portfolio Level 
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Similar to Logistic regression, Negative Binomial model is also able to provide the probability-based score(s) at the 
individual account level. However, the scoring scheme of a count model, such as Poisson or its variants, is different 
from the one of a Logistic regression. Instead of creating only a single score, a count model is can generate a set of 
multiple scores for different levels of risks.  
 
Figure 3.3, Scoring Scheme of a Model for Count Data 

Count Model Scoring Scheme 

Model Development 

Prob(Y=0), Prob(Y=1), Prob(Y=2) 
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Logit Model Scoring Scheme

Define Good / Bad 
Ex: Bad = 1 when Y >= 2 

Model Development 

Prob(Good) = Prob(Y=0 or 1) 
Prob(Bad)   = 1 – Prob(Y=0 or 1) 

Prob(Good) and Prob(Bad) 

 
Based upon the scoring scheme in shown Figure 3.3, we can calculate a set of multiple probability-based scores, as 
shown at STEP 4 in DEMO 3.1. The predictiveness of these scores can also be visualized by a standard Gain chart 
or Lift chart.  
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Figure 3.4, Gain Chart of Negative Binomial Model 
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In the above Gain chart, we use the score from a Logistic regression predicting the presence of delinquency 
(Presence = 1 for MajorDrg > 0) as the baseline line and compare it with a set of 3 scores from Negative Binomial 
model. It is suggested that Negative Binomial model performs comparably well relative to Logistic regression when 
predicting the presence of delinquency. What’s more, Negative Binomial model is able to provide more information to 
conduct the so-called Cherry-Picking for accounts with higher risks, such as cardholders with 3 or more 
delinquencies.  
 
In contrast to Negative Binomial model handling Over-Dispersion in general, a Hurdle model specifically addresses 
the issue of excess zero with its two-part nature and is able to do a better separation between zero and nonzero 
outcomes. The log likelihood function of a Hurdle model can be expressed the sum of log likelihood functions of two 
sub-models as below 
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Demo 3.2, Modeling and Scoring Code of Hurdle Model 
 
/* STEP 1: MODEL DEVELOPMENT */ 
proc nlmixed data = dcredit tech = dbldog; 
  parms B1_Intercept = 1.9160 B1_Age     = -.0040 B1_Income   = 0.0053 B1_Exp_inc = 6.7049  
        B1_Avgexp    = -.0004 B1_Ownrent = 0.7138 B1_Selfempl = -.0648 B1_Depndt  = -.0668  
        B1_Inc_per   = -.0439 B1_Cur_add = -.0035 B1_Major    = 0.1762 B1_Active  = -.0953 
        B2_Intercept = 0.6699 B2_Age     = -.0027 B2_Income   = -.1008 B2_Exp_inc = -2.5153 
        B2_Avgexp    = -.0006 B2_Ownrent = -.3035 B2_Selfempl = -.0212 B2_Depndt  = 0.1744 
        B2_Inc_per   = 0.1456 B2_Cur_add = 0      B2_Major    = 0.1283 B2_Active  = 0.0270; 
  eta1 = B1_Intercept + B1_Age * Age + B1_Income * Income + B1_Exp_inc * Exp_inc +  
         B1_Avgexp * Avgexp + B1_Ownrent * Ownrent + B1_Selfempl * Selfempl +  
         B1_Depndt * Depndt + B1_Inc_per * Inc_per + B1_Cur_add * Cur_add +  
         B1_Major * Major + B1_Active * Active; 
  exp_eta1 = exp(eta1); 
  p0 = exp_eta1 / (1 + exp_eta1); 
  eta2 = B2_Intercept + B2_Age * Age + B2_Income * Income + B2_Exp_inc * Exp_inc +  
         B2_Avgexp * Avgexp + B2_Ownrent * Ownrent + B2_Selfempl * Selfempl +  
         B2_Depndt * Depndt + B2_Inc_per * Inc_per + B2_Cur_add * Cur_add +  
         B2_Major * Major + B2_Active * Active; 
  exp_eta2 = exp(eta2); 
  if MajorDrg = 0 then LL = log(p0); 
  else LL = log(1 - p0) - exp_eta2 + MajorDrg * eta2 - lgamma(MajorDrg + 1) 
            - log(1 - exp(- exp_eta2)); 
  model Major ~ general(LL); 
  predict exp_eta2 out = hdl1 (keep = id pred MajorDrg rename = (pred = Yhat)); 
  predict p0 out = hdl2 (keep = id pred rename = (pred = p_0)); 
run; 
 
/* STEP 2: CALCULATE PROBABILITY AT EACH LEVEL OF COUNT OUTCOMES */ 
proc sort data = hdl1; by id; run; 
 
proc sort data = hdl2; by id; run; 

6 



 
data hdl_out; 
  merge hdl1 hdl2; by id; 
  do count = 0 to 14; 
    if count = 0 then prob = p_0; 
    else prob = (1 - p_0) * pdf('poisson', count, Yhat) / (1 - pdf('poisson', count, Yhat)); 
    output; 
  end; 
run; 
 
/* ... ... The rest is the same is in DEMO 3.1 */ 

 
Again, in order to evaluate the goodness-of-fit of a Hurdle model, we show a graph comparing the observed outcome 
with the predicted at the portfolio level in Figure 3.5. A probability plot for the component of Zero-Truncated Poisson is 
also included, of which the probability of zero counts is equal to zero by definition. However, since accounts with 
positive outcomes only count for 20% of the whole portfolio, the actual probability   
 
Figure 3.5, Prediction of Hurdle Model at Portfolio Level 
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One of the most important and attractive advantages of a composite model is that it provides the possibility to 
segment customers based upon their behavioral outcomes and personal characteristics. In our case, Hurdle model 
divides the whole portfolio into two parts, 80% accounts predicted to have no delinquency and 20% at least one, 
which is shown in Figure 3.6. A practical consideration of such segmentation is that since the underlying motivation 
and risk driver of each segment could vary from each other, different sets of risk matrices might be necessary in order 
to explain different types of customers.  
 
Figure 3.6, Portfolio Segmentation of Hurdle Model 

0%

20%

40%

60%

80%

0 1 2 3 4 5 6 7 8 9 10+

No Delinquency segment (80%) Delinquency segment (20%)  
With the similar idea shown in Figure 3.3 and 3.4, we can also plot the Gain chart of a Hurdle Model in Figure 3.7. As 
expected, Hurdle model and Logistic regression perform identically when predicting the presence of delinquency. 
However, it is worth noting that Hurdle model does a much better job in “cherry-picking” for high-risk accounts than 
Negative Binomial model.  
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Figure 3.7, Gain Chart of Hurdle Model 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Cumulative % of Population

Cu
m

ul
at

ive
 %

 o
f B

ad
s

HDL Score for 1+ Delinquencies HDL Score for 2+ Delinquencies
HDL Score for 3+ Delinquencies Logistic Reg Score  

 
Slightly different from Hurdle model, Zero-Inflated Poisson model assumes two sources of zeroes instead of one. Its 
log likelihood function and related SAS code are given below. 
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Demo 3.3, Modeling and Scoring Code of Zero-Inflated Poisson Model 
 
/* STEP 1: MODEL DEVELOPMENT */ 
proc nlmixed data = dcredit tech = dbldog; 
  parms B1_Intercept = 1.9160 B1_Age     = -.0040 B1_Income   = 0.0053 B1_Exp_inc = 6.7049 
        B1_Avgexp    = -.0004 B1_Ownrent = 0.7138 B1_Selfempl = -.0648 B1_Depndt  = -.0668 
        B1_Inc_per   = -.0439 B1_Cur_add = -.0035 B1_Major    = 0.1762 B1_Active  = -.0953 
        B2_Intercept = 0.6699 B2_Age     = -.0027 B2_Income   = -.1008 B2_Exp_inc = -2.5157 
        B2_Avgexp    = -.0006 B2_Ownrent = -.3035 B2_Selfempl = -.0212 B2_Depndt  = 0.1744 
        B2_Inc_per   = 0.1456 B2_Cur_add = 0      B2_Major    = 0.1283 B2_Active  = 0.0270; 
  eta1 = B1_Intercept + B1_Age * Age + B1_Income * Income + B1_Exp_inc * Exp_inc +  
         B1_Avgexp * Avgexp + B1_Ownrent * Ownrent + B1_Selfempl * Selfempl +  
         B1_Depndt * Depndt + B1_Inc_per * Inc_per + B1_Cur_add * Cur_add +  
         B1_Major * Major + B1_Active * Active; 
  exp_eta1 = exp(eta1); 
  p0 = exp_eta1 / (1 + exp_eta1); 
  eta2 = B2_Intercept + B2_Age * Age + B2_Income * Income + B2_Exp_inc * Exp_inc +  
         B2_Avgexp * Avgexp + B2_Ownrent * Ownrent + B2_Selfempl * Selfempl +  
         B2_Depndt * Depndt + B2_Inc_per * Inc_per + B2_Cur_add * Cur_add +  
         B2_Major * Major + B2_Active * Active; 
  exp_eta2 = exp(eta2); 
  if MajorDrg = 0 then LL = log(p0 + (1 - p0) * exp(-exp_eta2)); 
  else LL = log(1 - p0) + MajorDrg * eta2 - exp_eta2 - lgamma(MajorDrg + 1); 
  model MajorDrg ~ general(LL); 
  predict exp_eta2 out = zip1 (keep = id pred MajorDrg rename = (pred = Yhat)); 
  predict p0 out = zip2 (keep = id pred rename = (pred = p_0)); 
run; 
 
/* STEP 2: CALCULATE PROBABILITY AT EACH LEVEL OF COUNT OUTCOMES */ 
proc sort data = zip1; by id; run; 
 
proc sort data = zip2; by id; run; 
 
data zip_out; 
  merge zip1 zip2; by id; 
  do count = 0 to 14; 
    if count = 0 then prob = p_0 + (1 - p_0) * pdf('poisson', 0, Yhat); 

else prob = (1 - p_0) * pdf('poisson', count, Yhat); 
output; 

  end; 
run; 
 
/* ... ... The rest is the same is in DEMO 3.1 */ 
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The goodness-of-fit of Zero-Inflated Poisson at the portfolio level is visualized in Figure 3.8 by comparing probabilities 
of observed outcomes and predicted outcomes. In addition, the probability plot for the component of standard Poisson 
is also provided, showing a non-zero probability of zero outcomes, which is contrary to zero probability of zero counts 
in Figure 3.5.  
 
Figure 3.8, Prediction of Zero-Inflated Poisson Model at Portfolio Level 
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Zero-Inflated Poisson model also divides the whole portfolio into two segments in a similar way to Hurdle model but 
with a slight difference, 72% accounts predicted to have no risk exposure at all and 28% exposed to a certain degree 
of risks. In Figure 3.9, it is clear that out of 80% customers without the delinquency, 72% are fallen into the no-risk 
segment and 8% into the at-risk segment. A business implication is that even for customers with the same outcome of 
zero counts, we might still be able to conduct a further differentiation for different segments.  
 
Figure 3.9, Portfolio Segmentation of Zero-Inflated Poisson Model 
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The gain chart of Zero-Inflated Poisson model is presented in Figure 3.10 below to show the “Cherry-Picking” 
performance at the individual account level. Similar to two previous models, Zero-Inflated Poisson model is able to 
deliver similar results as Logistic regression does when predicting the presence of delinquency. At higher risk levels, 
Zero-Inflated Poisson model performs as well as Negative Binomial model but less satisfactorily than Hurdle model. 
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Figure 3.10, Gain Chart of Zero-Inflated Poisson Model 
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Considered a more general case of Zero-Inflated Poisson model, Latent Class Poisson model assumes that all count 
outcomes instead of just zeroes are drawn from S ≥ 2 latent classes. Therefore, the whole population can be thought 
of a mixture of S Poisson components with different parameters. The log likelihood function of Latent Class Poisson 
model can be obtained by 

                    (2.4) ( ) ( ) ( )[ ]∑∑
= =

−λ+λ−=
n

1i

S

1s
is|iis|is !YLogLogYpLogLL

While number of latent classes usually can be determined by statistics such as AIC or BIC, S = 2 is strongly 
supported with the lowest AIC and BIC in our example. A Latent Class Poisson model with S = 2 can be estimated 
with NLMIXED procedure, as shown in DEMO 3.4 below. 
 
Demo 3.4, Modeling and Scoring Code of Latent Class Poisson Model 
 
/* STEP 1: MODEL DEVELOPMENT */ 
proc nlmixed data = credit tech = dbldog; 
  parms B1_Intercept = -1.2152 B1_Age     = -.0080 B1_Income   = -.2088 B1_Exp_inc = -20.4684 
        B1_Avgexp    = 0.0003  B1_Ownrent = -.9261 B1_Selfempl = -.3326 B1_Depndt  = 0.1064 
        B1_Inc_per   = 0.0539  B1_Cur_add = 0.0015 B1_Major    = -.1755 B1_Active  = 0.0699 
        B2_Intercept = -.5664  B2_Age     = 0.0075 B2_Income   = -.0451 B2_Exp_inc = -13.4099 
        B2_Avgexp    = 0.0022  B2_Ownrent = -.5874 B2_Selfempl = 0.1611 B2_Depndt  = 0.3115  
        B2_Inc_per   = 0.2590  B2_Cur_add = 0.0035 B2_Major    = 0.1712 B2_Active  = 0.0853 
        prior1 = 0 to 1 by 0.1; 
  eta1 = B1_Intercept + B1_Age * Age + B1_Income * Income + B1_Exp_inc * Exp_inc +  
         B1_Avgexp * Avgexp + B1_Ownrent * Ownrent + B1_Selfempl * Selfempl +  
         B1_Depndt * Depndt + B1_Inc_per * Inc_per + B1_Cur_add * Cur_add +  
         B1_Major * Major + B1_Active * Active; 
  exp_eta1 = exp(eta1); 
  p1 = exp(- exp_eta1) * exp_eta1 ** MajorDrg / fact(MajorDrg); 
  eta2 = B2_Intercept + B2_Age * Age + B2_Income * Income + B2_Exp_inc * Exp_inc +  
         B2_Avgexp * Avgexp + B2_Ownrent * Ownrent + B2_Selfempl * Selfempl +  
         B2_Depndt * Depndt + B2_Inc_per * Inc_per + B2_Cur_add * Cur_add +  
         B2_Major * Major + B2_Active * Active; 
  exp_eta2 = exp(eta2); 
  p2 = exp(- exp_eta2) * exp_eta2 ** MajorDrg / fact(MajorDrg); 
  p = prior1 * p1 + (1 - prior1) * p2; 
  LL = log(p); 
  model MajorDrg ~ general(LL); 
  predict exp_eta1 out = LC1 (keep = id pred MajorDrg rename = (pred = Yhat1)); 
  predict exp_eta2 out = LC2 (keep = id pred rename = (pred = Yhat2)); 
run; 
 
/* STEP 2: CALCULATE PROBABILITY AT EACH LEVEL OF COUNT OUTCOMES */ 
proc sort data = LC1; by id; run; 
 
proc sort data = LC2; by id; run; 
 
data LC_out; 
  merge LC1 LC2; by id; 
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  prior1 = 0.8698; 
  do count = 0 to 14; 
    prob_LC1 = pdf('poisson', count, Yhat1); 
    prob_LC2 = pdf('poisson', count, Yhat2); 
    prob = prob_LC1 * prior1 + prob_LC2 * (1 - prior1); 

output; 
  end; 
run; 
 
/* ... ... The rest is the same is in DEMO 3.1 */ 

 
Figure 3.11 presents the goodness-of-fit of Latent Class Poisson model at the portfolio level. While the solid line is the 
probability plot of the mixture distribution, dotted ones are probability plots of two Poisson components, the segment 
with low mean and low variance and the other with high mean and high variance.  
 
Figure 3.11, Prediction of Latent Class Poisson Model at Portfolio Level 
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In Figure 3.12, we show how each identified latent component is presented in different level of count outcomes. It is 
interesting that the component in blue is overwhelming in low counts and the one in red has a higher density on the 
right tail. In our further analysis, we also notice that 91% of customers with 2 or less delinquencies are fallen into the 
segment with low mean and low variance and 91% of customers with 3 or more delinquencies into the segment with 
high mean and high variance. As a result, we can profile one as low-risk group and the other as high-risk group.  
 
Figure 3.12, Portfolio Segmentation of Latent Class Poisson Model 
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The model predictiveness at account level is shown in Figure 3.13. Unlike 3 models discussed previously, our Latent 
Class Poisson model demonstrates a superior performance than the baseline Logistic regression in the first three 
deciles, a critical region for predictive models, when predicting the presence of delinquency.  
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Figure 3.13, Gain Chart of Latent Class Poisson Model 
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CONCLUSION 
 
In this paper, we have reviewed several modeling strategies for count data and their implementations in SAS. Basic 
Poisson models with and without the consideration of observed heterogeneity is a good starting point for count data 
modeling. For count data with the evidence of over-dispersion, Negative Binomial regression with a more liberal 
assumption on variance is able to provide a better solution. If the over-dispersion results from a high frequency of 
zero counts, advanced composite models such as Hurdle regression, ZIP regression and Latent Class regression 
might give more satisfactory fit to the data. An example in credit risk assessment has been used in our paper to 
demonstrate the usage of various models for count data and related statistical tests. However, successfully 
applications can also be extended to other business problems, such as database marketing, healthcare utilization, 
and quality control. 
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