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ABSTRACT     
Data come in different file formats and before we can summarize and explore patterns in the data and draw any 
inferences, it is essential to 1) import data from an outside source and assign variable names; 2) merge several 
sections into a single data set; and 3) clean variables and create new variables. After these initial steps, we can 
proceed with 4) exploratory analyses and model building.  

This paper is geared toward graduate students and novice coders. The goal of this paper is to discuss effective 
methods to creating a data set ready to be used for exploratory analyses and model building. The techniques include 
1) %MACRO IMPORT to import the data into SAS® and an example for standardizing variable names in each section 
and among sections; 2) %MACRO SORT to simplify sorting for multiple sections, ARRAY to simplify coding, and SET 
and MERGE statements to combine data sets; 3) a macro to check for duplicate IDs, a code to check for missing 
sections and values in a data set, a macro to recode race variable, and a code for creating a BMI variable. Tools to 
perform an initial exploratory analysis and a logistic regression will be briefly discussed at the end of this paper. We 
import the data from multiple sections of a risk factor questionnaire as well as coded responses to a comprehensive 
dietary food frequency questionnaire from a colon cancer case-control study into SAS and create a single ready-to-
use data set. Examples evaluate the association of dietary glycemic load with colon cancer risk. 

INTRODUCTION  
With the computer age it has become easier for epidemiologists, biostatisticians, physicians and other health-related 
professionals to collect information. Data collection methods include conducting of interviews or telephone surveys, 
mailing questionnaire surveys, and collection of biological samples. A vast amount of data is also available from 
hospital records, police records, death certificates and census records. In addition to being obtained from multiple 
sources, data come in different file formats and before we can summarize and explore patterns in the data and draw 
any inferences, it is essential to 1) import data from an outside source and assign variable names; 2) merge several 
sections into a single data set; and 3) clean variables and create new variables. After these initial steps, we can 
proceed with 4) exploratory analyses and model building.   

This paper is geared toward graduate students and novice coders. The goal of this paper is to discuss effective 
methods to creating a data set ready to be used for exploratory analyses and model building. The techniques include 
1) %MACRO IMPORT to import the data into SAS and an example for standardizing variable names in each section 
and among sections; 2) %MACRO SORT to simplify sorting for multiple sections, ARRAY to simplify coding, and SET 
and MERGE statements to combine data sets; 3) a macro to check for duplicate IDs, a code to check for missing 
sections and values in a data set, a macro to recode race variable, and a code for creating a BMI variable. Tools to 
perform an initial exploratory analysis and a logistic regression will be briefly discussed at the end of this paper.   

In this paper we import the data from multiple sections of a risk factor questionnaire as well as the data from a 
comprehensive dietary food frequency questionnaire into SAS and create a single ready-to-use data set. This data 
has been gathered over the past several years through a case-control study in the state of Kentucky in efforts to 
investigate the role of environmental and genetic risk factors on the development of colon cancer. As part of the study 
each participant (a “control” – a person who was never diagnosed with cancer or a “case” – a person who was 
diagnosed with colon cancer) mails in a filled-out risk factor questionnaire which is then entered into database 
software called FileMaker Pro 6.0. FileMaker Pro database is comprised of two categories (Cases and Controls), and 
each category has 11 sections or 11 data sets: 1) personal medical history, medications, and screening, 2) 
reproductive history (women only), 3) family history, 4) diet, 5) physical activity, 6) alcohol consumption, 7) smoking, 
8) height and weight, 9) demographics and background information, 10) contact information, and 11) hip and waist 
measurements. Because control’s section 1) is broken into 2 parts, we ended up importing a total of 23 separate data 
sets. Additionally, we imported a 24th data set comprised of the dietary responses. This 24th data set was downloaded 
from a server at Arizona University. Our example will mainly illustrate the code for the control category, and wherever 
the code encompasses data from both categories, it will be noted with an asterisk (*).  
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OUTLINE 
A. Import data sections with %MACRO and IMPORT statements 
B. Combine data sets with %MACRO, SET AND MERGE statements; simplify the code with ARRAY statement 
C. Clean the data set with %MACRO and other basic statements, and create new variables 
D. Perform basic exploratory analysis and build a logistic regression model 

 
 

A. IMPORT ALL DATA SECTIONS 
Our code will accomplish four goals: 1) importing of all 24 data sets; 2) combining 24 data sets into a single data set; 
3) cleaning the data set and creating new variables; and 4) exploratory analysis and model building of the final data 
set. First, we will use a macro to import all 23 data sets from Excel into SAS. A separate IMPORT procedure will be 
used to import the 24th data set. Another macro will then be used to sort each of the 24 data sets, while SET and 
MERGE statements will create a single data set. An example of ARRAY will illustrate how to simplify your code. A 
macro to check for duplicate IDs, a code to check for missing sections and values in a data set, a macro to recode 
race variable, and a code for creating a BMI variable will produce a ready-to-use data set. Finally, to accomplish the 
fourth goal, we will perform an exploratory analysis along with building a logistic regression model. 

First, raw data for each section was exported from the FileMaker Pro in a tab delimited format and then each section 
was manually converted to an Excel format (with an exception to the dietary questionnaire data). Before we talk about 
%MACRO IMPORT, we should talk about the reasons why we would use macros and how they work. One of the 
ways that macros can help is that they can be used to automate procedures that need to be run over and over again 

(Delwiche & Slaughter, 1998). Upon submission of a standard SAS program, SAS would compile and then 
immediately execute the program (Delwiche & Slaughter, 1998). With macro, however, the macro statements are 
“resolved” via a macro processor in order to create standard SAS statements (Delwiche & Slaughter, 1998). A macro 
represents a section of a code that can have complete DATA and PROC statements as well as macro statements like 
%IF-%THEN/%ELSE and %DO, %END (Delwiche & Slaughter, 1998). Furthermore, macros usually, but not always, 
include macro variables. The %MACRO statement informs SAS that this is where the macro starts and the %MEND 
indicates the end of the macro (Delwiche & Slaughter, 1998). Macro’s name should be consistent with standard SAS 
naming conventions (start with a letter or underscore, contain only letters, numerals or underscores, and can be no 
longer than 32 characters in length) (Delwiche & Slaughter, 1998). The macro’s name in the %MEND statement is 
optional, but useful.  

Example 

In our example, we would like to import all 23 data sets from Excel into SAS. The following program (Code 1) creates 
a macro named IMPORT that has PROC IMPORT statements to import the data sets. Note that “&file” and “&output” 
are macro variables since they start with an ampersand (&) (Delwiche & Slaughter, 1998). In this particular example 
“&file” and “&output” have a local scope because they are defined inside a macro and can only be used inside their 
own macro (Delwiche & Slaughter, 1998). In contrast, a macro with a global scope is defined outside a macro and can 
be used at any place in the program (Delwiche & Slaughter, 1998). Furthermore, %MACRO IMPORT contains 
parameters for the file name to be exported from Excel and a file name to be created upon importing into SAS called 
“file” and “output”. 

Code 1. %MACRO IMPORT    

%MACRO IMPORT (file, output); 
PROC IMPORT DATAFILE= "C:\UKY_Data\Working Excel Files\&file..xls" 

OUT=&output 
DBMS=excel97 
REPLACE; 
GETNAMES = no; 

RUN; 
%MEND IMPORT; 
                                                                                        

After your macro is defined, you need to call it whenever you want to use it by adding a percent sign in front of the 
macro’s name: 

Code 2. Calling macro* 

%IMPORT (case_section1, case_section1); 
%IMPORT (case_section2, case_section2); 
%IMPORT (case_section3, case_section3); 
%IMPORT (case_section4, case_section4); 
%IMPORT (case_section5, case_section5); 
%IMPORT (case_section6, case_section6); 
%IMPORT (case_section7, case_section7); 
%IMPORT (case_section8, case_section8); 
%IMPORT (case_section9, case_section9); 
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%IMPORT (case_section10, case_section10); 
%IMPORT (case_waist_hip, case_waist_hip); 
%IMPORT (control_section1A, control_section1A); 
%IMPORT (control_section1B, control_section1B); 
%IMPORT (control_section2, control_section2); 
%IMPORT (control_section3, control_section3); 
%IMPORT (control_section4, control_section4); 
%IMPORT (control_section5, control_section5); 
%IMPORT (control_section6, control_section6); 
%IMPORT (control_section7, control_section7); 
%IMPORT (control_section8, control_section8); 
%IMPORT (control_section9, control_section9); 
%IMPORT (control_section10, control_section10); 
%IMPORT (control_waist_hip, control_waist_hip); 

 
The first call to the macro gives &file macro variable the value case_section1 &output macro variable the value 
case_section1, so that the statement generated by this call will export case_section1.xls file and create a file 
case_section1.sas7bdat. The standard SAS statements produced by the macro processor are listed below: 

Code 3. Standard SAS statement: PROC IMPORT* 

PROC IMPORT DATAFILE= "C:\UKY_Data\Working Excel Files\case_section1.xls" 
OUT=case_section1 
DBMS=excel97 
REPLACE; 
GETNAMES = no; 

RUN; 
 

Because the data section containing dietary information is formatted differently from the other 23 data sections (it 
combines cases and controls together and has variable names listed for each column), it is imported via a separate 
PROC IMPORT statement (Code 4). The main difference between Code 3 and Code 4 is the GETNAMES statement. 
In Code 3, GETNAMES is set to “no”, while in Code 4 it is set to “yes”, thus allowing us to get variable names from 
the first line in the food frequency questionnaire: 

Code 4. Importing Arizona Food Frequency Questionnaire* 

PROC IMPORT OUT= Work.FFQ  
DATAFILE= "C:\UKY_Data\Working Excel Files\ffq.xls"  
DBMS=excel2000 REPLACE; 
SHEET="Sheet1$";  
GETNAMES=yes; 

RUN; 
 

Standardizing variable names 

When giving names for each data set, it is important to keep things consistent: that is the first part of the name 
indicated the category (a control or a case) and second part of the name specified the section. The same consistency 
is applied when creating variables within the data set. For example, the question asking whether or not a participant 
ever had a hemoccult test contains multiple parts to it and each part is coded as a separate variable. In order to keep 
things consistent, each part (variable) of the question carries a “hemoccult” tag as seen in Code 5 below: 

Code 5: Assigning variable names 

DATA control_section1a_new; 
LENGTH origin $8.; 
SET control_section1a; 
origin = 'Working'; 
seq_id = F1; 
id = F2;  
hemoccult_test = F4; 
age_first_hemoccult = F100; 
year_first_hemoccult = F101; 
yearsago_first_hemoccult = F102; 
hemoccult_test_first_dnk = F5; 
hemoccult_reason1 = F7; 
hemoccult_reason2 = F9; 
hemoccult_reason3 = F10; 
hemoccult_reason4 = F11; 
hemoccult_resaon_dnk = F6; 
hemoccult_reason_othr = F8; 
number_sep_hemoccult = F103; 
num_sep_hemoccult_dnk = F12; 
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age_last_hemoccult = F104; 
year_last_hemoccult = F105; 
yearsago_last_hemoccult = F106; 
hemoccult_test_last_dnk = F13; 
 

The same convention of assigning variable names is applied throughout the questionnaire. 

B. COMBINE DATA SETS AND SIMPLIFY CODE 
Once all 24 data sets are imported into SAS and before they can be merged, we need to sort each data set by the 
unique BY variable which occurs in every data set. In our example, this unique BY variable is the ID variable. Having 
a common variable which uniquely identifies each observation in a data set ensures accurate matching (Delwiche & 
Slaughter, 1998). And again instead of running 24 separate PROC SORT procedures, we will use a macro called 
SORT to condense the recurring code and sort all 24 data sets at once:  

Code 6. %MACRO SORT with macro call 

%MACRO SORT (data); 
PROC SORT DATA = &data; 

BY id; 
RUN; 
%MEND SORT; 
 
**call macro to sort; 
%SORT (control_section1a_new); 
%SORT (control_section1b_new); 
%SORT (control_section2_new); 
%SORT (control_section3_new); 
%SORT (control_section4_new); 
%SORT (control_section5_new); 
%SORT (control_section6_new); 
%SORT (control_section7_new); 
%SORT (control_section8_new); 
%SORT (control_section9_new); 
%SORT (control_section10_new); 
%SORT (control_waist_hip_new); 

 
One-to-one match merge 

In our example, we need to merge control_section1a_new data set (Figure 1) containing the first half of the data for 
personal medical history, medications, and screening with control_section1b_new data set (Figure 2) containing the 
second half of the data. Figure 1 represents a sample of the data from the control_section1a_new data set with 
variables related to hemoccult testing, while Figure 2 represents a sample of the data from control_section1b_new 
data set with variables related to aspirin intake. In order for us to have a complete control_section1, these two data 
sets need to be merged together using the ID variable as the common variable. 

 Figure 1. Data set control_section1a_new 
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Both data sets have already been sorted (Code 6). If you try to merge unsorted data, SAS will produce an error 
message and will not complete the merge (Delwiche & Slaughter, 1998). Code 7 below produces a data set named 
control_section1 (Figure 3) by merging the control_section1a_new data set together with the control_section1b_new 
data set using the ID variable as the common variable in the BY statement: 
 
Code 7. One-to-One Match merge 
 

DATA control_section1; 
MERGE control_section1a_new control_section1b_new; 
BY id; 

RUN; 

 
 

Notice that in the final data set, ID 20056 has missing values for the variables aspirin, asprin_day, aspirin_week, and 
aspirin_dnk because that ID was not present in the data set control_section1b_new. Therefore, we see that all 
observations from both data sets were merged into the final data set regardless whether or not these observations 
had matched.  

 Stacking data sets with the SET statement 

When we want to combine two or more data sets which contain different observations but all or almost all of the 
variables being the same, the SET statement can be very useful (Delwiche & Slaughter, 1998). The SET statement 
stacks one data set on top of the other. In our example, we need to combine control_section1 data set (Figure 4) 
containing the data on personal medical history, medications, and screening for controls with case_section1_new 
data set (Figure 5) containing the same variables but for cases. Figures 4 and 5 represent a sample of the data with 
variables related to aspirin intake for the controls and cases, respectively. In order for us to have a complete section1, 
these two data sets need to be stacked together. 

       
 Figure 4. Data set control_section1                                        Figure 5. Data set case_section1_new 
 
The new data set section1 will contain the number of observations equal to the sum of the number of observations in 
the control_section1 and case_section1_new data sets (Delwiche & Slaughter, 1998). If, for instance, one of the data 
sets contains the variable which is not present in the other data set, then the missing values will be assigned to those 
observations in the other data set (Delwiche & Slaughter, 1998). Code 8 below results in a new data set named 
section1 (Figure 6) by combining control_section1 data set with the case_section1_new data set: 
 

Figure 2. Data set control_section1b_new 

Figure 3. Merged data set control_section1 
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Code 8. Stacking data sets* 
 

DATA Working.section1; 
SET control_section1 case_section1_new; 

RUN; 

 
Figure 6. Stacked data set section1 
 
Merging data sets with the IN=option 

Recall that when doing a one-to-one match merge, all observations from both data sets were merged into the final 
data set regardless whether or not these observations had matched. With the IN=option, you can select matching or 
non-matching observations during a merge of data sets (Delwiche & Slaughter, 1998). Although the IN=option can be 
used with SET, MERGE, or UPDATE, it is very common to be used with MERGE statement (Delwiche & Slaughter, 
1998). In the Code 9 below, we merged the Final.masterfile3 data set which represents the assembled data from the 
risk factor questionnaire with the Work.FFQ data set which represents the assembled data from the food frequency 
questionnaire. The IN=option creates two variables called A and B. Therefore, the code below produces a data set 
named Final.masterfile4 by merging the data set A and the data set B. The subsetting IF B statement keeps only the 
observations with dietary data present (i.e. only observations with IDs in the food frequency data set) (Delwiche & 
Slaughter, 1998): 

Code 9. Merging with the IN=option* 

DATA Final.masterfile4; 
MERGE Final.masterfile3 (IN = A) Work.FFQ (IN = B); 
BY id; 
IF B; 

RUN; 
 
Arrays 
 
In our example, we wanted to condense some of the repetitive code that pertained to the family history section in our 
data set of 654 variables. For illustration purposes only, we want to count how many first-degree relatives have been 
diagnosed with colon cancer. First, we want to turn every occurrence of response “mother” to “1” for a question asking 
about relatives affected with colon cancer. The question is set up so that it provides a space to list 13 relatives that 
were affected with colon cancer, thus creating a variable for each of the 13 relatives. Instead of writing a series of 
assignment statements or IF statements, particularly if you have to recode a lot of variables, we can use arrays to 
simplify our code (Delwiche & Slaughter, 1998). An array represents a group of variables which are either all character 
or all numeric (Delwiche & Slaughter, 1998). 
 
The following code (Code 10) changes every occurrence of response “mother” in these 13 variables to a value of “1”. 
An array, relation_cc, comprises a group of 13 variables, representing the 13 relatives affected with colon cancer. If 
you want to reference a variable using the array name, type that array name with the subscript for that variable 

(Delwiche & Slaughter, 1998). For instance, our first variable F7 has subscript 1, the second variable F8 has subscript 
2, etc. To reference the first variable, we write relation_cc(1); to reference the second variable, we write relation_cc(2) 
and so on. 
 
In the Code 10, the number of variables in the array list should be equal to the number listed in parentheses. That is, 
we have 13 variables listed (F7 – F19) and the number in parentheses right next to an array name relation_cc is also 
13 (Delwiche & Slaughter, 1998). Additionally, we place the $ before listing the variables, because they are character 
variables. As you can see, all statements between the DO and the END statement are executed once for each 
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variable in the array, that is 13 times (Delwiche & Slaughter, 1998). That is, the response ‘mother’ has been changed 
to ‘1’ in each of the 13 variables, whenever it occurred. The variable ‘i’ serves as an index variable, which is 
incremented by 1 each time the DO loop is executed (Delwiche & Slaughter, 1998). During the first DO loop, the 
variable ‘i’  gets a value of 1 and the corresponding IF statement will be IF relation_cc(1) = ‘mother’ THEN 
relation_cc(1) = ‘1’; and so forth, going through the DO loop in such fashion 13 times (Delwiche & Slaughter, 1998). 
 
Code 10. Array statement 
 

DATA control_section3_new; 
SET control_section3; 
id = F1; 
adopted = F3; 
med_history_blood_relatives = F4; 
relative_diag_colon_cancer = F5; 
ARRAY relation_cc(13) $ F7 - F19; 
drop F1-F5; 
DO i = 1 to 13; 
IF relation_cc(i) = 'mother' THEN relation_cc(i) = '1'; 
END; 

RUN; 
 

Figure 7 below represents a sample of the output, where every ‘mother’ response for variable F7 was changed to ‘1’. 
Please note that while variables relation_cc(1) to relation_cc(13) in the array are not part of the data set, the index 
variable ‘i’ is (Delwiche & Slaughter, 1998). Similar array statement can be run to turn every occurrence of response 
“father” to “1” for a question asking about relatives affected with colon cancer. And, then after all of the responses for 
first-degree relatives are changed into ‘1’, we can count a number of first-degree relatives diagnosed with colon 
cancer. Furthermore, we can run similar array statements with the rest of the variables in the family history section, 
thus creating arrays for  colon_cancer variables (recoding the responses for presence or absence of colon cancer for 
each of the relatives), for relative_age_cc (recoding the responses for the age when colon cancer was diagnosed) 
and so on. 
 

 
 

C. CLEANING THE DATA SET AND CREATING NEW VARIABLES 
Checking for missing sections 

Now that we have a single data set to work with, it is important to ensure the completeness of our data set. First we 
want to ensure that we have all 10 sections of the risk factor questionnaire completed for each of our observations. In 
the Code 11, we excluded section 10 (contact information) since that data cannot be used for analysis. Furthermore, 
data from the food frequency questionnaire also is not part of this code below since that data set comes as a single 
complete data file without separate sections. Final.masterfile contains all IDs. Final.complete contains IDs that have 
responses in section1 and section3 through waist_hip (since section2 is completed by women only and we assume 
that if an observation is missing section2, then that observation represents a male).  Final.anymissing is all IDs that 
have at least 1 section missing. Final.anymissing_wo2 leaves out the IDs that just have section2 missing. In the 

Figure 7. Array code 
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DATA step, we use the KEEP = option to specify the variables to keep, with ‘have1’, ‘have2’ and so on representing 
each section of the risk factor questionnaire. Following the DATA step, we proceed with the MERGE statement with 
the IN = option, thus creating a tag for each section. Variables have1 through havewh are set to zero. Then, we 
proceed with series of IF statements. For instance, the first IF statement indicates that if section1 is present for a 
particular ID, variable have1 will be given a value of 1; otherwise the variable have1 will have a value of zero. 

Code 11. Checking for missing sections* (Hawes, 2008)  

DATA Final.masterfile Final.complete Final.anymissing (keep = id have1 have2 have3 
have4 have5 have6 have7 have8 have9 havewh) 
Final.anymissing_wo2 (keep = id have1 have2 have3 have4 have5 have6 have7 have8 
have9 havewh); 

MERGE Final.section1 (IN=a) Final.section2 (IN=b) Final.section3 (IN=c) 
Final.section4 (IN=d) Final.section5 (IN=e) Final.section6 (IN = f) 
Final.section7 (IN=g) Final.section8 (IN=h) Final.section9 (IN=i) Final.waist_hip 
(IN=j); 
BY id; 
have1 = 0; have2 = 0; have3 = 0; have4 = 0; have5 = 0; have6 = 0; have7 = 0; 
have8 = 0; have9 = 0; havewh = 0; 
IF a THEN have1 = 1; 
IF b THEN have2 = 1; 
IF c THEN have3 = 1; 
IF d THEN have4 = 1; 
IF e THEN have5 = 1; 
IF f THEN have6 = 1; 
IF g THEN have7 = 1; 
IF h THEN have8 = 1; 
IF i THEN have9 = 1; 
IF j THEN havewh = 1; 
OUTPUT Final.masterfile; 
IF a AND c AND d AND e AND f AND g AND h AND i AND j THEN OUTPUT Final.complete; 
IF a = 0 OR b = 0 OR c = 0 OR d = 0 OR e = 0 OR f = 0 OR g = 0 OR h = 0 OR i = 0 
OR j = 0 THEN OUTPUT Final.anymissing; 
IF a = 0 OR c = 0 OR d = 0 OR e = 0 OR f = 0 OR g = 0 OR h = 0 OR i = 0 OR j = 0 
THEN OUTPUT Final.anymissing_wo2; 

RUN; 

 
TMP1.anymissing 

 id have1 have2 have3 have4 have5 have6 have7 have8 have9 havewh
1 10007 1 1 1 1 1 1 1 1 1 0
2 11083 1 0 1 1 1 1 1 1 1 1
3 11095 1 1 1 1 1 1 1 0 1 1
4 11129 1 1 1 1 1 1 1 0 1 1

   Figure 8. Checking for missing sections 
  

From Figure 8 above, we can see, for instance, that ID 11129 is missing section 8. 

Checking for duplicates 

Now that we have checked for missing sections, it is equally important to check for duplicate observations. The 
following program (Code 12) creates a macro named CHECKID. In the DATA step, the SET statement reads the &old 
macro variable data set and creates the &new macro variable data set. The data set is ordered by ID variable. Next, 
the FIRST.ID automatic variable named FirstID is created and has a value of 1 upon processing an observation with 
the first occurrence of a new value for the variable ID and a value of zero for the consecutive occurrences (Delwiche & 
Slaughter, 1998). This DATA step ends with the KEEP statement, where variables ID and FirstID are kept in the data 
set (Delwiche & Slaughter, 1998). Furthermore, %MACRO CHECKID contains parameters for the file name to be 
created and a file name to be read from called “new” and “old”.  

The next portion of this macro includes the PROC FREQ procedure of the &new macro variable data set which 
produces table where FirstID = 0, that is the table of duplicate IDs (or consecutive occurrences of the same ID). The 
macro ends with the %MEND CHECKID statement. The first call to the macro gives &new macro variable the value 
check_section1 &old macro variable the value final.section1, so that the statement generated by this call will read the 
final.section1 file and create a file check_section1 containing the list of duplicate IDs. 

Code 12. %MACRO CHECKID with macro call* 

%MACRO CHECKID (new, old); 
TITLE1 "Duplicate IDS in &old"; 
 
DATA &new; 

SET &old; 
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BY id; 
FirstID = FIRST.ID; 
KEEP id FirstID; 

RUN; 
 
PROC FREQ DATA = &new; 

TABLES id; 
WHERE FirstID = 0; 

RUN; 
%MEND CHECKID; 
 
**call macro to CHECKID; 
%CHECKID (check_section1, final.section1); 
%CHECKID (check_section2, final.section2); 
%CHECKID (check_section3, final.section3); 
%CHECKID (check_section4, final.section4); 
%CHECKID (check_section5, final.section5); 
%CHECKID (check_section6, final.section6); 
%CHECKID (check_section7, final.section7); 
%CHECKID (check_section8, final.section8); 
%CHECKID (check_section9, final.section9); 
%CHECKID (check_section10, final.section10); 
%CHECKID (check_hip_waist, final.waist_hip); 

Checking for missing values 

The final step of cleaning data involves identifying missing values in your variables of interest. The missing values are 
typically represented as a dot (.) for a numeric variable and a blank space (‘ ‘) for a character variable. Code 13 below 
utilizes the PROC FREQ statement to produce a list of IDs WHERE the variable date_of_birth is missing. The missing 
value for this particular variable is represented as a dot since it’s a numeric variable. Similar statements can be run for 
other variables of interest. 

Code 13. Identifying missing values 

PROC FREQ DATA = Final.masterfile; 
WHERE date_of_birth = .; 
TABLES id; 

RUN; 
 

%MACRO RACE 

Now that we have cleaned our data set, we need to recode some of the variables. As an example, we will show how 
to recode race and create a new variable called bmi_2yrs. Section 9 (demographics and background information) 
included information on race of a participant (variable F19), participant’s mother (variable F20), father (variable F21), 
maternal grandmother (variable F22), maternal grandfather (variable F23), paternal grandmother (variable F24) and 
paternal grandfather (variable F25). However, entries for race were not uniform, that is they were entered into the 
FileMaker Pro database exactly the way they were filled out on the questionnaire: “w”, “american”, “irish”, 
“white/italian”, “black”, “afr”, and so forth. This created a lot of confusion and we wanted to categorize race into 3 
categories only: Caucasian, African American, and Other by creating macro named RACE. 
 
First, using PROC FREQ statement, we ran frequencies of race variables in case_section9 data set. Then, using the 
SET statement, a new data set named case_section9_recode was created. %MACRO RACE has 3 parameters: 
section (section name for where the data is coming from), input (column input), and newvar (name of the new 
variable). In recoding some of the values, we needed to use ‘=:’ which means ‘begins with’ in standard SAS language. 
Calling %MACRO RACE using parameters for section=control_section9_recode, input=F19, and newvar=race 
produces a new variable called race that has only 3 categories: Caucasian, African American, and Other. When 
running the rest of the %MACRO RACE, 6 more new variables containing only 3 race categories are created: 
race_mother-race_ffather. 
 
Code 14. %MACRO RACE with macro call* 
 

**Preliminary frequencies of race variables; 
PROC FREQ DATA = case_section9; 

TABLES F19 - F25; 
RUN; 
 
**Create a new data set called case_section9_recode where race variables will be 
recoded; 
DATA case_section9_recode; 

SET case_section9; 
RUN; 
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**Recoding race variables; 
**RACE MACRO; 
**Note that =: means 'begins with' in SAS code; 
 
%MACRO RACE (section, input, newvar); 
DATA &section; 

LENGTH &newvar $20.; 
SET &section; 

/* First, recode any value with a "/" that is not "other" */ 
IF &input = 'caucasian / european' THEN &newvar = 'caucasian'; 
ELSE IF &input =: 'lebanese' THEN &newvar = 'caucasian'; 
ELSE IF &input = 'w / american' THEN &newvar = 'caucasian'; 
ELSE IF &input = 'white / caucasian' THEN &newvar = 'caucasian'; 
ELSE IF &input = 'w / irish descent' THEN &newvar = 'caucasian'; 
ELSE IF &input = 'scottish / english' THEN &newvar = 'caucasian'; 
ELSE IF &input = 'w / scot irish descent' THEN &newvar = 'caucasian'; 
ELSE IF &input = 'white/italian' THEN &newvar = 'caucasian'; 
ELSE IF &input = 'white/irish' THEN &newvar = 'caucasian'; 
ELSE IF &input = 'white / black' THEN &newvar = 'african american'; 
ELSE IF &input = 'black / white' THEN &newvar = 'african american'; 
ELSE IF &input = '1/2black,1/2white' THEN &newvar = 'african american'; 
ELSE IF &input = 'african american / caucasian' THEN &newvar = 'african 
american'; 
ELSE IF &input = 'jewish / black' THEN &newvar = 'african american'; 
ELSE IF &input =: 'german' THEN &newvar = 'caucasian'; 

/* THEN recode all other values with a "/" to "other" */ 
ELSE IF index (&input,'/') THEN &newvar = 'other'; 

 
/* Second, recode any value that begins with "w" but is not "caucasian" */ 

ELSE IF &input = 'white-native american' THEN &newvar = 'other'; 
ELSE IF &input =: 'west ind' THEN &newvar = 'other'; 
ELSE IF &input = 'white - american indian' THEN &newvar = 'other'; 

/* THEN recode all other values that begin with "w" as "caucasian" */ 
ELSE IF &input =: 'w' THEN &newvar = 'caucasian'; 

 
/* Third, recode any value that begins with "c" but is not "caucasian" */ 

ELSE IF &input = 'caucasian (part native american)' THEN &newvar = 'other'; 
ELSE IF &input =: 'cherokee' THEN &newvar = 'other'; 
ELSE IF &input = 'chinese' THEN &newvar = 'other'; 
ELSE IF &input = 'caucasian - indian' THEN &newvar = 'other'; 
ELSE IF &input = 'caucasian - native american' THEN &newvar = 'other'; 
ELSE IF &input = 'caucasian and native american' THEN &newvar = 'other'; 

/* THEN recode all other values that begin with "c" as "caucasian" */ 
ELSE IF &input =: 'c' THEN &newvar = 'caucasian'; 

 
/* Fourth, recode any value that begins with "a" but is not "caucasian" */ 

ELSE IF &input =: 'afr' THEN &newvar = 'african american'; 
ELSE IF &input = 'arican american' THEN &newvar = 'african american'; 
ELSE IF &input =: 'asian' THEN &newvar = 'other'; 
ELSE IF &input = 'american indian' THEN &newvar = 'other'; 
ELSE IF &input = 'am. indian' THEN &newvar = 'other'; 

/* THEN recode all other values that begin with "a" as "caucasian" */ 
ELSE IF &input =: 'a' THEN &newvar = 'caucasian'; 

 
/* Last, recode all other values that are not 'other' into proper categories */ 
/* caucasian */ 

ELSE IF &input =: 'english' THEN &newvar = 'caucasian'; 
ELSE IF &input =: ' c' THEN &newvar = 'caucasian'; 
ELSE IF &input = 'american' THEN &newvar = 'caucasian'; 
ELSE IF &input =: 'french' THEN &newvar = 'caucasian'; 
ELSE IF &input =: 'german' THEN &newvar = 'caucasian'; 
ELSE IF &input =: 'irish' THEN &newvar = 'caucasian'; 
ELSE IF &input = 'italian' THEN &newvar = 'caucasian'; 
ELSE IF &input = 'portugese' THEN &newvar = 'caucasian'; 
ELSE IF &input =: 'scot' THEN &newvar = 'caucasian'; 
ELSE IF &input = 'spanish' THEN &newvar = 'caucasian'; 
ELSE IF &input = 'swiss' THEN &newvar = 'caucasian'; 

  
/* african american */ 

ELSE IF &input =: 'black' THEN &newvar = 'african american'; 
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ELSE IF &input = 'negro' THEN &newvar = 'african american'; 
 
/* missing */ 

ELSE IF &input = ' ' THEN &newvar = ' '; 
ELSE IF &input = 'unknown' THEN &newvar = ' '; 
ELSE IF &input = '?' THEN &newvar = ' '; 
ELSE IF &input = 'x' THEN &newvar = ' '; 

 
/*THEN recode all other values into "other" category */ 

ELSE &newvar = 'other'; 
RUN; 
%MEND RACE; 

 
**call macro to recode race; 
%RACE (control_section9_recode, F19, race); 
%RACE (control_section9_recode, F20, race_mother); 
%RACE (control_section9_recode, F21, race_father); 
%RACE (control_section9_recode, F22, race_mmother); 
%RACE (control_section9_recode, F23, race_mfather); 
%RACE (control_section9_recode, F24, race_fmother); 
%RACE (control_section9_recode, F25, race_ffather); 
 

BMI variable 

We also wanted to create a new variable named bmi_2yrs which calculates a participant’s Body Mass Index 2 years 
prior to a participant’s participation (for control) or Body Mass Index 2 years prior to a colon cancer diagnosis (for 
case). This calculation below is based on the weight measurements in pounds and height measurements in inches: 

 
 

Code 15. Creating bmi_2yrs variable  

DATA Final.masterfile2; 
SET Final.masterfile2; 
bmi_2yrs = weight_2yrs/(height*height)*703; 

RUN; 
 

D. EXPLORATORY ANALYSES AND UNCONDITIONAL LOGISTIC REGRESSION MODEL 
Now that our data set is ready for statistical analysis, we will briefly talk about how to perform exploratory analysis and 
fit multivariate logistic regression to our data. High dietary glycemic load (GL) has been inconsistently associated with 
the risk of colon cancer in epidemiologic studies. We seek to further clarify this relationship in a population-based 
incident case-control study. 

Our data set MWSUG.masterfile included the following 11 variables: ID (participant’s ID), ener (energy in kcal), gl 
(glycemic load in g), tfib (total dietary fiber in g), case (case or control), gender (participant’s gender), age, bmi_2yrs 
(BMI in kg/m2), relative_diag_colon_cancer (family history of colon cancer), race, NSAID (whether or not Nonsteroidal 
Anti-inflammatory Drugs were taken for more than 6 months) and contained 1627 observations. Our binary response 
variable measures the presence or absence of the colon cancer represented by the variable case, while our 
explanatory variable is the glycemic load represented by the variable gl. The other 8 variables represent potential 
covariates. Variables ener, gl, tfib, age, and bmi_2yrs are continuous, while case, gender, 
relative_diag_colon_cancer, race, and NSAID are categorical.   

The data set was again checked for missing values among all variables using PROC FREQ statement. Variables 
case, gender, and NSAID were each missing 1 observation. Variable age was missing 30 observations, bmi_2yrs had 
66 missing observations, relative_diag_colon_cancer had 7 missing observations, and race variable had 3 missing 
observations. Overall descriptive statistics and broken down BY case descriptive statistics (mean, median, standard 
deviation, minimum, and maximum, as well as test of normality, a stem-and-leaf plot, and a box plot) were obtained 
for each continuous explanatory variable using PROC UNIVARIATE procedure. Variables ener, gl, tfib, and bmi_2yrs 
each had a skewed distribution, while variable age had a normal distribution. Additionally, Mann-Whitney U-test (using 
PROC NPAR1WAY procedure) and t-test (using PROC TTEST procedure) were run on all continuous variables. 
Mann-Whitney U-test is a nonparametric test that is used when the assumptions for using a t-test are not met. That is, 
the assumptions of having a large sample size and data with normal distribution are violated. Both tests showed that 
there was a statistically significant difference among cases and controls in each of the explanatory variable except 
tfib. 
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For variables gl and bmi_2yrs, we created categorical variables gl_cat and bmi2yrs_cat, respectively. Additionally, in 
order to use categorical variables in building a multivariate logistic regression, dummy variables were created for all 
categorical variables using a series of IF/THEN/ELSE statements. Frequencies of the newly created categorical and 
dummy variables were checked with PROC FREQ statements. Finally, the association of potential categorical 
covariates with colon cancer was assessed with the PROC FREQ statement and an EXPECTED CHISQ MEASURES 
option to get measures of association.       

Code 16. Exploratory analysis* 

**Missing values for ener; 
PROC FREQ DATA = MWSUG.masterfile; 

WHERE ener = .; 
TABLES id; 

RUN; 
 

**Overall descriptive statistics for continuous variables; 
PROC UNIVARIATE DATA = MWSUG.masterfile NORMAL PLOT; 

TITLE 'Descriptives Statistics on ener gl tfib age bmi_2yrs'; 
VAR ener gl tfib age bmi_2yrs; 

RUN; 
 
**Descriptive statistics for continuous variables broken down BY case; 
PROC SORT DATA = MWSUG.masterfile; 

BY case; 
RUN; 
 
PROC UNIVARIATE DATA = MWSUG.masterfile NORMAL PLOT; 

TITLE 'Descriptives Statistics on ener gl tfib age bmi_2yrs BY case'; 
VAR ener gl tfib age bmi_2yrs; 
BY case; 

RUN; 
 
**Running t-tests on continuous variables; 
PROC SORT DATA = MWSUG.masterfile; 

BY case; 
RUN; 
 
**T-tests are statistically significant for all variables except tfib; 
PROC TTEST DATA = MWSUG.masterfile; 

CLASS case; 
VAR ener gl tfib age bmi_2yrs; 

RUN; 
 
**Mann-Whitney U-tests are statistically significant for all variables except tfib; 
PROC NPAR1WAY DATA = MWSUG.masterfile WILCOXON; 

CLASS case; 
VAR ener gl tfib age bmi_2yrs; 

RUN; 
 
**Creating categorical and dummy variables; 
DATA MWSUG.masterfile; 

SET MWSUG.masterfile; 
 
**Create categorical variable for gl; 

IF gl <= 74.29 THEN gl_cat = '1stq'; 
ELSE IF gl > 74.29 AND gl <= 102.74 THEN gl_cat = '2ndq'; 
ELSE IF gl > 102.74 AND gl <= 134.66 THEN gl_cat = '3rdq'; 
ELSE IF gl > 134.66 AND gl <= 182.35 THEN gl_cat = '4thq'; 
ELSE IF gl > 182.35 THEN gl_cat = '5thq'; 
ELSE gl_cat = ' '; 

 
**Create dummy variables for gl_cat: Reference = 1stq; 

IF gl_cat = '2ndq' THEN Q2 = 1; 
ELSE IF gl_cat NE ' ' THEN Q2 = 0; 
IF gl_cat = '3rdq' THEN Q3 = 1; 
ELSE IF gl_cat NE ' ' THEN Q3 = 0; 
IF gl_cat = '4thq' THEN Q4 = 1; 
ELSE IF gl_cat NE ' ' THEN Q4 = 0; 
IF gl_cat = '5thq' THEN Q5 = 1; 
ELSE IF gl_cat NE ' ' THEN Q5 = 0; 

RUN; 
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**Frequency of glycemic load variable to double check counts; 
TITLE1 'Frequency of glycemic load'; 
PROC FREQ DATA = MWSUG.masterfile; 

TABLES gl gl_cat Q2 Q3 Q4 Q5; 
RUN; 
 
**Association of potential covariates with colon cancer; 
PROC FREQ DATA = MWSUG.masterfile; 

TABLES gl_cat*case / EXPECTED CHISQ MEASURES; 
RUN; 
 

Finally, we ran a number of variable selection models (i.e. multivariate unconditional logistic regression models) using 
PROC LOGISTIC procedure and going through forward, backward, stepwise, and manual variable selection process 
in order to come up with the best model. PROC LOGISTIC statements are pretty straightforward. The DESCENDING 
option specifies that the resulting equation predicts the log odds of having colon cancer given a certain set of 
explanatory values. The logistic regression example in Code 17 depicts several MODEL options: LACKFIT (the 
Hosmer and Lemeshow Goodness-of-Fit test), CTABLE (a classification table), and RISKLIMITS (the Odds Ratios for 
each variable along with 95% confidence limits). To specify the forward selection process, for instance, include 
SELECTION=FORWARD option in the MODEL statement. 

Code 17. Multivariate unconditional logistic regression modeling* 

TITLE1 'Logistic Regression : gl categorical'; 
PROC LOGISTIC DESCENDING DATA = MWSUG.masterfile OUTEST =BETAS COVOUT; 

CLASS gl_cat (REF='1stq') /PARAM = ref; 
MODEL case = gl_cat ener tfib gender age bmi_2yrs famhist NSAID 
gl_cat*gender / 
LACKFIT 
CTABLE 
RISKLIMITS; 
OUTPUT OUT=pred P=phat LOWER=lcl UPPER=ucl 
PREDPROB=(individual crossvalidate); 

RUN; 
 

 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9a. Final multivariate unconditional logistic regression model: Model fit statistics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model Fit Statistics 
 
                             Intercept 
              Intercept            and 
Criterion          Only     Covariates 
AIC            2022.713       1925.119 
SC             2028.045       2010.427 
-2 Log L       2020.713       1893.119 
 
 
        Testing Global Null Hypothesis: BETA=0 
 
Test                 Chi-Square       DF     Pr > ChiSq 
Likelihood Ratio       127.5933       15         <.0001 
Score                  123.0643       15         <.0001 
Wald                   113.5003       15         <.0001 
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           Type 3 Analysis of Effects 
 
                               Wald 
Effect             DF    Chi-Square    Pr > ChiSq 
gl_cat              4        3.6699        0.4525 
ener                1        3.6110        0.0574 
tfib                1        7.8129        0.0052 
gender              1        0.2276        0.6333 
age                 1       51.6721        <.0001 
bmi_2yrs            1       20.3749        <.0001 
famhist             1       16.1174        <.0001 
NSAID               1        8.7977        0.0030 
gender*gl_cat       4        9.8560        0.0429 
 
               Analysis of Maximum Likelihood Estimates 
 
                                     Standard         Wald 
Parameter            DF   Estimate      Error   Chi-Square   Pr > ChiSq 
Intercept             1    -4.4209     0.4874      82.2616       <.0001 
gl_cat        2ndq    1     0.0592     0.2085       0.0805       0.7766 
gl_cat        3rdq    1     0.1542     0.2225       0.4804       0.4882 
gl_cat        4thq    1     0.4235     0.2432       3.0312       0.0817 
gl_cat        5thq    1     0.4100     0.3349       1.4990       0.2208 
ener                  1   0.000198   0.000104       3.6110       0.0574 
tfib                  1    -0.0218    0.00779       7.8129       0.0052 
gender                1    -0.1541     0.3231       0.2276       0.6333 
age                   1     0.0403    0.00560      51.6721       <.0001 
bmi_2yrs              1     0.0405    0.00896      20.3749       <.0001 
famhist               1     0.4804     0.1197      16.1174       <.0001 
NSAID                 1    -0.3353     0.1130       8.7977       0.0030 
gender*gl_cat 2ndq    1     0.8480     0.4246       3.9889       0.0458 
gender*gl_cat 3rdq    1     0.5374     0.4092       1.7244       0.1891 
gender*gl_cat 4thq    1    -0.0501     0.4052       0.0153       0.9015 
gender*gl_cat 5thq    1     0.7809     0.4172       3.5036       0.0612 
 
                  Odds Ratio Estimates 
 
                            Point          95% Wald 
Effect                   Estimate      Confidence Limits 
ener                        1.000       1.000       1.000 
tfib                        0.978       0.964       0.994 
age                         1.041       1.030       1.053 
bmi_2yrs                    1.041       1.023       1.060 
famhist                     1.617       1.279       2.044 
NSAID                       0.715       0.573       0.893 
 
Association of Predicted Probabilities and Observed Responses 
 
Percent Concordant      66.9    Somers' D    0.342 
Percent Discordant      32.7    Gamma        0.343 
Percent Tied             0.4    Tau-a        0.160 
Pairs                 546832    c            0.671 
 
          Wald Confidence Interval for Adjusted Odds Ratios 
 
Effect                       Unit    Estimate    95% Confidence Limits 
ener                       1.0000       1.000       1.000        1.000 
tfib                       1.0000       0.978       0.964        0.994 
age                        1.0000       1.041       1.030        1.053 
bmi_2yrs                   1.0000       1.041       1.023        1.060 
famhist                    1.0000       1.617       1.279        2.044 
NSAID                      1.0000       0.715       0.573        0.893 
 

Figure 9b. Final multivariate unconditional logistic regression model: Maximum Likelihood and Odds Ratio 
estimates 
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Hosmer and Lemeshow Goodness-of-Fit Test 
 
Chi-Square       DF     Pr > ChiSq 
    6.4616        8         0.5957 

 
Figure 9c. Final multivariate unconditional logistic regression model: Goodness-of-Fit test 
 
The study sample consisted of 572 incident colon cancer cases and 956 population controls. Cases were recruited 
through the Kentucky Cancer Registry, and controls were recruited via random digit dialing. Glycemic load was 
assessed based on a self-administered food frequency questionnaire.    

On average, the cases had a significantly higher GL (mean = 147.4g, SD = 93.4g) than the controls (mean = 130.1g, 
SD = 78.2g) (p = 0.0001). In multivariate unconditional logistic regression model adjusted for age, gender, body mass 
index (BMI), family history of colorectal cancer, NSAID use, total dietary fiber and total caloric intake, the odds ratio 
(OR) for the 2nd through the upper quintiles of GL were: 1.06 (95% CI: 0.71, 1.60), 1.17 (95% CI: 0.75, 1.80), 1.53 
(95% CI: 0.95, 2.46), 1.51 (95% CI: 0.78, 2.90), respectively (p for trend = 0.1527), as compared to those at the 
bottom quintile of GL intake. There is a suggested evidence for a positive association between glycemic load and the 
risk of colon cancer. The results also indicated an effect modification by gender that needs to be further evaluated 
through stratification analysis by gender. P-value of Hosmer and Lemeshow Goodness-of-Fit test was 0.60, indicating 
that the above model was a good fit.  

Missing values in PROC LOGISTIC 

Reviewing the log file after running PROC LOGISTIC statement revealed that there were 99 observations that were 
excluded from the analysis due to missing values in the variables specified previously. Since PROC LOGISTIC does 
not accommodate missing data, we need to correct for missing values in these variables by accessing the original 
filled out questionnaires. If the information in the original questionnaires is not present, we could perhaps impute 
missing values using the PROC MI procedure.  

CONCLUSION  
Data come in different file formats and before we can summarize and explore patterns in the data and draw any 
inferences, it is essential to 1) import data from an outside source and assign variable names; 2) merge several 
sections into a single data set; and 3) clean variables and create new variables. After these initial steps, we can 
proceed with 4) exploratory analyses and model building. 

This paper provided effective methods to creating a data set ready to be used for exploratory analyses and model 
building. The techniques included 1) %MACRO IMPORT to import the data into SAS and an example for 
standardizing variable names in each section and among sections; 2) %MACRO SORT to simplify sorting for multiple 
sections, ARRAY to simplify coding, and SET and MERGE statements to combine data sets; 3) a macro to check for 
duplicate IDs, a code to check for missing sections and values in a data set, a macro to recode race variable, and a 
code for creating a BMI variable; and 4) tools to perform an initial exploratory analysis and a logistic regression model. 

Having a single ready-to-use data set allows for a greater flexibility and efficiency in handling and data manipulation 
compared to working with multiple separate data sets. Furthermore, the techniques covered in this paper can be 
easily  expanded and applied in other areas of research. 
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