
1

Paper P10-2009

Dietary Glycemic Load and Risk of Colon Cancer: A Guide to Data Management
Svetlana Zelenskiy1, Lauren Byrne1, Cheryl L. Thompson1,2,3, Thomas C. Tucker4,

David Bruckman1, Li Li1,2,3
1Departments of Epidemiology & Biostatistics and 2Family Medicine, Case Western Reserve University,

Cleveland, OH
3Transdisciplinary Research in Energetics and Cancer, Case Comprehensive Cancer Center,

Cleveland, OH
4Kentucky Cancer Registry, University of Kentucky, Lexington, KY

ABSTRACT
Data come in different file formats and before we can summarize and explore patterns in the data and draw any
inferences, it is essential to 1) import data from an outside source and assign variable names; 2) merge several
sections into a single data set; and 3) clean variables and create new variables. After these initial steps, we can
proceed with 4) exploratory analyses and model building.

This paper is geared toward graduate students and novice coders. The goal of this paper is to discuss effective
methods to creating a data set ready to be used for exploratory analyses and model building. The techniques include
1) %MACRO IMPORT to import the data into SAS® and an example for standardizing variable names in each section
and among sections; 2) %MACRO SORT to simplify sorting for multiple sections, ARRAY to simplify coding, and SET
and MERGE statements to combine data sets; 3) a macro to check for duplicate IDs, a code to check for missing
sections and values in a data set, a macro to recode race variable, and a code for creating a BMI variable. Tools to
perform an initial exploratory analysis and a logistic regression will be briefly discussed at the end of this paper. We
import the data from multiple sections of a risk factor questionnaire as well as coded responses to a comprehensive
dietary food frequency questionnaire from a colon cancer case-control study into SAS and create a single ready-to-
use data set. Examples evaluate the association of dietary glycemic load with colon cancer risk.

INTRODUCTION
With the computer age it has become easier for epidemiologists, biostatisticians, physicians and other health-related
professionals to collect information. Data collection methods include conducting of interviews or telephone surveys,
mailing questionnaire surveys, and collection of biological samples. A vast amount of data is also available from
hospital records, police records, death certificates and census records. In addition to being obtained from multiple
sources, data come in different file formats and before we can summarize and explore patterns in the data and draw
any inferences, it is essential to 1) import data from an outside source and assign variable names; 2) merge several
sections into a single data set; and 3) clean variables and create new variables. After these initial steps, we can
proceed with 4) exploratory analyses and model building.

This paper is geared toward graduate students and novice coders. The goal of this paper is to discuss effective
methods to creating a data set ready to be used for exploratory analyses and model building. The techniques include
1) %MACRO IMPORT to import the data into SAS and an example for standardizing variable names in each section
and among sections; 2) %MACRO SORT to simplify sorting for multiple sections, ARRAY to simplify coding, and SET
and MERGE statements to combine data sets; 3) a macro to check for duplicate IDs, a code to check for missing
sections and values in a data set, a macro to recode race variable, and a code for creating a BMI variable. Tools to
perform an initial exploratory analysis and a logistic regression will be briefly discussed at the end of this paper.

In this paper we import the data from multiple sections of a risk factor questionnaire as well as the data from a
comprehensive dietary food frequency questionnaire into SAS and create a single ready-to-use data set. This data
has been gathered over the past several years through a case-control study in the state of Kentucky in efforts to
investigate the role of environmental and genetic risk factors on the development of colon cancer. As part of the study
each participant (a “control” – a person who was never diagnosed with cancer or a “case” – a person who was
diagnosed with colon cancer) mails in a filled-out risk factor questionnaire which is then entered into database
software called FileMaker Pro 6.0. FileMaker Pro database is comprised of two categories (Cases and Controls), and
each category has 11 sections or 11 data sets: 1) personal medical history, medications, and screening, 2)
reproductive history (women only), 3) family history, 4) diet, 5) physical activity, 6) alcohol consumption, 7) smoking,
8) height and weight, 9) demographics and background information, 10) contact information, and 11) hip and waist
measurements. Because control’s section 1) is broken into 2 parts, we ended up importing a total of 23 separate data
sets. Additionally, we imported a 24th data set comprised of the dietary responses. This 24th data set was downloaded
from a server at Arizona University. Our example will mainly illustrate the code for the control category, and wherever
the code encompasses data from both categories, it will be noted with an asterisk (*).

2

OUTLINE
A. Import data sections with %MACRO and IMPORT statements
B. Combine data sets with %MACRO, SET AND MERGE statements; simplify the code with ARRAY statement
C. Clean the data set with %MACRO and other basic statements, and create new variables
D. Perform basic exploratory analysis and build a logistic regression model

A. IMPORT ALL DATA SECTIONS
Our code will accomplish four goals: 1) importing of all 24 data sets; 2) combining 24 data sets into a single data set;
3) cleaning the data set and creating new variables; and 4) exploratory analysis and model building of the final data
set. First, we will use a macro to import all 23 data sets from Excel into SAS. A separate IMPORT procedure will be
used to import the 24th data set. Another macro will then be used to sort each of the 24 data sets, while SET and
MERGE statements will create a single data set. An example of ARRAY will illustrate how to simplify your code. A
macro to check for duplicate IDs, a code to check for missing sections and values in a data set, a macro to recode
race variable, and a code for creating a BMI variable will produce a ready-to-use data set. Finally, to accomplish the
fourth goal, we will perform an exploratory analysis along with building a logistic regression model.

First, raw data for each section was exported from the FileMaker Pro in a tab delimited format and then each section
was manually converted to an Excel format (with an exception to the dietary questionnaire data). Before we talk about
%MACRO IMPORT, we should talk about the reasons why we would use macros and how they work. One of the
ways that macros can help is that they can be used to automate procedures that need to be run over and over again

(Delwiche & Slaughter, 1998). Upon submission of a standard SAS program, SAS would compile and then
immediately execute the program (Delwiche & Slaughter, 1998). With macro, however, the macro statements are
“resolved” via a macro processor in order to create standard SAS statements (Delwiche & Slaughter, 1998). A macro
represents a section of a code that can have complete DATA and PROC statements as well as macro statements like
%IF-%THEN/%ELSE and %DO, %END (Delwiche & Slaughter, 1998). Furthermore, macros usually, but not always,
include macro variables. The %MACRO statement informs SAS that this is where the macro starts and the %MEND
indicates the end of the macro (Delwiche & Slaughter, 1998). Macro’s name should be consistent with standard SAS
naming conventions (start with a letter or underscore, contain only letters, numerals or underscores, and can be no
longer than 32 characters in length) (Delwiche & Slaughter, 1998). The macro’s name in the %MEND statement is
optional, but useful.

Example

In our example, we would like to import all 23 data sets from Excel into SAS. The following program (Code 1) creates
a macro named IMPORT that has PROC IMPORT statements to import the data sets. Note that “&file” and “&output”
are macro variables since they start with an ampersand (&) (Delwiche & Slaughter, 1998). In this particular example
“&file” and “&output” have a local scope because they are defined inside a macro and can only be used inside their
own macro (Delwiche & Slaughter, 1998). In contrast, a macro with a global scope is defined outside a macro and can
be used at any place in the program (Delwiche & Slaughter, 1998). Furthermore, %MACRO IMPORT contains
parameters for the file name to be exported from Excel and a file name to be created upon importing into SAS called
“file” and “output”.

Code 1. %MACRO IMPORT

%MACRO IMPORT (file, output);
PROC IMPORT DATAFILE= "C:\UKY_Data\Working Excel Files\&file..xls"

OUT=&output
DBMS=excel97
REPLACE;
GETNAMES = no;

RUN;
%MEND IMPORT;

After your macro is defined, you need to call it whenever you want to use it by adding a percent sign in front of the
macro’s name:

Code 2. Calling macro*

%IMPORT (case_section1, case_section1);
%IMPORT (case_section2, case_section2);
%IMPORT (case_section3, case_section3);
%IMPORT (case_section4, case_section4);
%IMPORT (case_section5, case_section5);
%IMPORT (case_section6, case_section6);
%IMPORT (case_section7, case_section7);
%IMPORT (case_section8, case_section8);
%IMPORT (case_section9, case_section9);

3

%IMPORT (case_section10, case_section10);
%IMPORT (case_waist_hip, case_waist_hip);
%IMPORT (control_section1A, control_section1A);
%IMPORT (control_section1B, control_section1B);
%IMPORT (control_section2, control_section2);
%IMPORT (control_section3, control_section3);
%IMPORT (control_section4, control_section4);
%IMPORT (control_section5, control_section5);
%IMPORT (control_section6, control_section6);
%IMPORT (control_section7, control_section7);
%IMPORT (control_section8, control_section8);
%IMPORT (control_section9, control_section9);
%IMPORT (control_section10, control_section10);
%IMPORT (control_waist_hip, control_waist_hip);

The first call to the macro gives &file macro variable the value case_section1 &output macro variable the value
case_section1, so that the statement generated by this call will export case_section1.xls file and create a file
case_section1.sas7bdat. The standard SAS statements produced by the macro processor are listed below:

Code 3. Standard SAS statement: PROC IMPORT*

PROC IMPORT DATAFILE= "C:\UKY_Data\Working Excel Files\case_section1.xls"
OUT=case_section1
DBMS=excel97
REPLACE;
GETNAMES = no;

RUN;

Because the data section containing dietary information is formatted differently from the other 23 data sections (it
combines cases and controls together and has variable names listed for each column), it is imported via a separate
PROC IMPORT statement (Code 4). The main difference between Code 3 and Code 4 is the GETNAMES statement.
In Code 3, GETNAMES is set to “no”, while in Code 4 it is set to “yes”, thus allowing us to get variable names from
the first line in the food frequency questionnaire:

Code 4. Importing Arizona Food Frequency Questionnaire*

PROC IMPORT OUT= Work.FFQ
DATAFILE= "C:\UKY_Data\Working Excel Files\ffq.xls"
DBMS=excel2000 REPLACE;
SHEET="Sheet1$";
GETNAMES=yes;

RUN;

Standardizing variable names

When giving names for each data set, it is important to keep things consistent: that is the first part of the name
indicated the category (a control or a case) and second part of the name specified the section. The same consistency
is applied when creating variables within the data set. For example, the question asking whether or not a participant
ever had a hemoccult test contains multiple parts to it and each part is coded as a separate variable. In order to keep
things consistent, each part (variable) of the question carries a “hemoccult” tag as seen in Code 5 below:

Code 5: Assigning variable names

DATA control_section1a_new;
LENGTH origin $8.;
SET control_section1a;
origin = 'Working';
seq_id = F1;
id = F2;
hemoccult_test = F4;
age_first_hemoccult = F100;
year_first_hemoccult = F101;
yearsago_first_hemoccult = F102;
hemoccult_test_first_dnk = F5;
hemoccult_reason1 = F7;
hemoccult_reason2 = F9;
hemoccult_reason3 = F10;
hemoccult_reason4 = F11;
hemoccult_resaon_dnk = F6;
hemoccult_reason_othr = F8;
number_sep_hemoccult = F103;
num_sep_hemoccult_dnk = F12;

4

age_last_hemoccult = F104;
year_last_hemoccult = F105;
yearsago_last_hemoccult = F106;
hemoccult_test_last_dnk = F13;

The same convention of assigning variable names is applied throughout the questionnaire.

B. COMBINE DATA SETS AND SIMPLIFY CODE
Once all 24 data sets are imported into SAS and before they can be merged, we need to sort each data set by the
unique BY variable which occurs in every data set. In our example, this unique BY variable is the ID variable. Having
a common variable which uniquely identifies each observation in a data set ensures accurate matching (Delwiche &
Slaughter, 1998). And again instead of running 24 separate PROC SORT procedures, we will use a macro called
SORT to condense the recurring code and sort all 24 data sets at once:

Code 6. %MACRO SORT with macro call

%MACRO SORT (data);
PROC SORT DATA = &data;

BY id;
RUN;
%MEND SORT;

**call macro to sort;
%SORT (control_section1a_new);
%SORT (control_section1b_new);
%SORT (control_section2_new);
%SORT (control_section3_new);
%SORT (control_section4_new);
%SORT (control_section5_new);
%SORT (control_section6_new);
%SORT (control_section7_new);
%SORT (control_section8_new);
%SORT (control_section9_new);
%SORT (control_section10_new);
%SORT (control_waist_hip_new);

One-to-one match merge

In our example, we need to merge control_section1a_new data set (Figure 1) containing the first half of the data for
personal medical history, medications, and screening with control_section1b_new data set (Figure 2) containing the
second half of the data. Figure 1 represents a sample of the data from the control_section1a_new data set with
variables related to hemoccult testing, while Figure 2 represents a sample of the data from control_section1b_new
data set with variables related to aspirin intake. In order for us to have a complete control_section1, these two data
sets need to be merged together using the ID variable as the common variable.

 Figure 1. Data set control_section1a_new

5

Both data sets have already been sorted (Code 6). If you try to merge unsorted data, SAS will produce an error
message and will not complete the merge (Delwiche & Slaughter, 1998). Code 7 below produces a data set named
control_section1 (Figure 3) by merging the control_section1a_new data set together with the control_section1b_new
data set using the ID variable as the common variable in the BY statement:

Code 7. One-to-One Match merge

DATA control_section1;
MERGE control_section1a_new control_section1b_new;
BY id;

RUN;

Notice that in the final data set, ID 20056 has missing values for the variables aspirin, asprin_day, aspirin_week, and
aspirin_dnk because that ID was not present in the data set control_section1b_new. Therefore, we see that all
observations from both data sets were merged into the final data set regardless whether or not these observations
had matched.

 Stacking data sets with the SET statement

When we want to combine two or more data sets which contain different observations but all or almost all of the
variables being the same, the SET statement can be very useful (Delwiche & Slaughter, 1998). The SET statement
stacks one data set on top of the other. In our example, we need to combine control_section1 data set (Figure 4)
containing the data on personal medical history, medications, and screening for controls with case_section1_new
data set (Figure 5) containing the same variables but for cases. Figures 4 and 5 represent a sample of the data with
variables related to aspirin intake for the controls and cases, respectively. In order for us to have a complete section1,
these two data sets need to be stacked together.

 Figure 4. Data set control_section1 Figure 5. Data set case_section1_new

The new data set section1 will contain the number of observations equal to the sum of the number of observations in
the control_section1 and case_section1_new data sets (Delwiche & Slaughter, 1998). If, for instance, one of the data
sets contains the variable which is not present in the other data set, then the missing values will be assigned to those
observations in the other data set (Delwiche & Slaughter, 1998). Code 8 below results in a new data set named
section1 (Figure 6) by combining control_section1 data set with the case_section1_new data set:

Figure 2. Data set control_section1b_new

Figure 3. Merged data set control_section1

6

Code 8. Stacking data sets*

DATA Working.section1;
SET control_section1 case_section1_new;

RUN;

Figure 6. Stacked data set section1

Merging data sets with the IN=option

Recall that when doing a one-to-one match merge, all observations from both data sets were merged into the final
data set regardless whether or not these observations had matched. With the IN=option, you can select matching or
non-matching observations during a merge of data sets (Delwiche & Slaughter, 1998). Although the IN=option can be
used with SET, MERGE, or UPDATE, it is very common to be used with MERGE statement (Delwiche & Slaughter,
1998). In the Code 9 below, we merged the Final.masterfile3 data set which represents the assembled data from the
risk factor questionnaire with the Work.FFQ data set which represents the assembled data from the food frequency
questionnaire. The IN=option creates two variables called A and B. Therefore, the code below produces a data set
named Final.masterfile4 by merging the data set A and the data set B. The subsetting IF B statement keeps only the
observations with dietary data present (i.e. only observations with IDs in the food frequency data set) (Delwiche &
Slaughter, 1998):

Code 9. Merging with the IN=option*

DATA Final.masterfile4;
MERGE Final.masterfile3 (IN = A) Work.FFQ (IN = B);
BY id;
IF B;

RUN;

Arrays

In our example, we wanted to condense some of the repetitive code that pertained to the family history section in our
data set of 654 variables. For illustration purposes only, we want to count how many first-degree relatives have been
diagnosed with colon cancer. First, we want to turn every occurrence of response “mother” to “1” for a question asking
about relatives affected with colon cancer. The question is set up so that it provides a space to list 13 relatives that
were affected with colon cancer, thus creating a variable for each of the 13 relatives. Instead of writing a series of
assignment statements or IF statements, particularly if you have to recode a lot of variables, we can use arrays to
simplify our code (Delwiche & Slaughter, 1998). An array represents a group of variables which are either all character
or all numeric (Delwiche & Slaughter, 1998).

The following code (Code 10) changes every occurrence of response “mother” in these 13 variables to a value of “1”.
An array, relation_cc, comprises a group of 13 variables, representing the 13 relatives affected with colon cancer. If
you want to reference a variable using the array name, type that array name with the subscript for that variable

(Delwiche & Slaughter, 1998). For instance, our first variable F7 has subscript 1, the second variable F8 has subscript
2, etc. To reference the first variable, we write relation_cc(1); to reference the second variable, we write relation_cc(2)
and so on.

In the Code 10, the number of variables in the array list should be equal to the number listed in parentheses. That is,
we have 13 variables listed (F7 – F19) and the number in parentheses right next to an array name relation_cc is also
13 (Delwiche & Slaughter, 1998). Additionally, we place the $ before listing the variables, because they are character
variables. As you can see, all statements between the DO and the END statement are executed once for each

7

variable in the array, that is 13 times (Delwiche & Slaughter, 1998). That is, the response ‘mother’ has been changed
to ‘1’ in each of the 13 variables, whenever it occurred. The variable ‘i’ serves as an index variable, which is
incremented by 1 each time the DO loop is executed (Delwiche & Slaughter, 1998). During the first DO loop, the
variable ‘i’ gets a value of 1 and the corresponding IF statement will be IF relation_cc(1) = ‘mother’ THEN
relation_cc(1) = ‘1’; and so forth, going through the DO loop in such fashion 13 times (Delwiche & Slaughter, 1998).

Code 10. Array statement

DATA control_section3_new;
SET control_section3;
id = F1;
adopted = F3;
med_history_blood_relatives = F4;
relative_diag_colon_cancer = F5;
ARRAY relation_cc(13) $ F7 - F19;
drop F1-F5;
DO i = 1 to 13;
IF relation_cc(i) = 'mother' THEN relation_cc(i) = '1';
END;

RUN;

Figure 7 below represents a sample of the output, where every ‘mother’ response for variable F7 was changed to ‘1’.
Please note that while variables relation_cc(1) to relation_cc(13) in the array are not part of the data set, the index
variable ‘i’ is (Delwiche & Slaughter, 1998). Similar array statement can be run to turn every occurrence of response
“father” to “1” for a question asking about relatives affected with colon cancer. And, then after all of the responses for
first-degree relatives are changed into ‘1’, we can count a number of first-degree relatives diagnosed with colon
cancer. Furthermore, we can run similar array statements with the rest of the variables in the family history section,
thus creating arrays for colon_cancer variables (recoding the responses for presence or absence of colon cancer for
each of the relatives), for relative_age_cc (recoding the responses for the age when colon cancer was diagnosed)
and so on.

C. CLEANING THE DATA SET AND CREATING NEW VARIABLES
Checking for missing sections

Now that we have a single data set to work with, it is important to ensure the completeness of our data set. First we
want to ensure that we have all 10 sections of the risk factor questionnaire completed for each of our observations. In
the Code 11, we excluded section 10 (contact information) since that data cannot be used for analysis. Furthermore,
data from the food frequency questionnaire also is not part of this code below since that data set comes as a single
complete data file without separate sections. Final.masterfile contains all IDs. Final.complete contains IDs that have
responses in section1 and section3 through waist_hip (since section2 is completed by women only and we assume
that if an observation is missing section2, then that observation represents a male). Final.anymissing is all IDs that
have at least 1 section missing. Final.anymissing_wo2 leaves out the IDs that just have section2 missing. In the

Figure 7. Array code

8

DATA step, we use the KEEP = option to specify the variables to keep, with ‘have1’, ‘have2’ and so on representing
each section of the risk factor questionnaire. Following the DATA step, we proceed with the MERGE statement with
the IN = option, thus creating a tag for each section. Variables have1 through havewh are set to zero. Then, we
proceed with series of IF statements. For instance, the first IF statement indicates that if section1 is present for a
particular ID, variable have1 will be given a value of 1; otherwise the variable have1 will have a value of zero.

Code 11. Checking for missing sections* (Hawes, 2008)

DATA Final.masterfile Final.complete Final.anymissing (keep = id have1 have2 have3
have4 have5 have6 have7 have8 have9 havewh)
Final.anymissing_wo2 (keep = id have1 have2 have3 have4 have5 have6 have7 have8
have9 havewh);

MERGE Final.section1 (IN=a) Final.section2 (IN=b) Final.section3 (IN=c)
Final.section4 (IN=d) Final.section5 (IN=e) Final.section6 (IN = f)
Final.section7 (IN=g) Final.section8 (IN=h) Final.section9 (IN=i) Final.waist_hip
(IN=j);
BY id;
have1 = 0; have2 = 0; have3 = 0; have4 = 0; have5 = 0; have6 = 0; have7 = 0;
have8 = 0; have9 = 0; havewh = 0;
IF a THEN have1 = 1;
IF b THEN have2 = 1;
IF c THEN have3 = 1;
IF d THEN have4 = 1;
IF e THEN have5 = 1;
IF f THEN have6 = 1;
IF g THEN have7 = 1;
IF h THEN have8 = 1;
IF i THEN have9 = 1;
IF j THEN havewh = 1;
OUTPUT Final.masterfile;
IF a AND c AND d AND e AND f AND g AND h AND i AND j THEN OUTPUT Final.complete;
IF a = 0 OR b = 0 OR c = 0 OR d = 0 OR e = 0 OR f = 0 OR g = 0 OR h = 0 OR i = 0
OR j = 0 THEN OUTPUT Final.anymissing;
IF a = 0 OR c = 0 OR d = 0 OR e = 0 OR f = 0 OR g = 0 OR h = 0 OR i = 0 OR j = 0
THEN OUTPUT Final.anymissing_wo2;

RUN;

TMP1.anymissing

 id have1 have2 have3 have4 have5 have6 have7 have8 have9 havewh
1 10007 1 1 1 1 1 1 1 1 1 0
2 11083 1 0 1 1 1 1 1 1 1 1
3 11095 1 1 1 1 1 1 1 0 1 1
4 11129 1 1 1 1 1 1 1 0 1 1

 Figure 8. Checking for missing sections

From Figure 8 above, we can see, for instance, that ID 11129 is missing section 8.

Checking for duplicates

Now that we have checked for missing sections, it is equally important to check for duplicate observations. The
following program (Code 12) creates a macro named CHECKID. In the DATA step, the SET statement reads the &old
macro variable data set and creates the &new macro variable data set. The data set is ordered by ID variable. Next,
the FIRST.ID automatic variable named FirstID is created and has a value of 1 upon processing an observation with
the first occurrence of a new value for the variable ID and a value of zero for the consecutive occurrences (Delwiche &
Slaughter, 1998). This DATA step ends with the KEEP statement, where variables ID and FirstID are kept in the data
set (Delwiche & Slaughter, 1998). Furthermore, %MACRO CHECKID contains parameters for the file name to be
created and a file name to be read from called “new” and “old”.

The next portion of this macro includes the PROC FREQ procedure of the &new macro variable data set which
produces table where FirstID = 0, that is the table of duplicate IDs (or consecutive occurrences of the same ID). The
macro ends with the %MEND CHECKID statement. The first call to the macro gives &new macro variable the value
check_section1 &old macro variable the value final.section1, so that the statement generated by this call will read the
final.section1 file and create a file check_section1 containing the list of duplicate IDs.

Code 12. %MACRO CHECKID with macro call*

%MACRO CHECKID (new, old);
TITLE1 "Duplicate IDS in &old";

DATA &new;

SET &old;

9

BY id;
FirstID = FIRST.ID;
KEEP id FirstID;

RUN;

PROC FREQ DATA = &new;

TABLES id;
WHERE FirstID = 0;

RUN;
%MEND CHECKID;

**call macro to CHECKID;
%CHECKID (check_section1, final.section1);
%CHECKID (check_section2, final.section2);
%CHECKID (check_section3, final.section3);
%CHECKID (check_section4, final.section4);
%CHECKID (check_section5, final.section5);
%CHECKID (check_section6, final.section6);
%CHECKID (check_section7, final.section7);
%CHECKID (check_section8, final.section8);
%CHECKID (check_section9, final.section9);
%CHECKID (check_section10, final.section10);
%CHECKID (check_hip_waist, final.waist_hip);

Checking for missing values

The final step of cleaning data involves identifying missing values in your variables of interest. The missing values are
typically represented as a dot (.) for a numeric variable and a blank space (‘ ‘) for a character variable. Code 13 below
utilizes the PROC FREQ statement to produce a list of IDs WHERE the variable date_of_birth is missing. The missing
value for this particular variable is represented as a dot since it’s a numeric variable. Similar statements can be run for
other variables of interest.

Code 13. Identifying missing values

PROC FREQ DATA = Final.masterfile;
WHERE date_of_birth = .;
TABLES id;

RUN;

%MACRO RACE

Now that we have cleaned our data set, we need to recode some of the variables. As an example, we will show how
to recode race and create a new variable called bmi_2yrs. Section 9 (demographics and background information)
included information on race of a participant (variable F19), participant’s mother (variable F20), father (variable F21),
maternal grandmother (variable F22), maternal grandfather (variable F23), paternal grandmother (variable F24) and
paternal grandfather (variable F25). However, entries for race were not uniform, that is they were entered into the
FileMaker Pro database exactly the way they were filled out on the questionnaire: “w”, “american”, “irish”,
“white/italian”, “black”, “afr”, and so forth. This created a lot of confusion and we wanted to categorize race into 3
categories only: Caucasian, African American, and Other by creating macro named RACE.

First, using PROC FREQ statement, we ran frequencies of race variables in case_section9 data set. Then, using the
SET statement, a new data set named case_section9_recode was created. %MACRO RACE has 3 parameters:
section (section name for where the data is coming from), input (column input), and newvar (name of the new
variable). In recoding some of the values, we needed to use ‘=:’ which means ‘begins with’ in standard SAS language.
Calling %MACRO RACE using parameters for section=control_section9_recode, input=F19, and newvar=race
produces a new variable called race that has only 3 categories: Caucasian, African American, and Other. When
running the rest of the %MACRO RACE, 6 more new variables containing only 3 race categories are created:
race_mother-race_ffather.

Code 14. %MACRO RACE with macro call*

**Preliminary frequencies of race variables;
PROC FREQ DATA = case_section9;

TABLES F19 - F25;
RUN;

**Create a new data set called case_section9_recode where race variables will be
recoded;
DATA case_section9_recode;

SET case_section9;
RUN;

10

**Recoding race variables;
**RACE MACRO;
**Note that =: means 'begins with' in SAS code;

%MACRO RACE (section, input, newvar);
DATA §ion;

LENGTH &newvar $20.;
SET §ion;

/* First, recode any value with a "/" that is not "other" */
IF &input = 'caucasian / european' THEN &newvar = 'caucasian';
ELSE IF &input =: 'lebanese' THEN &newvar = 'caucasian';
ELSE IF &input = 'w / american' THEN &newvar = 'caucasian';
ELSE IF &input = 'white / caucasian' THEN &newvar = 'caucasian';
ELSE IF &input = 'w / irish descent' THEN &newvar = 'caucasian';
ELSE IF &input = 'scottish / english' THEN &newvar = 'caucasian';
ELSE IF &input = 'w / scot irish descent' THEN &newvar = 'caucasian';
ELSE IF &input = 'white/italian' THEN &newvar = 'caucasian';
ELSE IF &input = 'white/irish' THEN &newvar = 'caucasian';
ELSE IF &input = 'white / black' THEN &newvar = 'african american';
ELSE IF &input = 'black / white' THEN &newvar = 'african american';
ELSE IF &input = '1/2black,1/2white' THEN &newvar = 'african american';
ELSE IF &input = 'african american / caucasian' THEN &newvar = 'african
american';
ELSE IF &input = 'jewish / black' THEN &newvar = 'african american';
ELSE IF &input =: 'german' THEN &newvar = 'caucasian';

/* THEN recode all other values with a "/" to "other" */
ELSE IF index (&input,'/') THEN &newvar = 'other';

/* Second, recode any value that begins with "w" but is not "caucasian" */

ELSE IF &input = 'white-native american' THEN &newvar = 'other';
ELSE IF &input =: 'west ind' THEN &newvar = 'other';
ELSE IF &input = 'white - american indian' THEN &newvar = 'other';

/* THEN recode all other values that begin with "w" as "caucasian" */
ELSE IF &input =: 'w' THEN &newvar = 'caucasian';

/* Third, recode any value that begins with "c" but is not "caucasian" */

ELSE IF &input = 'caucasian (part native american)' THEN &newvar = 'other';
ELSE IF &input =: 'cherokee' THEN &newvar = 'other';
ELSE IF &input = 'chinese' THEN &newvar = 'other';
ELSE IF &input = 'caucasian - indian' THEN &newvar = 'other';
ELSE IF &input = 'caucasian - native american' THEN &newvar = 'other';
ELSE IF &input = 'caucasian and native american' THEN &newvar = 'other';

/* THEN recode all other values that begin with "c" as "caucasian" */
ELSE IF &input =: 'c' THEN &newvar = 'caucasian';

/* Fourth, recode any value that begins with "a" but is not "caucasian" */

ELSE IF &input =: 'afr' THEN &newvar = 'african american';
ELSE IF &input = 'arican american' THEN &newvar = 'african american';
ELSE IF &input =: 'asian' THEN &newvar = 'other';
ELSE IF &input = 'american indian' THEN &newvar = 'other';
ELSE IF &input = 'am. indian' THEN &newvar = 'other';

/* THEN recode all other values that begin with "a" as "caucasian" */
ELSE IF &input =: 'a' THEN &newvar = 'caucasian';

/* Last, recode all other values that are not 'other' into proper categories */
/* caucasian */

ELSE IF &input =: 'english' THEN &newvar = 'caucasian';
ELSE IF &input =: ' c' THEN &newvar = 'caucasian';
ELSE IF &input = 'american' THEN &newvar = 'caucasian';
ELSE IF &input =: 'french' THEN &newvar = 'caucasian';
ELSE IF &input =: 'german' THEN &newvar = 'caucasian';
ELSE IF &input =: 'irish' THEN &newvar = 'caucasian';
ELSE IF &input = 'italian' THEN &newvar = 'caucasian';
ELSE IF &input = 'portugese' THEN &newvar = 'caucasian';
ELSE IF &input =: 'scot' THEN &newvar = 'caucasian';
ELSE IF &input = 'spanish' THEN &newvar = 'caucasian';
ELSE IF &input = 'swiss' THEN &newvar = 'caucasian';

/* african american */

ELSE IF &input =: 'black' THEN &newvar = 'african american';

11

ELSE IF &input = 'negro' THEN &newvar = 'african american';

/* missing */

ELSE IF &input = ' ' THEN &newvar = ' ';
ELSE IF &input = 'unknown' THEN &newvar = ' ';
ELSE IF &input = '?' THEN &newvar = ' ';
ELSE IF &input = 'x' THEN &newvar = ' ';

/*THEN recode all other values into "other" category */

ELSE &newvar = 'other';
RUN;
%MEND RACE;

**call macro to recode race;
%RACE (control_section9_recode, F19, race);
%RACE (control_section9_recode, F20, race_mother);
%RACE (control_section9_recode, F21, race_father);
%RACE (control_section9_recode, F22, race_mmother);
%RACE (control_section9_recode, F23, race_mfather);
%RACE (control_section9_recode, F24, race_fmother);
%RACE (control_section9_recode, F25, race_ffather);

BMI variable

We also wanted to create a new variable named bmi_2yrs which calculates a participant’s Body Mass Index 2 years
prior to a participant’s participation (for control) or Body Mass Index 2 years prior to a colon cancer diagnosis (for
case). This calculation below is based on the weight measurements in pounds and height measurements in inches:

Code 15. Creating bmi_2yrs variable

DATA Final.masterfile2;
SET Final.masterfile2;
bmi_2yrs = weight_2yrs/(height*height)*703;

RUN;

D. EXPLORATORY ANALYSES AND UNCONDITIONAL LOGISTIC REGRESSION MODEL
Now that our data set is ready for statistical analysis, we will briefly talk about how to perform exploratory analysis and
fit multivariate logistic regression to our data. High dietary glycemic load (GL) has been inconsistently associated with
the risk of colon cancer in epidemiologic studies. We seek to further clarify this relationship in a population-based
incident case-control study.

Our data set MWSUG.masterfile included the following 11 variables: ID (participant’s ID), ener (energy in kcal), gl
(glycemic load in g), tfib (total dietary fiber in g), case (case or control), gender (participant’s gender), age, bmi_2yrs
(BMI in kg/m2), relative_diag_colon_cancer (family history of colon cancer), race, NSAID (whether or not Nonsteroidal
Anti-inflammatory Drugs were taken for more than 6 months) and contained 1627 observations. Our binary response
variable measures the presence or absence of the colon cancer represented by the variable case, while our
explanatory variable is the glycemic load represented by the variable gl. The other 8 variables represent potential
covariates. Variables ener, gl, tfib, age, and bmi_2yrs are continuous, while case, gender,
relative_diag_colon_cancer, race, and NSAID are categorical.

The data set was again checked for missing values among all variables using PROC FREQ statement. Variables
case, gender, and NSAID were each missing 1 observation. Variable age was missing 30 observations, bmi_2yrs had
66 missing observations, relative_diag_colon_cancer had 7 missing observations, and race variable had 3 missing
observations. Overall descriptive statistics and broken down BY case descriptive statistics (mean, median, standard
deviation, minimum, and maximum, as well as test of normality, a stem-and-leaf plot, and a box plot) were obtained
for each continuous explanatory variable using PROC UNIVARIATE procedure. Variables ener, gl, tfib, and bmi_2yrs
each had a skewed distribution, while variable age had a normal distribution. Additionally, Mann-Whitney U-test (using
PROC NPAR1WAY procedure) and t-test (using PROC TTEST procedure) were run on all continuous variables.
Mann-Whitney U-test is a nonparametric test that is used when the assumptions for using a t-test are not met. That is,
the assumptions of having a large sample size and data with normal distribution are violated. Both tests showed that
there was a statistically significant difference among cases and controls in each of the explanatory variable except
tfib.

12

For variables gl and bmi_2yrs, we created categorical variables gl_cat and bmi2yrs_cat, respectively. Additionally, in
order to use categorical variables in building a multivariate logistic regression, dummy variables were created for all
categorical variables using a series of IF/THEN/ELSE statements. Frequencies of the newly created categorical and
dummy variables were checked with PROC FREQ statements. Finally, the association of potential categorical
covariates with colon cancer was assessed with the PROC FREQ statement and an EXPECTED CHISQ MEASURES
option to get measures of association.

Code 16. Exploratory analysis*

**Missing values for ener;
PROC FREQ DATA = MWSUG.masterfile;

WHERE ener = .;
TABLES id;

RUN;

**Overall descriptive statistics for continuous variables;
PROC UNIVARIATE DATA = MWSUG.masterfile NORMAL PLOT;

TITLE 'Descriptives Statistics on ener gl tfib age bmi_2yrs';
VAR ener gl tfib age bmi_2yrs;

RUN;

**Descriptive statistics for continuous variables broken down BY case;
PROC SORT DATA = MWSUG.masterfile;

BY case;
RUN;

PROC UNIVARIATE DATA = MWSUG.masterfile NORMAL PLOT;

TITLE 'Descriptives Statistics on ener gl tfib age bmi_2yrs BY case';
VAR ener gl tfib age bmi_2yrs;
BY case;

RUN;

**Running t-tests on continuous variables;
PROC SORT DATA = MWSUG.masterfile;

BY case;
RUN;

**T-tests are statistically significant for all variables except tfib;
PROC TTEST DATA = MWSUG.masterfile;

CLASS case;
VAR ener gl tfib age bmi_2yrs;

RUN;

**Mann-Whitney U-tests are statistically significant for all variables except tfib;
PROC NPAR1WAY DATA = MWSUG.masterfile WILCOXON;

CLASS case;
VAR ener gl tfib age bmi_2yrs;

RUN;

**Creating categorical and dummy variables;
DATA MWSUG.masterfile;

SET MWSUG.masterfile;

**Create categorical variable for gl;

IF gl <= 74.29 THEN gl_cat = '1stq';
ELSE IF gl > 74.29 AND gl <= 102.74 THEN gl_cat = '2ndq';
ELSE IF gl > 102.74 AND gl <= 134.66 THEN gl_cat = '3rdq';
ELSE IF gl > 134.66 AND gl <= 182.35 THEN gl_cat = '4thq';
ELSE IF gl > 182.35 THEN gl_cat = '5thq';
ELSE gl_cat = ' ';

**Create dummy variables for gl_cat: Reference = 1stq;

IF gl_cat = '2ndq' THEN Q2 = 1;
ELSE IF gl_cat NE ' ' THEN Q2 = 0;
IF gl_cat = '3rdq' THEN Q3 = 1;
ELSE IF gl_cat NE ' ' THEN Q3 = 0;
IF gl_cat = '4thq' THEN Q4 = 1;
ELSE IF gl_cat NE ' ' THEN Q4 = 0;
IF gl_cat = '5thq' THEN Q5 = 1;
ELSE IF gl_cat NE ' ' THEN Q5 = 0;

RUN;

13

**Frequency of glycemic load variable to double check counts;
TITLE1 'Frequency of glycemic load';
PROC FREQ DATA = MWSUG.masterfile;

TABLES gl gl_cat Q2 Q3 Q4 Q5;
RUN;

**Association of potential covariates with colon cancer;
PROC FREQ DATA = MWSUG.masterfile;

TABLES gl_cat*case / EXPECTED CHISQ MEASURES;
RUN;

Finally, we ran a number of variable selection models (i.e. multivariate unconditional logistic regression models) using
PROC LOGISTIC procedure and going through forward, backward, stepwise, and manual variable selection process
in order to come up with the best model. PROC LOGISTIC statements are pretty straightforward. The DESCENDING
option specifies that the resulting equation predicts the log odds of having colon cancer given a certain set of
explanatory values. The logistic regression example in Code 17 depicts several MODEL options: LACKFIT (the
Hosmer and Lemeshow Goodness-of-Fit test), CTABLE (a classification table), and RISKLIMITS (the Odds Ratios for
each variable along with 95% confidence limits). To specify the forward selection process, for instance, include
SELECTION=FORWARD option in the MODEL statement.

Code 17. Multivariate unconditional logistic regression modeling*

TITLE1 'Logistic Regression : gl categorical';
PROC LOGISTIC DESCENDING DATA = MWSUG.masterfile OUTEST =BETAS COVOUT;

CLASS gl_cat (REF='1stq') /PARAM = ref;
MODEL case = gl_cat ener tfib gender age bmi_2yrs famhist NSAID
gl_cat*gender /
LACKFIT
CTABLE
RISKLIMITS;
OUTPUT OUT=pred P=phat LOWER=lcl UPPER=ucl
PREDPROB=(individual crossvalidate);

RUN;

Figure 9a. Final multivariate unconditional logistic regression model: Model fit statistics

Model Fit Statistics

 Intercept
 Intercept and
Criterion Only Covariates
AIC 2022.713 1925.119
SC 2028.045 2010.427
-2 Log L 2020.713 1893.119

 Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 127.5933 15 <.0001
Score 123.0643 15 <.0001
Wald 113.5003 15 <.0001

14

 Type 3 Analysis of Effects

 Wald
Effect DF Chi-Square Pr > ChiSq
gl_cat 4 3.6699 0.4525
ener 1 3.6110 0.0574
tfib 1 7.8129 0.0052
gender 1 0.2276 0.6333
age 1 51.6721 <.0001
bmi_2yrs 1 20.3749 <.0001
famhist 1 16.1174 <.0001
NSAID 1 8.7977 0.0030
gender*gl_cat 4 9.8560 0.0429

 Analysis of Maximum Likelihood Estimates

 Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -4.4209 0.4874 82.2616 <.0001
gl_cat 2ndq 1 0.0592 0.2085 0.0805 0.7766
gl_cat 3rdq 1 0.1542 0.2225 0.4804 0.4882
gl_cat 4thq 1 0.4235 0.2432 3.0312 0.0817
gl_cat 5thq 1 0.4100 0.3349 1.4990 0.2208
ener 1 0.000198 0.000104 3.6110 0.0574
tfib 1 -0.0218 0.00779 7.8129 0.0052
gender 1 -0.1541 0.3231 0.2276 0.6333
age 1 0.0403 0.00560 51.6721 <.0001
bmi_2yrs 1 0.0405 0.00896 20.3749 <.0001
famhist 1 0.4804 0.1197 16.1174 <.0001
NSAID 1 -0.3353 0.1130 8.7977 0.0030
gender*gl_cat 2ndq 1 0.8480 0.4246 3.9889 0.0458
gender*gl_cat 3rdq 1 0.5374 0.4092 1.7244 0.1891
gender*gl_cat 4thq 1 -0.0501 0.4052 0.0153 0.9015
gender*gl_cat 5thq 1 0.7809 0.4172 3.5036 0.0612

 Odds Ratio Estimates

 Point 95% Wald
Effect Estimate Confidence Limits
ener 1.000 1.000 1.000
tfib 0.978 0.964 0.994
age 1.041 1.030 1.053
bmi_2yrs 1.041 1.023 1.060
famhist 1.617 1.279 2.044
NSAID 0.715 0.573 0.893

Association of Predicted Probabilities and Observed Responses

Percent Concordant 66.9 Somers' D 0.342
Percent Discordant 32.7 Gamma 0.343
Percent Tied 0.4 Tau-a 0.160
Pairs 546832 c 0.671

 Wald Confidence Interval for Adjusted Odds Ratios

Effect Unit Estimate 95% Confidence Limits
ener 1.0000 1.000 1.000 1.000
tfib 1.0000 0.978 0.964 0.994
age 1.0000 1.041 1.030 1.053
bmi_2yrs 1.0000 1.041 1.023 1.060
famhist 1.0000 1.617 1.279 2.044
NSAID 1.0000 0.715 0.573 0.893

Figure 9b. Final multivariate unconditional logistic regression model: Maximum Likelihood and Odds Ratio
estimates

15

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq
 6.4616 8 0.5957

Figure 9c. Final multivariate unconditional logistic regression model: Goodness-of-Fit test

The study sample consisted of 572 incident colon cancer cases and 956 population controls. Cases were recruited
through the Kentucky Cancer Registry, and controls were recruited via random digit dialing. Glycemic load was
assessed based on a self-administered food frequency questionnaire.

On average, the cases had a significantly higher GL (mean = 147.4g, SD = 93.4g) than the controls (mean = 130.1g,
SD = 78.2g) (p = 0.0001). In multivariate unconditional logistic regression model adjusted for age, gender, body mass
index (BMI), family history of colorectal cancer, NSAID use, total dietary fiber and total caloric intake, the odds ratio
(OR) for the 2nd through the upper quintiles of GL were: 1.06 (95% CI: 0.71, 1.60), 1.17 (95% CI: 0.75, 1.80), 1.53
(95% CI: 0.95, 2.46), 1.51 (95% CI: 0.78, 2.90), respectively (p for trend = 0.1527), as compared to those at the
bottom quintile of GL intake. There is a suggested evidence for a positive association between glycemic load and the
risk of colon cancer. The results also indicated an effect modification by gender that needs to be further evaluated
through stratification analysis by gender. P-value of Hosmer and Lemeshow Goodness-of-Fit test was 0.60, indicating
that the above model was a good fit.

Missing values in PROC LOGISTIC

Reviewing the log file after running PROC LOGISTIC statement revealed that there were 99 observations that were
excluded from the analysis due to missing values in the variables specified previously. Since PROC LOGISTIC does
not accommodate missing data, we need to correct for missing values in these variables by accessing the original
filled out questionnaires. If the information in the original questionnaires is not present, we could perhaps impute
missing values using the PROC MI procedure.

CONCLUSION
Data come in different file formats and before we can summarize and explore patterns in the data and draw any
inferences, it is essential to 1) import data from an outside source and assign variable names; 2) merge several
sections into a single data set; and 3) clean variables and create new variables. After these initial steps, we can
proceed with 4) exploratory analyses and model building.

This paper provided effective methods to creating a data set ready to be used for exploratory analyses and model
building. The techniques included 1) %MACRO IMPORT to import the data into SAS and an example for
standardizing variable names in each section and among sections; 2) %MACRO SORT to simplify sorting for multiple
sections, ARRAY to simplify coding, and SET and MERGE statements to combine data sets; 3) a macro to check for
duplicate IDs, a code to check for missing sections and values in a data set, a macro to recode race variable, and a
code for creating a BMI variable; and 4) tools to perform an initial exploratory analysis and a logistic regression model.

Having a single ready-to-use data set allows for a greater flexibility and efficiency in handling and data manipulation
compared to working with multiple separate data sets. Furthermore, the techniques covered in this paper can be
easily expanded and applied in other areas of research.

REFERENCES
1. Delwiche, Lora D., and Susan J. Slaughter. 1998. The Little SAS® Book: A Primer, Second Edition. Cary, NC: SAS
Institute Inc.

2. Hawes, Stephen E. 2008. Advanced Topics in SAS Programming or Everything I Can Think of to Tell You About in
SAS. [Electronic Document] Chicago, IL: University of Washington School of Public Health and Community Medicine.

ACKNOWLEDGMENTS
This research was supported by a Damon Runyon Cancer Research Foundation Clinical Investigator Award (CI-8),
the Case Center for Transdisciplinary Research on Energetics and Cancer (1U54 CA-116867-01), and a National
Cancer Institute K22 Award (1K22 CA120545-01).

16

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Svetlana Zelenskiy
Case Western Reserve University
Department of Epidemiology & Biostatistics
10900 Euclid Avenue, Cleveland, OH 44106-4945
svetlana.zelenskiy@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

