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ABSTRACT 

How many times have you tried to simplify your code with LINK/RETURN statements? 
How much grief have you put yourself through trying to create macro functions to encapsulate business logic? 
How many times have you uttered "If only I could call this DATA Step as a function"? 

 
If any of these statements describe you, then the new features of PROC FCMP are for you. If none of these 
statements describe you, then you really need the new features of PROC FCMP. This paper will get you started with 
everything you need to write, test, and distribute your own "data step" functions with the new (SAS® 9.2) PROC 
FCMP. This paper is intended for beginner to intermediate programmers, although anyone wanting to learn about 
PROC FCMP can benefit. 

INTRODUCTION 

SAS
®
 programmers inherently understand the concept of breaking a complex problem into manageable pieces; a 

quick look at any SAS programme with the rich variety of DATA and PROC steps will demonstrate this. However, 
within the main programming environment, the DATA step, the ability to break down problem complexity into 
manageable pieces has been limited to two basic methods: Link/Return blocks and Macros. 

Link/Return blocks allow the SAS programmer to isolate (encapsulate) business logic using familiar DATA step 
code; although useful, there are some drawbacks to this method. First, the SAS code is embedded into the DATA 
step. This means the Link/Return block needs to be copied to each DATA step where it is to be used. As with all 
cut-and-paste operations this is both error prone and maintenance heavy. Second, since the Link/Return block is 
part of the DATA step, it uses DATA step variables not parameters. This can lead to the need to a series of variable 
assignments before and after the Link statement so the DATA step variables that need processed are appropriately 
renamed to and from the Link/Return block variable names. Once again, this can lead to errors. 

SAS Macros help to eliminate some of the re-use and parameter issues at the expense of introducing non-DATA 
step syntax. In addition, the overuse of macros can lead to code that is more difficult to read and maintain. 

To overcome the limitations of these two alternatives, SAS 9.2 has made PROC FCMP available to the DATA step 
programmer; prior to SAS 9.2 PROC FCMP functions could be used in several SAS/STAT

®
, SAS/ETS

®
  and 

SAS/OR
®
  procedures. PROC FCMP allows the SAS programmer to create and reuse parameterized functions using 

familiar DATA step code. This paper will step you through the creation, testing, and deployment of your own 
functions. Although PROC FCMP uses DATA step like syntax, there are a few differences between its syntax and the 
DATA step syntax; these differences will be highlighted.  

Before we look at how to create a function with PROC FCMP, let’s examine the definition of a function. 

WHAT IS A FUNCTION 

Every year the local ballet company holds a black-tie function to raise money; in this case, a function can be defined 
as a social gathering. This is not the type of function to be created by PROC FCMP. The function of a soda bottle is 
to hold the soda; in this case a function can be defined as the purpose for which the object exists. This is not the 
type of function to be created by PROC FCMP.  What then is the thing we SAS programmers call a function? 

A general definition of a function is: 

A function is a rule for transforming zero or more values called arguments; the result of the transformation 
is called the value or result of the function.  The transformation can also have side effect; that is permanent 
changes in the values of arguments. 

 

The SAS 9.2 online help has a similar definition: 
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A SAS function performs a computation or system manipulation on arguments, and returns a value that 
can be used in an assignment statement or elsewhere in expressions. 

What is not explicit in either the general description above or in the definition supplied in the SAS help is the fact that 
functions have names. Not only does the function have a name but also that name should be meaningful. So 
although the statement: 

rc = foo(2500, 3); 

 

may be a valid way to call a function, a function called foo does not convey very much meaning to most people 
reading the code. On the other hand the statement: 

interestPaid = monthlyInterest(2500, 3); 

 

would make us guess that function is probably calculating a monthly interest on $2,500 at 3% interest. This would be 
reinforced if the function were called with variables instead of constants: 

interestPaid = monthlyInterest(balance, iRate); 

 

 

The SAS 9.2 online help has a definition for a second type of function, called a CALL Routine: 

A CALL routine alters variable values or performs other system functions. CALL routines are similar to 
functions, but differ from functions in that you cannot use them in assignment statements or expressions.  

All SAS CALL routines are invoked with CALL statements. That is, the name of the routine must appear 
after the keyword CALL on the CALL statement 

 

In our general definition of a function we introduced side effects; that is, changes in the values of the arguments. In 
the case of a SAS CALL Routine these side effects are the method for returning values.  If our function 
monthlyInterest were written as a CALL Routine, it would look something like: 

call monthlyInterest(balance, iRate, interestPaid); 

 

In this case the variable interestPaid is passed in as an argument and its value is changed in the CALL Routine.  

 

In this paper I will be using the term function to include both functions and CALL Routines as defined in the SAS 
help; in cases where there could be ambiguity I will explicitly refer to SAS functions or SAS CALL Routines. 

 

WHAT IS A RULE 

In our general definition of a function we called it “a rule for transforming zero or more values”.  The rule can be a 
simple formula such as: 

• Square(x) == x * x 

• Product(x, y) == x * y 

 

The rule may be more complex such as: 

1. Discount(quantity) == if quantity > 100 then discount = 0.15 else discount = 0.0 

 

In addition, some of the rules we will implement will end up being more complex than originally conceived. Consider 
a simple rule of division: 

2. Divide(dividend, divisor) == dividend / divisor 
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This is fine, as long as divisor is a number and not equal to zero. Our simple rule can be expanded to something 
more complex, but also more robust: 

3. Divide(dividend, divisor) == if divisor is missing then missing else if divisor is 0 then 0 else dividend / divisor 

 

Such a divide function in a data step where we expect a number of missing or 0 values in the divisor field would 
simplify our code and clean up the Division by Zero and Missing Value NOTEs in our log.  

With this introduction to functions, let’s turn to creating our own functions. 

CREATING FUNCTIONS 

Starting in SAS 9.2 DATA step programmers can start to take advantage of PROC FCMP to create and use DATA 
step language functions. PROC FCMP was available before SAS 9.2, but the functions could only be used in 
selected SAS/STAT and SAS/ETS procs. We will start by looking at how we could create 2 simple functions, one to 
return an integer constant and the other to return a character constant. In order to create these functions we will 
have to learn some of the PROC FCMP syntax. 

PROC FCMP SYNTAX 

The following is the syntax for PROC FCMP:  

PROC FCMP option(s);   

 ARRAY  array-name[dimensions] </NOSYMBOLS | variable(s) | constant(s) | (initial-value(s))>;   

 ATTRIB  variable(s) <FORMAT=format-name LABEL='label' LENGTH=length>;   

 FORMAT  variable(s) <format> <DEFAULT=default-format>;   

 FUNCTION  function-name(argument-1, argument-2, ..., argument-n) <$> <length>;   

 LABEL   variable='label';   

 LENGTH  variable(s)<$> length <DEFAULT=n>;   

 STRUCT  structure-name variable;   

 SUBROUTINE  subroutine-name (argument-1, argument-2, ..., argument-n);   

OUTARGS out-argument-1, out-  argument-2, ..., out-argument-n;   

 

As you can see, there are some familiar elements in this syntax. We will be concentrating on two of these elements, 
function and subroutine, as well as some of the proc options.  

proc fcmp  

    outlib=work.funcs.Test;  /* where will the functions be saved */ 

 

function whatAmI();      /* declare a function returning a number */ 

return(42);       /* return the number */ 

 endsub; 

 

function whereAmI() $;      /* declare a function retuning a string */ 

return('In Test');   /* return the string */ 

endsub; 

 

quit; 

 

 

Let’s examine the code above. 

1. outlib=work.funcs.test:  

this option tells SAS where to store the function. If no outlib= is entered then none of the functions are 
saved. 

2. function whatAmI()  

2 

1 

3 

5 

6 

4 

7 
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function is the keyword to start the definition. Functions return a value, either numeric or character; since 
there is not character option in the definition, this function will return a number. NOTE: the function name, 
like all SAS names, is not case sensitive. 

whatAmI is the name of the function. 

() indicates there are no arguments to the function. 

3. return(42); 

the return statement is used to return the value of the function to the DATA step. In this case we are 
returning a constant (42); however, it could be, and usually will be, a variable calculated in the function. 

4. endsub 

this ends the definition of the function. 

5. function whereAmI() $ 

the $ modifier tells SAS that this function will return a character string. Since there is no length specified the 
function can return a string of any valid SAS string length. NOTE: the function name, like all SAS names, is 
not case sensitive. 

6. return(‘In Test’) 

the return statement returns the constant string In Test; however, it could be, and usually will be, a variable 
calculated in the function. 

7. endsub 

this ends the definition of the function. 

 

After we submit this code, we check the log. The log for this code is: 

1    proc fcmp 

2        outlib=work.funcs.test;  /* where will the functions be saved */ 

3    function whatAmI(); /* declare a function returning a number */ 

4      return(42);       /* return the number */ 

5    endsub; 

6 

7    function whereAmI() $; /* declare a function retuning a string */ 

8      return('In Test');   /* return the string */ 

9    endsub; 

10 

11   quit; 

 

NOTE: Function whereAmI saved to work.funcs.test. 

NOTE: Function whatAmI saved to work.funcs.test. 

NOTE: PROCEDURE FCMP used (Total process time): 

      real time           1.48 seconds 

      cpu time            0.14 seconds 

 

We see the function appears to have compiled correctly, so let’s try using them in a simple DATA _NULL_ step: 

data _null_; 

     rci = whatAmI(); 

     put rci=; /* should be 42 */ 

     rcc = whereAmI(); 

     put rcc=; /* should be In Test */ 

run; 
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If we look at the log, there appears to be a problem, our new functions could not be found: 

12 

13   data _null_; 

14        rci = whatAmI(); 

                ------- 

                68 

ERROR 68-185: The function WHATAMI is unknown, or cannot be accessed. 

 

15        put rci=; 

16        rcc = whereAmI(); 

                -------- 

                68 

ERROR 68-185: The function WHEREAMI is unknown, or cannot be accessed. 

 

17        put rcc=; 

18   run; 

 

In order for SAS to recognize our functions we have to use the SAS option CMPLIB=; this option can be set in the 
configuration file, in the autoexec.sas file, or in your program; in these examples the CMPLIB= option will be set in 
the program.  

When we invoked PROC FCMP we used the outlib= option to tell SAS where to store the function; in our case we 
used work.funcs.test. We will look at the library structure later, for now we will take on faith that the outlib= option 
is a three level reference (1 – work, 2 – funcs, 3 – test) but the CMPLIB= options takes only a two lever reference 
work.funcs (1 – work, 2 – funcs). The following is the SAS log when we add the options statement and re-execute 
our code: 

19   options cmplib=work.funcs; 

20   data _null_; 

21        rci = whatAmI(); 

22        put rci=; /* should be 42 */ 

23        rcc = whereAmI(); 

24        put rcc=; /* should be In Test */ 

25   run; 

 

rci=42 

rcc=In Test 

NOTE: DATA statement used (Total process time): 

      real time           0.14 seconds 

      cpu time            0.07 seconds 

 

Now we see the results we expected.  

 

To recap our progress, here are the highlights: 

1. we used the PROC FCMP outlib= option to tell SAS where to store the compiled functions. 

2. we create two functions, one returning a number and one returning a string, using the function statement. 

3. we used the cmplib= system option to tell SAS where to find our functions. 

4. we invoked the two new functions in a DATA step and confirmed the results. 
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The next example will demonstrate the use of function arguments and building in some decision rules to our 
functions.  In this example the function will take one numeric argument and return a value based on the argument. If 
you had a series of variables (eg survey questions) that needed to be recoded the same way, you could create a 
similar function. The following is the SAS log showing the call to PROC FCMP: 

27   proc fcmp 

28       outlib=work.funcs.test;   /* where will the functions be saved */ 

29   function whatAmI(startValue); /* declare a function returning a number */ 

WARNING: Function whatAmI is already defined in packet test. Function whatAmI as 

defined in the 

         current program will be used as default when packet is not specified. 

30     if missing(startValue)   then rc=.S; 

31     else if startValue <  0  then rc=.Z; 

32     else if startValue < 20  then rc=0; 

33     else if startValue < 50  then rc=20; 

34     else if startValue < 100 then rc=50; 

35     else                          rc=100; 

36     return(rc); 

37   endsub; 

38 

39   quit; 

 

NOTE: Function whatAmI saved to work.funcs.test. 

NOTE: PROCEDURE FCMP used (Total process time): 

      real time           0.12 seconds 

      cpu time            0.06 seconds 

 

 

Let’s examine the code above. 

1. Function whatAmI(startValue) 

we are creating a function that takes one numeric argument (startValue) and will return a numeric 

2. WARNING: Function whatAmI… 

a SAS warning telling us we are redefining the function whatAmI. 

3. If … then … else… rc= 

a series of if/then/else statements where we set a value of the variable rc. For more complex logic we could 
have do… end blocks.  

4. return(rc) 

return the variable rc to the DATA step. 

 

A check of the log of a DATA _NULL_ step shows the new function working. 

40 

41   options cmplib=work.funcs; 

42   data _null_; 

43        iAm = .; 

44        rci = whatAmI(iAM); 

45        put iAM= rci=; /* should be .S */ 

46        iAm = -1; 

47        rci = whatAmI(iAM); 

1 

2 

3 

4 
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48        put iAM= rci=; /* should be .Z */ 

49        iAm = 10; 

50        rci = whatAmI(iAM); 

51        put iAM= rci=; /* should be 0 */ 

52        iAm = 30; 

53        rci = whatAmI(iAM); 

54        put iAM= rci=; /* should be 20 */ 

55        iAm = 80; 

56        rci = whatAmI(iAM); 

57        put iAM= rci=; /* should be 50 */ 

58        iAm = 20000; 

59        rci = whatAmI(iAM); 

60        put iAM= rci=; /* should be 100 */ 

61   run; 

 

iAm=. rci=S 

iAm=-1 rci=Z 

iAm=10 rci=0 

iAm=30 rci=20 

iAm=80 rci=50 

iAm=20000 rci=100 

NOTE: DATA statement used (Total process time): 

      real time           0.10 seconds 

      cpu time            0.07 seconds 

 

 

 

The second type of function that can be defined is a subroutine, or in SAS terms, a CALL Routine. We can redefine 
our function as a subroutine as follows: 

proc fcmp  

    outlib=work.funcs.test;         /* where will the functions be saved */ 

 

subroutine whatAmI(startValue, rc); /* declare a subroutine             */ 

 

  if missing(startValue)   then rc=.S; 

  else if startValue <  0  then rc=.Z; 

  else if startValue < 20  then rc=0; 

  else if startValue < 50  then rc=20; 

  else if startValue < 100 then rc=50; 

  else                          rc=100; 

  return; 

endsub; 

 

quit; 

 

The important change here is 

1. subroutine whatAmI(startValue, rc) 

we are using subroutine instead if function. In addition, we have two arguments instead of one. We will 
use the rc argument to return the value to the DATA step. 

1 

2 
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2. return 

the return statement takes no arguments. In this example we could have omitted the return statement since 
it is implicit with the endsub statement. 

 

When we examine a portion of the SAS log for this code we see some warning messages: 

62 

63   proc fcmp 

64       outlib=work.funcs.test;         /* where will the functions be saved */ 

65 

66   subroutine whatAmI(startValue, rc); /* declare a subroutine             */ 

WARNING: Function whatAmI is already defined in packet test. Function whatAmI as 

defined in the 

         current program will be used as default when packet is not specified. 

67 

68     if missing(startValue)   then rc=.S; 

WARNING: The variable rc should not be the result of the '=' operation because 

it is a read-only argument to subroutine whatAmI. Any changes to this argument 

will not be returned from the subroutine whatAmI. Use the OUTARGS statement to 

allow return values from a subroutine. 

 

1. WARNING: Function whatAmI 

the WARNING telling us we are redefining the definition. 

2. WARNING: The variable rc should not… 

We wanted to use rc to return a value to the DATA step, however SAS is telling us that any changes to the 
variable will not be returned to the DATA step. It also reminds us we missed the outargs statement. 

 

The subroutine did compile and was saved. We could try accessing it in a DATA step; this SAS log shows what the 
result will be: 

79   data _null_; 

80        length rci 8.; 

81        rci = -1; 

82        iAm = .; 

83        call whatAmI(iAM, rci); 

84        put iAM= rci=; /* should be .S */ 

85        iAm = -1; 

86        call whatAmI(iAM, rci); 

87        put iAM= rci=; /* should be .Z */ 

88        iAm = 10; 

89        call whatAmI(iAM, rci); 

90        put iAM= rci=; /* should be 0 */ 

91        iAm = 30; 

92        call whatAmI(iAM, rci); 

93        put iAM= rci=; /* should be 20 */ 

94        iAm = 80; 

95        call whatAmI(iAM, rci); 

96        put iAM= rci=; /* should be 50 */ 

97        iAm = 20000; 

98        call whatAmI(iAM, rci); 

1 

2 

1 

2 
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99        put iAM= rci=; /* should be 100 */ 

100  run; 

 

iAm=. rci=-1 

iAm=-1 rci=-1 

iAm=10 rci=-1 

iAm=30 rci=-1 

iAm=80 rci=-1 

iAm=20000 rci=-1 

NOTE: DATA statement used (Total process time): 

      real time           0.10 seconds 

      cpu time            0.07 seconds 

 

From the log we see: 

1. parameters iAm and rci are initialized 

2. the subroutine is called with the two arguments 

Note there are no WARNINGs or ERRORs, so the subroutine was called. 

3. iAm=. rci=-1… 

Note that the value of rci has not been changed in any of the subroutine calls 

 

The fix for this is simple; add the outargs statement as the following SAS log shows 

103  proc fcmp 

104      outlib=work.funcs.test;         /* where will the functions be saved */ 

105 

106  subroutine whatAmI(startValue, rc); /* declare a subroutine             */ 

WARNING: Function whatAmI is already defined in packet test. Function whatAmI as 

defined in the current program will be used as default when packet is not 

specified. 

107             outargs rc;              /* argument rc will return a value */ 

108 

109    if missing(startValue)   then rc=.S; 

110    else if startValue <  0  then rc=.Z; 

111    else if startValue < 20  then rc=0; 

112    else if startValue < 50  then rc=20; 

113    else if startValue < 100 then rc=50; 

114    else                          rc=100; 

115  endsub; 

116 

117  quit; 

 

NOTE: Function whatAmI saved to work.funcs.test. 

NOTE: PROCEDURE FCMP used (Total process time): 

      real time           0.14 seconds 

      cpu time            0.06 seconds 

 

 

118 

119  options cmplib=work.funcs; 

3 

1 
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120  data _null_; 

121       length rci 8.; 

122       rci = -1; 

123       iAm = .; 

124       call whatAmI(iAM, rci); 

125       put iAM= rci=; /* should be .S */ 

126       iAm = -1; 

127       call whatAmI(iAM, rci); 

128       put iAM= rci=; /* should be .Z */ 

129       iAm = 10; 

130       call whatAmI(iAM, rci); 

131       put iAM= rci=; /* should be 0 */ 

132       iAm = 30; 

133       call whatAmI(iAM, rci); 

134       put iAM= rci=; /* should be 20 */ 

135       iAm = 80; 

136       call whatAmI(iAM, rci); 

137       put iAM= rci=; /* should be 50 */ 

138       iAm = 20000; 

139       call whatAmI(iAM, rci); 

140       put iAM= rci=; /* should be 100 */ 

141  run; 

 

iAm=. rci=S 

iAm=-1 rci=Z 

iAm=10 rci=0 

iAm=30 rci=20 

iAm=80 rci=50 

iAm=20000 rci=100 

NOTE: DATA statement used (Total process time): 

      real time           0.12 seconds 

      cpu time            0.07 seconds 

 

Let’s examine the code above. 

1. outargs rc; 

this tell SAS the value of rc can be altered and the altered value returned  

2. iAm=. rci=S… 

our CALL Routine now returns the correct values. 

 

After looking at these examples of a function and a subroutine, you might ask yourself “Why would I use a 
subroutine when a function calling a function is clearer?”.. One main reason is that a subroutine can return multiple 
values whereas a function can only return one value. The following scenario demonstrates the use of a subroutine to 
return multiple values. 

One data set has the following columns related to payments: 

Column Description 

ID Unique entity identifier 

GROUP Group in which ID is a member 

2 
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Column Description 

PAYRULE Payment rule 

PAYDATE Payment Date. There is only one payment date per month for everyone 

PAYAMOUNT Amount of the Payment 

 

There are several hundred thousand of these records covering three years. 

 

A second dataset has the following columns relating to payments for specific services. 

Column Description 

ID Unique entity identifier. 

GROUP Group in which ID is a member 

SERVICECODE A code identifying the service 

SERVICEDATE Service Date. These are the actual date of service 

SERVICEAMOUNT Amount of the Payment 

 

There are about 140 million of these records per year covering the same three year period. The goal is to combine 
the payments by ID, GROUP and MONTH. In order to get a common ‘month’ value it was decided that the PAYDATE 
column would be the appropriate value to use. In order to do that, the SERVICEDATE had to be converted to the 
equivalent PAYDATE. In addition, since this process would be repeated on a monthly basis, a repeatable and 
automated process was required. Essentially a simple lookup that would convert any date to the appropriate 
PAYDATE was needed. To minimize the number of times the larger dataset had to be accessed a format lookup to 
convert the SERVICEDATE to the PAYDATE was chosen. The problem then is how to automate this process.  

 

The first step was to create a list of distinct PAYDATES; remember, each month has only one PAYDATE. With only 
one date per month, we would need just two other values to create the format – the first day of the month and the 
last day of the month. The following subroutine shows how to do this: 

proc fcmp outlib=work.Funcs.Dates; 

subroutine datesInMonth(inDate, startDate, endDate, days); 

     outargs startDate, endDate, days; 

 

     nextMonth = intnx('month', inDate, 1); 

     startDate = intnx('month', nextMonth, -1); 

     endDate = nextMonth - 1; 

     days = nextMonth - startDate; 

     return; 

endsub; 

 

Let’s review this code: 

1. outlib=work.myFuncs.Dates 

the compiled functions will be going into a different 3
rd
 level location. 

2. subroutine datesInMonth(inDate, startDate, endDate, days) 

an attempt to give both a meaning routine name, and meaningful argument names. 

3. outargs startDate, endDate, days 

three of the arguments will return values. In this way we need only one call to get three new values. 
startDate will be the first day of the month for inDate, endDate will be the last day of the month for inDate, 

1 

2 

3 

4 
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and days will be the number of days in the month. For the problem as described above this is not needed, 
but for the real problem it was also required. 

4. nextMonth = intnx( …. 

using the built-in SAS function intnx() and some simple date arithmetic we can calculate the values we 
want to return. 

 

With this subroutine in place, the following code shows how to create and use the format: 

data cntlinPaydates; 

     retain fmtName 'payDates'; 

     set payDates; 

     call missing(start, end, days); 

     call datesInMonth(payDate, start, end, days); 

     put start= end= days= paydate=; 

     label = paydate; 

     format payDate start end yymmdd10.; 

run; 

 

proc format cntlin=cntlinPaydates; 

run; 

 

data test; 

     set allVisits; 

     paydate = input(put(servicedate, paydates.), 7.); 

     if _N_ = 1000 then stop; 

     format paydate yymmdd10.; 

run; 

 

The main parts of this code are: 

1. create the cntlin dataset using the first day in the month as the start value, the last day of the month as the 
end value and the PAYDATE as the label. 

2. create the format using the cntlin dataset just created. 

3. Apply the format to serviceDate to lookup the appropriate paydate. Our two datasets now have a common 
date value we can use in a join. 

 

In this section we looked at how you create functions and subroutines. The example functions were very simple 
since the purpose here is to show the basic mechanics of creating a function. Needless to say, complex rules can be 
encapsulated in functions; to see examples of a complex functions look at Secosky (2007). 

Now that we know how to create functions, let’s look at how to test them before compiling them into a permanent 
library. 

TESTING/DEBUGGING FUNCTIONS 

In the previous section we looked at creating and storing functions, then using them in a DATA _NULL_ step. For 
simple functions this works well, however for more complex functions we need to look at alternatives. We do not 
have access to the DATA step debugger so we will have to make judicious use of the PUT statement within the 
function to help test and debug new functions. The results of the PUT statement can go to the PRINT (default) and 
LOG destinations.  

Let’s revisit our daysInMonth routine and add some PUT statements to see the results as we execute: 

154  proc fcmp outlib=work.Funcs.Dates;; 

1 

3 

2 
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155  subroutine datesInMonth(inDate, startDate, endDate, days); 

WARNING: Function datesInMonth is already defined in packet Dates. Function 

datesInMonth as defined in the current program will be used as default when 

packet is not specified. 

156       outargs startDate, endDate, days; 

157       FILE log; 

158       put inDate yymmdd10. ; 

159       nextMonth = intnx('month', inDate, 1); 

160       put nextMonth yymmdd10.; 

161       startDate = intnx('month', nextMonth, -1); 

162       put startDate yymmdd10.; 

163       endDate = nextMonth - 1; 

164       put endDate yymmdd10.; 

165       days = nextMonth - startDate; 

166       put days; 

167       return; 

168  endsub; 

169  QUIT; 

 

NOTE: Function datesInMonth saved to work.Funcs.Dates. 

NOTE: PROCEDURE FCMP used (Total process time): 

      real time           0.10 seconds 

      cpu time            0.04 seconds 

 

 

170  data _null_; 

171       format firstDay lastDay yymmdd10. 

172              numdays 2.; 

173       call missing(firstDay, lastDay, numdays); 

174       PUT 'calling routine:'; 

175       call datesInMonth('15jan2009'd, firstDay, lastDay, numdays); 

176       PUT 'end of routine:'; 

177       put _all_; 

178 

179       PUT 'calling routine:'; 

180       call datesInMonth('15FEB2009'd, firstDay, lastDay, numdays); 

181       PUT 'end of routine:'; 

182       put _all_; 

183  run; 

 

calling routine: 

2009-01-15 

2009-02-01 

2009-01-01 

2009-01-31 

31 

end of routine: 

firstDay=2009-01-01 lastDay=2009-01-31 numdays=31 _ERROR_=0 _N_=1 

calling routine: 

2009-02-15 

2009-03-01 

1 

2 

3 

4 

5 
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2009-02-01 

2009-02-28 

28 

end of routine: 

firstDay=2009-02-01 lastDay=2009-02-28 numdays=28 _ERROR_=0 _N_=1 

NOTE: DATA statement used (Total process time): 

      real time           0.10 seconds 

      cpu time            0.06 seconds 

 

The main points here are 

1. FILE log 

direct the results of the PUT statements to the log. 

2. PUT inDate yymmdd10. (and others) 

Put the contents of inDate to the log using the specified date format. Similar statements are used for the 
other variables. 

3. call datesInMonth… 

call the routine with a constant value in the inDate parameter. Note that messages are also written before 
and after the call. 

4. The message from the DATA step before the call to the routine. 

5. The values of the variable within the routine. 

 

Earlier, when we first saw outlib= it was mentioned that if not library is given then the function is not saved. At first 
glance this seems odd. That is, why would you create a function if you were not going to save it? One answer is “So 
you can test it”. You can call functions within PROC FCMP to test them. For example: 

184  proc fcmp ; 

185  subroutine datesInMonth(inDate, startDate, endDate, days); 

WARNING: Function datesInMonth is already defined in packet Dates. Function 

datesInMonth as defined 

         in the current program will be used as default when packet is not 

specified. 

186       outargs startDate, endDate, days; 

187       FILE log; 

188       put inDate yymmdd10. ; 

189       nextMonth = intnx('month', inDate, 1); 

190       put nextMonth yymmdd10.; 

191       startDate = intnx('month', nextMonth, -1); 

192       put startDate yymmdd10.; 

193       endDate = nextMonth - 1; 

194       put endDate yymmdd10.; 

195       days = nextMonth - startDate; 

196       put days; 

197       return; 

198  endsub; 

199  format testDate1 testDate2 yymmdd10.; 

200  format days 3.; 

201       call datesInMonth('15jan2009'd, testDate1, testDate2, days); 

202       put 'date1: ' testDate1  ' date2: ' testDate2 ' days: ' days; 

203 

1 

2 

3 

4 
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204  QUIT; 

 

2009-01-15 

2009-02-01 

2009-01-01 

2009-01-31 

31 

date1:  2009-01-01  date2:  2009-01-31  days:   31 

NOTE: PROCEDURE FCMP used (Total process time): 

      real time           0.12 seconds 

      cpu time            0.03 seconds 

 

We can see from this SAS log: 

1. PROC FCMP was called with no outlib= statement 

2. Variables for the call are given formats 

3. The routine datesInMonth is called 

4. The variables that were returned will be displayed in the log 

 

Although it is possible to test new functions within PROC FCMP, using a DATA step does provide more flexibility for 
testing and debugging. 

STORING AND SHARING FUNCTIONS 

Looking back at the outlib= option for PROC FCMP we see there are three levels in the name; in our datesInMonth 
example the library was work.funcs.Dates. What does this mean? All of the functions defined in this call to PROC 
FCMP will be saved in a package called Dates; the package is stored in the data set work.funcs. A package is 
simply the collection of functions and subroutines, each with a unique name.  Although it is possible to have the 
same function name in two different packages on the same data set there is no way within a DATA step to specify 
which package to use. 

Although it is not possible to be able to access the two versions of a function if they are in different packages in the 
same data set, it is possible to access different versions of the same function if they are in different data sets. For 
example, the Risk department may have a larger set of parameters for a particular function (or functions) than the 
rest of the company. The subset of risk related functions could be in the package allfuncs.risk.dates while the 
common set (including the general set of functions intended for Risk) could be in the package 
allfunc.company.dates. Then, to make sure each gets the appropriate versions the cmplib= options could be set 
as follows: 

1. Risk: cmplib=( allfunc.company.dates. allfuncs.risk.dates) 

2. Everyone else: cmplib= allfunc.company.dates. 

The cmplib= option can set a “search path” of libraries. Note that the search path is left to right (allfuncs.risk.dates 
is search first, then allfunc.company.date); this behaviour is not the same as other SAS “search paths” such as 
fmtsearch=, so be careful when using it.  

In order to share functions they simply need to be compiled into packages that are saved in a public folder. The SAS 
autoexec and/or configuration files can then appropriate cmplib=  and libname statements. 

ADVANCED 

We have looked at the basics of creating and using user defined functions. There is much more available that we will 
not look at here, however if you check the SAS online documentation for PROC FCMP and PROC PROTO you will 
see the richness that is available. 
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CONCLUSION  

SAS DATA step code has often been maligned as being ‘spaghetti code’ and ‘wall paper’ code because there was 
no simple way to encapsulate complex logic into the DATA step. The introduction of user defined functions for DATA 
step programmers in SAS 9.2 has changed that. This paper has provided a glimpse into the workings of user defined 
functions, 
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