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Abstract 

 Procedures for the imputation of missing data have been developed for continuous 

data, using Markov Chain Monte Carlo techniques.  This approach has been 

demonstrated to provide acceptable results for dichotomous data when other variables in 

the dataset are continuous, rather than categorical, and the resulting imputations are not 

rounded off so as to fit the scale of the original data.  This approach has not been 

thoroughly studied for situations in which all variables in the dataset are categorical.  A 

categorical analog to the standard multiple imputation method does exist, but it must 

typically be used with a very small set of variables due to estimation problems.  Thus, if 

multiple imputation methods for continuous data can be demonstrated to perform 

acceptably for situations in which all variables are categorical, they may provide a useful 

alternative for many research situations.  The current study used a simulation to compare 

the performance of the continuous and categorical methods for data imputation.  The 

mixed results suggest that in some situations the continuous method may be appropriate 

for an all categorical variable scenario, while in other cases it did not perform as well as 

the categorical imputation approach. 

 

 



Introduction 

Psychometricians, data analysts and other statistics professionals are familiar with 

the presence of missing data in large data sets.  For example, in a testing situation 

examinees may leave one or more items unanswered either inadvertently or because they 

don’t know the answer and are afraid to guess.  Respondents to a survey might feel 

inhibited in answering items dealing with a sensitive topic, leading to missing data.  

Much research has been conducted regarding the impact of missing data on statistical 

analyses in general and a variety of methods have been developed for dealing with the 

problem.  The interested reader is encouraged to see Schafer and Graham (2002) for a 

comprehensive review of methods for dealing with missing data.  In addition to the 

Schafer and Graham (2002) paper, there are a number of other comprehensive 

discussions regarding specific types of missing data that data analysts might see in 

practice (Schafer, 1997; Schafer & Olson, 1998; Bernaards & Sijtsma, 1999; Peng & 

Zhu, 2005; Sinharay, Stern & Russell, 2001).  Data that are missing completely at 

random (MCAR) can be thought of as having no systematic cause; i.e. the missing data 

are a simple random sample of the observed data (Schafer, 1997, p. 11).  When data are 

missing at random (MAR), the probability of a value being missing is dependent on some 

measurable characteristic of the individual but not on the missing value itself.  Schafer 

(p.11) points out that for data to be MAR, the variable associated with the probability of 

data being missing must be observed.  Finally, for values missing not at random 

(MNAR), the likelihood of a variable value being missing is directly related to the value 

of the variable itself.   

 



 

Multiple Imputation for continuous data (MI) 

MI has been described in very complete detail in several places (e.g. Schafer, 

1997; Schafer & Graham, 2002; Leite & Beretvas, 2004; Sinharay, Stern & Russell, 

2001; Schafer & Olson, 1998).  The interested reader who wishes to learn more about the 

theory underlying the method is invited to investigate these sources.  Below is a brief 

description to MI for continuous and categorical data.  MI was first proposed by Rubin 

(1987), and was originally developed as an alternative to earlier approaches to imputation 

such as mean substitution, Hot-Deck imputation, regression based imputation and 

conditional distribution imputation (Madow, Nisselson & Olkin, 1983; Huisman & 

Molenaar, 2001).  Unlike these single imputation techniques, MI accounts for the 

inherent uncertainty in sampling from a population by introducing a degree of 

randomness to the imputations and creating m imputed data sets, each of which can then 

be analyzed in standard ways.  MI can incorporate information from other variables into 

the imputation process in order to provide more accurate values. 

The use of MI requires an assumption about the probability model underlying a 

set of data, such as multivariate normality (frequently used for continuous variables) or a 

multinomial distribution (common with categorical variables).  (Note that other such 

models are possible but are beyond the scope of this study).  Once a probability model is 

chosen, parameter estimates are made using the Bayesian posterior distribution based 

upon the likelihood function of the proposed model, the observed data and a prior 

distribution.  The Markov Chain Monte Carlo (MCMC) method of data augmentation is 

employed to arrive at the posterior distribution from which the imputed values can be 



drawn.  This imputation process is repeated M times (e.g., 10) to create independent data 

sets (Schafer & Olsen, 1998).  Each of these data sets is then subjected to the analysis of 

interest.  The results of the M separate analyses (e.g. parameter estimates) are then 

combined into a single value as  

Q =
ˆ Q m∑

M
 (1).   

The variance for these estimates is composed of two parts:  between imputation variance 

and within imputation variance.  Between imputation variance takes the form  

B =
ˆ Q m − Q ( )2

∑
M −1

       (2) 

The within imputation variance, U , is the mean of estimated variances across the m 

imputations.  The total variance for MI is then calculated as  

T = U + 1+
1
M

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ B (3). 

Multiple imputation for categorical data (MIC) 

Schafer (1997) described an imputation approach specifically for categorical data 

(such as might characterize item responses) based on the multinomial distribution.  This 

MIC technique relies on Dirichlet priors (as opposed to the normal priors used in MI), 

and models relationships among the variables using a log-linear model.  MIC is carried 

out using the probabilities obtained from this log-linear analysis in conjunction with the 

multinomial distribution, from which final imputed values are obtained. 

While in theory MIC is most appropriate for categorical data, Schafer (1997) 

pointed out that for more than a small number of variables the saturated log-linear model 

upon which it is based is severely degraded, making it impractical for use with most real 



world problems (p. 239).  Schafer went on to suggest that using the normal based 

approach to MI described above may work well for many categorical data problems.  

When the normal model is used to impute categorical data, it has traditionally been 

recommended that non-integer values be rounded off so that the imputed data conform to 

the nature of the actual data (i.e. ordinal or dichotomous integers) (Schafer, 1997; Ake, 

2005).  Allison (2005), however, found that when using the MI method with dichotomous 

data, rounding of responses should never be done, as it leads to estimation bias both for 

calculating proportions and for regression parameter estimates.  Other researchers have 

shown that imputing ordinal data with 5 or more categories using the normal MI model 

yielded acceptable estimation results when as much as 30% of the data were missing 

(Leite & Beretvas, 2004; Schafer, Khare, & Ezzati-Rice, 1993).     

Previous work has not explicitly compared the performance with categorical data 

of the theoretically more correct MIC approach for categorical data with the more 

accessible and flexible MI method.  Given Allison’s (2005) finding that rounding 

imputed dichotomous values may result in estimation bias of proportions, it is unclear 

how effective the MI approach might be when the non-rounded values are preferable 

(such as when conducting an item analysis).  Thus, the focus of the current study was on 

the estimation accuracy of proportions for imputed data using both the MI (rounded and 

unrounded) and MIC methods. 

Methods 

 Data were generated using a methodology described by Allison (2005).  A 

detailed description of this method can be found in that manuscript.  Specifically, 

dichotomous data were generated to be both MCAR and MAR with the proportion 



missing varying from 0.1, 0.2 and 0.5.  The MCAR data were generated so that the 

probability of an individual response being missing was unrelated to the response itself or 

to the other variables in the dataset.  In the case of MAR, the probability of a data value 

being missing was correlated to the responses on the other categorical variables.  The 

outcome variable of interest was the proportion of 1’s under 4 conditions:  (1) Listwise 

deletion (LD), MI rounded, MI unrounded and MIC.  The target proportions were varied 

across 0.01, 0.05, 0.2 and 0.5.  A total of four categorical variables were simulated, with 

one serving as the target, for which missing data were generated.  For both MI conditions, 

the MCMC method in SAS PROC MI was used, with EM providing the initial parameter 

estimates on which the markov chains were based.  A total of 10 imputed data sets were 

generated in each of the 500 simulation replications for each condition.  A total of 500 

subjects were simulated for each of these replications.  For the MI analyses, PROC 

MIANALYZE was used to provide estimates of the proportions of interest.  MIC was 

carried out using the set of CAT functions in the R software package.  For each 

replication, 10 imputations were conducted, as with the MI.   

Results 

 Results for the MCAR data appear in Table 1.  Generally speaking, the MIC 

method produced the most biased estimates of the four methods studied here, when the 

data were MCAR.  This positive bias was most pronounced when the parameter value 

was small (0.01 and 0.05).  In no case were the MIC based estimates less biased than any 

of the other approaches.  In addition, this estimation bias became more pronounced as the 

proportion of missing data increased.  On the other hand, the estimates produced by the 

other methods were generally within 0.05 of the actual parameter values. 



 

 

Table 1:  Estimates of proportions for MCAR data 

Proportion missing Parameter MIC LD MI NR MI R 

0.1 0.01 0.110 0.012 0.019 0.017 

 0.05 0.150 0.050 0.051 0.049 

 0.20 0.250 0.160 0.200 0.210 

 0.50 0.470 0.476 0.495 0.482 

0.2 0.01 0.217 0.009 0.018 0.016 

 0.05 0.240 0.050 0.051 0.046 

 0.20 0.365 0.202 0.203 0.207 

 0.50 0.406 0.500 0.500 0.500 

0.5 0.01 0.506 0.009 0.024 0.015 

 0.05 0.471 0.053 0.057 0.052 

 0.20 0.600 0.196 0.201 0.213 

 0.50 0.745 0.505 0.509 0.500 

MIC=MI using multinomial distribution, LD=Listwise deletion, MI NR=MI using normal 
distribution and nonrounded values, MI=MI using normal distribution and rounded 
values 
 

Results for the MAR data appear in Table 2.  Unlike with MCAR data, it appears that the 

performance of MIC is comparable to or slightly better than either MI method for most of 

the conditions simulated here.  The only exception to this result is with a parameter value 

of 0.01 and 10% missing data.  As the proportion of missing data increased, the MIC 

technique generally produced less biased estimates than either of the MI methods, though 



these results were still positively biased.  Of the methods examined here, LD produced 

the least biased outcomes in the MAR condition.  

Table 2:  Estimates of proportions for MAR data 

Proportion missing Parameter MIC LD MI NR MI R 

0.1 0.01 0.080 0.009 0.010 0.001 

 0.05 0.090 0.085 0.163 0.198 

 0.20 0.220 0.140 0.180 0.176 

 0.50 0.460 0.473 0.458 0.476 

0.2 0.01 0.110 0.020 0.157 0.097 

 0.05 0.090 0.011 0.097 0.100 

 0.20 0.280 0.215 0.373 0.309 

 0.50 0.470 0.494 0.500 0.469 

0.5 0.01 0.100 0.021 0.172 0.115 

 0.05 0.120 0.071 0.123 0.200 

 0.20 0.230 0.236 0.311 0.370 

 0.50 0.430 0.518 0.476 0.499 

 

Conclusions 

 The results of this simulation study carry with them several implications for data 

analysis practice.  First, it is unclear that the MIC approach yields clearly superior results 

with respect to parameter estimation bias in the case of MCAR data.  Indeed, the 

imputation method designed for use with normally distributed continuous data, as well as 

listwise deletion, were associated with much lower rates of bias for MCAR.  In addition, 



the problems associated with the MIC method were more pronounced for a larger 

proportion of missing data. 

 A second major finding of this study is that when the data are MAR, and the 

variables used in the imputation of missing responses are categorical, estimates based on 

MIC displayed much lower levels of bias than did those based on MI.  Indeed, the bias 

results obtained here for MI in the MAR case were very different than those reported in 

Allison (2005).  The difference between the two studies is that Allison used a continuous 

variable in the imputation of the categorical target variable, while in the current study all 

of the variables were categorical in nature.  Interestingly, the results for LD were 

generally as good as, or somewhat better than those for the normal based imputation 

methods. 

 The third primary result of this study is that the performance of MIC appears to be 

degraded when the population parameter value is small (0.01 or 0.05 in this study).  

Regardless of whether the data were MCAR or MAR, and across proportion of missing 

data, MIC consistently yielded positively biased parameter estimates.  When the data 

were MAR, the parameter estimates associated with MIC demonstrated much less bias.  

However, for MCAR data, the bias remained very large, particularly as the proportion of 

missing data increased. 

Implications for practice 

 The results of this study suggest that practitioners interested in imputation for 

dichotomous data must be very cautious regarding the method that they select.  If the data 

are MCAR, the normal theory based approaches may well yield acceptable parameter 



estimates.  On the other hand, if the data are MAR and associated only with other 

dichotomous variables, the normal based methods may not work particularly well. 

 While it was designed for categorical data, the MIC method used here also 

presented several problems in practice.  When the data were MCAR, it tended to create 

imputed data sets that yielded more biased results than any of the other methods studied 

here, including LD.  On the other hand, when the data were MAR and the parameter 

value of interest was not small (0.01 and 0.05 in this study), MIC tended to perform 

better than the normal based methods, though not necessarily better than simple LD. 

 Taken together, these results would suggest that in many instances where only 

categorical variables are involved, the MIC method for data imputation may indeed be 

preferable to the normal based methods.  However, if the incidence of the behavior or 

trait being studied is low, then MIC would appear to create imputations in which the trait 

appears too frequently.  And, because it is often unclear what the actual mechanism is 

underlying the missing data, data analysts may not have a sense for whether MI or MIC 

would be the preferable alternative. 
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