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ABSTRACT 

An important application of regression methodology is in the area of prediction. Oftentimes investigators are 
interested in predicting a value of a response variable (Y) based on the known value of the predictor variable (X). 
However, sometimes there is a need to predict a value of the predictor variable (X) based on the known value of the 
response variable (Y). In such situations, it is improper to simply switch the roles of the response and predictor 
variables to get the desired predictions i.e., regress X on Y. A method that accounts for the underlying assumptions 
while estimating or predicting X from known Y is known as inverse prediction. This approach will be illustrated using 
the PROC REG, and PROC GPLOT procedures in SAS®. The calculations for the 95% confidence limits for a 
predicted X from a known Y will also be presented. The macro and its application will be demonstrated using data 
from clinical / laboratory studies.  

INTRODUCTION  

Analysis of data from a study where outcome of interest (Y) is measured as a continuous variable and independent 
or predictor variables (X) can be measured as either continuous or categorical variables is oftentimes performed 
using regression methods. In general, one of the several goals of linear regression is to find the line that best 
predicts Y from X. Linear regression analyzes the relationship between two variables, X and Y. For each subject (or 
experimental unit), we collect data on both X and Y and we want to find the best straight line through the data. Linear 
regression does this by finding the line that minimizes the sum of the squares of the vertical distances of the points 
from the line. In some situations, the slope and/or intercept have a scientific meaning. In other cases, we use the 
linear regression line as a standard curve to find new values of X from Y, or Y from X. Note that linear regression 
does not test whether collected data are linear. It assumes that the data are linear, and finds the slope and intercept 
that make a straight line best fit the data. An extension of simple linear regression is multiple regression where the 
goal is to learn more about the relationship between several independent or predictor variables and a dependent or 
outcome variable. 

Applications of regression analysis exist in almost every field. In economics, the dependent variable might be a 
family's consumption expenditure and the independent variables might be the family's income, number of children in 
the family, and other factors that would affect the family's consumption patterns. In political science, the dependent 
variable might be a state's level of welfare spending and the independent variables measures of public opinion and 
institutional variables that would cause the state to have higher or lower levels of welfare spending. In sociology, the 
dependent variable might be a measure of the social status of various occupations and the independent variables 
characteristics of the occupations (pay, qualifications, etc.). In psychology, the dependent variable might be 
individual's racial tolerance as measured on a standard scale and with indicators of social background as 
independent variables. In education, the dependent variable might be a student's score on an achievement test and 
the independent variables characteristics of the student's family, teachers, or school. In this paper we will however, 
focus our attention to the application of regression in a clinical or laboratory setting.  

USE OF REGRESSION MODELING 

Regression approach is commonly used in two different settings, where the goals could be estimation or prediction. 
The goal of estimation is to determine the value of the regression function (i.e., the average value of the response 
variable), for a particular combination of the values of the predictor variables. Regression function values can be 
estimated for any combination of predictor variable values, including values for which no data have been measured 
or observed. The goal of prediction is to determine either the value of a new observation of the response variable, or 
the values of a specified proportion of all future observations of the response variable for a particular combination of 
the values of the predictor variables. Predictions can be made for any combination of predictor variable values, 
including values for which no data have been measured or observed. Predictions made outside the observed space 
of predictor variable values are referred as extrapolations which are sometimes necessary, but require caution while 
interpreting the results.   

Regression approach is also used in calibration where the goal is to quantitatively relate measurements made using 
one measurement system to those of another measurement system. This is done so that measurements can be 
compared in common units or to tie results from a relative measurement method to absolute units.   
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WHAT IS NEW HERE? 

Oftentimes investigators are interested in predicting a value of a response variable (Y) based on the known value of 
the predictor variable (X). However, sometimes there is a need to predict a value of the predictor variable (X) based 
on the known value of the response variable (Y). In such situations, it is improper to simply switch the roles of the 
response and predictor variables to get the desired predictions i.e., regress X on Y. This is because the primary 
assumption that X is measured without error and Y is a dependent, random and normally distributed variable is 
violated. A method that accounts for the underlying assumptions while estimating or predicting X from known Y is 
known as inverse prediction. Here we illustrate this approach using the REG and GPLOT procedures from SAS®. 
The calculations for the 95% confidence limits for a predicted X from a known Y will also be presented. The macro 
with ODS commands and its application will be demonstrated using relevant data from clinical / laboratory studies.  

A WORD ON REGRESSION AND PLOTTING PROCEDURES  

The REG procedure is one of many regression procedures in the SAS System. It is a general-purpose procedure for 
regression, while other SAS regression procedures provide more specialized applications. REG procedure is very 
flexible: performs linear regression with many diagnostic capabilities, selects models using one of nine methods, 
produces scatter plots of raw data and statistics, highlights scatter plots to identify particular observations, and 
allows interactive changes in both the regression model and the data used to fit the model. 

The GPLOT procedure plots the values of two or more variables on a set of coordinate axes (X and Y). The 
coordinates of each point on the plot correspond to two variable values in an observation of the input data set. The 
procedure can also generate a separate plot for each value of a third (classification) variable. It can also generate 
bubble plots in which circles of varying proportions representing the values of a third variable are drawn at the data 
points.  

STATISTICAL NOTATIONS AND FORMULATION 

 
In this section we present the notations and formulation required for the calculations involved in prediction of an 
estimate and the 95% confidence limits.  In an inverse prediction scenario goal is to predict X from known Y. These 
equations are incorporated in the SAS macro developed as a part of this work and we refer reader to Sokal (1995) 
for details on the theoretical concept behind these formulae. 
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Using these formulae, we can also calculate 90%, 99% etc. confidence limits by appropriate choice of t-value with 
respective degrees of freedom. One thing that needs to be noted here is that the confidence interval is not 
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ILLUSTRATION 
 
We will illustrate the SAS commands and the relevant output with a Cytomegalovirus (CMV) dataset described in the 
next subsection. 

DATA DISCRIPTION 

This study involved 250 known concentrations of the CMV virus. The goal was to assess the confidence level in the 
new technology (PCR Light Cycler) developed by one of the Diagnostic tool development company. There were 50 
samples of each of the 5 known concentration level (10, 100, 1000, 10000, 100000) run through the PCR Light 
cycler machine. In real life scenario when a patient’s blood is analyzed through this tool all we get is a number which 
is expected to be an estimate of the concentration of virus. We wanted to assess how good this machine was and 
develop an algorithm to predict the actual level of virus that would have been in the blood of the patient based on the 
number provided by the Light cycler machine. Thus in this case we are tying to predict X which is actual amount of 
virus in patient’s blood using Y which is the number given out by the PCR Lightcycler. Given the skewed nature of 
the data we have used logarithm transformation and all the analysis is then done on a log scale (i.e. log to the base 
2). Few data points from the CMV study are presented in Table 1 below. 
 

Table 1: Sample Data: CMV 
 

Dose (X) Copies (Y) 

10000 11800 

10000 10610 

100000 95850 

100000 101550 

1000000 966000 

1000000 885000 

10000000 9860000 

10000000 10305000 

100000000 100750000 

100000000 103700000 

 

A scatter plot of known concentration put in the Lightcylcer (Dose) versus the value given as an output from the 
lightcyler machine (Copies) is plotted as a first step in the analysis (refer Figure 1).  This figure shows that the data 
needs to be transformed before fitting a linear regression model. It is common to use logarithmic transformation prior 
to running linear regression models in clinical microbiology settings. The result of this transformation is displayed in 
Figure 2.  

 

Figure 1: Scatter Plot of Known Concentration (Dose) versus Concentration Given by Lightcycler (Copies) 
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Figure 2: Scatter Plot of Known Concentration (Dose) versus Concentration Given by Lightcycler (Copies) Using Log 
Transformed Data 

 

 

REGRESSION ANALYSIS 

Output 1: Regression Model with Concentration given by Lightcycler (Y) as a Dependent Variable  
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As a second step in the analysis, we fit a linear regression model using following SAS commands that utilize REG 
procedure and ODS from SAS. Here &yvar is a concentration given by Lightcycler and &xvar is known concentration.  

 
PROC REG DATA = cmv CORR; 

   MODEL &yvar = &xvar / CLB; 

 

 ODS OUTPUT ParameterEstimates = ParEs1 
        ANOVA = Anova1  NObs = NumObs1; 

 

The output produced by the above commands is presented in Output 1. The results from the linear regression 

analysis allow us to get the estimates of  
2

Y.Xs , Y (given by Ybar), a, Y.Xb , sb and sample size n.  

 
Output 2: Regression Model with Known Concentration Level (X) as a Dependent Variable  

 
 
As a third step in the analysis, we fit a linear regression model using following SAS commands that utilize REG 
procedure and ODS from SAS. As in previous step &yvar is a concentration given by Lightcycler and &xvar is known 
concentration. Note here that we are fitting a regression of X on Y to get additional 2 pieces required in the 
computation of an estimate and 95% confidence limit using inverse prediction methodology.  

 
PROC REG DATA = &dsname ALL; 

   MODEL &xvar = &yvar / CLB; 

 

 ODS OUTPUT ANOVA = Anova1  Simple Statistics = Stats2; 

 
The output produced by the above commands is presented in Output 1. The results from the linear regression 

analysis allow us to get the estimates of  X.XSS (i.e.
2

x∑ ) and X (given by Xbar).  

COMPUTATION OF PREDICTED VALUE AND 95% CONFIDENCE LIMITS 

Based on various necessary estimated obtained from steps 2 and 3 above we can then use following SAS 
commands to calculate the predicted value of the concentration and it’s 95% confidence limits. First we calculate t-
value with n-2 degrees of freedom. In the following SAS commands we have used 0.975 to get an appropriate t-
value required in the computation of 95% confidence limit. 
  tvalue = abs(tinv(0.975, (NObsUsed-2))); 

Next set of commands allow us to import all statistics into the inverse prediction equation for X and for the 95% CI. 
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Note that up until this point we are dealing with log transformed data. Thus all the estimates and respective 
confidence limits are still on the log scale.   
   

Xih = (Yi-a) / Byx;   

D = Byx**2 - (tvalue**2 * Sb**2); 

H = (tvalue / D) * sqrt ( S2yx * (D * (1+(1/NObsUsed)) + ((Yi - Ybar)**2) / Sxx)); 

   

LL = Xbar + ((Byx * (Yi - Ybar)) / D) - H;   

UL = Xbar + ((Byx * (Yi - Ybar)) / D) + H; 

 
As a final step, we then convert the predicted value and 95% confidence interval to the original scale as follows.  
Xihat = 10**Xih; 

LCL   = 10**LL; 

UCL   = 10**UL; 

 

A plot of the inverse prediction estimates along with a 95% confidence limits on the original scale is generated using 
following commands and the plot is given in Figure 3.  
PROC GPLOT; 

   PLOT (Xihat LCL UCL)* dose; 

RUN; 

 

Figure 3: Inverse Prediction Estimates along with 95% Confidence limits 
 

 

CONCLUSION  
In this manuscript, we have provided an overview of the theory of inverse prediction, along with calculations for the 
95% confidence limits for a predicted X from a known Y. The inverse prediction approach applied to the CMV dataset 
can be used to get an estimate of a true concentration level of CMV or other viruses in the blood of a respective 
patient, along with 95% confidence limits that can be used by other labs as a reference. As with any prediction 
model, however, a larger sample size covering a wider range of viral concentrations on a log scale is necessary to 
avoid extrapolation.  
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