
Paper P01

One-Step Change from Baseline Calculations, and Other DOW-
Loop Tricks

Nancy Brucken, i3 Statprobe, Ann Arbor, MI

ABSTRACT

Change from baseline is a common measure of safety and/or efficacy in clinical trials. The
traditional way of calculating changes from baseline in a vertically-structured dataset requires
multiple DATA steps, and thus several passes through the data. This paper demonstrates how
change from baseline calculations can be performed with a single pass through the data, through
use of the Dorfman-Whitlock DO- (DOW-) Loop. It also looks at how the DOW-Loop can be
implemented to transpose multiple variables onto a single record per BY statement in one pass
through the input dataset, thus by-passing one limitation of PROC TRANSPOSE.

BACKGROUND

The most common algorithm for computing change from baseline involves first physically dividing
the original dataset into baseline and post-baseline datasets. The baseline value may then be
obtained from a single point in time, often from the last value measured before the first dose of
study drug, or may be a composite of several observations- perhaps the mean of the last two
measurements before the start of study drug administration. A dataset containing the baseline
value for every subject is created, and then merged with the post-baseline dataset by subject.
Every post-baseline record thus contains the baseline value for that subject, and the change from
baseline to that visit record is calculated.

So, given a dataset that looks like this:

USUBJID VISITC VISITN HR

 1 Screening 1 91
 1 Day 1 2 .
 1 Week 1 3 68
 1 Week 2 4 73
 1 Week 4 5 96

 2 Screening 1 .
 2 Day 1 2 73
 2 Week 1 3 73
 2 Week 2 4 52
 2 Week 4 5 59

Traditional code for computing change from baseline would go something like this:

*** Separate baseline and post-baseline values;
data baseline postbase;
 set save.vitals;
 if visitn <= 2 then output baseline;
 else output postbase;
run;

*** Baseline value is last non-missing value before first dose;
data baseline1 (keep=usubjid hr rename=(hr=bl));
 set baseline (where=(hr is not missing));
 by usubjid visitn;
 if last.usubjid;
run;

*** Combine with post-baseline data and calculate change from baseline;
data postbase1;
 merge postbase (in=inp) baseline1 (in=inb);
 by usubjid;
 chgbl = hr - bl;
run;

And the final dataset of post-baseline values looks something like this:

USUBJID VISITC VISITN HR BL CHGBL

 1 Week 1 3 68 91 -23
 1 Week 2 4 73 91 -18
 1 Week 4 5 96 91 5

 2 Week 1 3 73 73 0
 2 Week 2 4 52 73 -21
 2 Week 4 5 59 73 -14

Note that we have made three passes through the data- the first to split the dataset, the second
to process the baseline values separately, and the third to actually compute changes from
baseline. Granted, the last two datasets combined form the original dataset, so in reality, we’ve
really made only two passes through the complete data. But still, for a study with thousands of
subjects, processing a dataset with many parameters such as clinical laboratory data can still
take awhile.

THE DOW-LOOP

The DOW-Loop is a technique originally developed by Don Henderson, and popularized on the
SAS-L listserv by Paul Dorfman and Ian Whitlock. It involves taking control of the implicit DO-
Loop inherent in the DATA step, identifying and storing the baseline value in a variable that is
retained until all post-baseline values for a subject have been processed, and then writing out
only those post-baseline values.

The DOW-Loop relies on the fact that the values of assigned variables, or variables created by
assignment statements in the DATA step, are not reset to missing until SAS returns to the top of
the DATA step. In the following example, it processes all of the records for a given subject first,
returning to the top of the step only after the last record for that subject has been handled.

The following code makes use of the DOW-Loop to compute change from baseline and generate
a dataset containing change from baseline for all post-baseline measurements in a single DATA
step requiring only one pass through the data:

data postbase;

 do until (last.usubjid);
 *** Only keep non-missing pre-dose values;
 set save.vitals (where=(not(visitn <= 2 and hr is missing)));
 by usubjid visitn;

 if visitn <= 2 then bl = hr;
 else do;
 chgbl = hr - bl;
 output;
 end;
 end;

run;

And the resulting dataset is identical to the one obtained through traditional means:

USUBJID VISITC VISITN HR BL CHGBL

 1 Week 1 3 68 91 -23
 1 Week 2 4 73 91 -18
 1 Week 4 5 96 91 5

 2 Week 1 3 73 73 0
 2 Week 2 4 52 73 -21
 2 Week 4 5 59 73 -14

Let’s take a closer look at what is going on inside of the Program Data Vector (PDV).

INTERNAL PROCESSING DETAILS

The first thing SAS does when it encounters a DATA step is to compile the statements in the
step, and set up the PDV. Once the code is compiled, it is then executed. At the start of the
DATA step, all computed variables are set to missing. The PDV looks something like this:

LAST.
USUBJID USUBJID VISITC VISITN HR

FIRST.
USUBJID

FIRST.
VISITN

LAST.
VISITN BL CHGBL

1 1 1 1 . .

SAS then immediately starts into the DO-loop. The UNTIL condition is not evaluated until the
END statement at the bottom of the loop, so SAS proceeds on to the SET statement, and reads
in the first record in the dataset. The PDV changes to this:

LAST.
USUBJID USUBJID VISITC VISITN HR

FIRST.
USUBJID

FIRST.
VISITN

LAST.
VISITN BL CHGBL

0 1 Screening 1 91 1 1 1 . .

VISITN=1, so the condition IF VISITN <= 2 is met, and the PDV changes to:

LAST.
USUBJID USUBJID VISITC VISITN HR

FIRST.
USUBJID

FIRST.
VISITN

LAST.
VISITN BL CHGBL

0 1 Screening 1 91 1 1 1 91 .

SAS then returns to the top of the DO-loop, not the top of the DATA step; thus, the value of BL is
retained, since it is an assigned variable. The second record in the dataset does not meet the
WHERE condition, and is discarded. When the third record is read in, the PDV looks like:

LAST.
USUBJID USUBJID VISITC VISITN HR

FIRST.
USUBJID

FIRST.
VISITN

LAST.
VISITN BL CHGBL

0 1 Week
1

3 68 0 1 1 91 .

VISITN=3, so the condition IF VISITN <= 2 is not met. Control passes to the ELSE branch of the
IF statement, change from baseline is calculated, and the record is output. The PDV looks like:

LAST.
USUBJID USUBJID VISITC VISITN HR

FIRST.
USUBJID

FIRST.
VISITN

LAST.
VISITN BL CHGBL

0 1 Week
1

3 68 0 1 1 91 -23

SAS returns to the top of the DO-loop again, and repeats the process until the last record for this
subject has been processed. Once that happens, it finally goes back to the top of the DATA step,
and the PDV looks like this:

LAST.
USUBJID USUBJID VISITC VISITN HR

FIRST.
USUBJID

FIRST.
VISITN

LAST.
VISITN BL CHGBL

1 1 Week
4

5 59 0 1 1 . .

Note that the values displayed in red, which come from variables either created by SAS or read in
via the SET statement, have not yet been overwritten, since the next SET statement has not been
executed. However, the values for BL and CHGBL have been set back to missing, since they are
assigned variables.

The DO-loop once again takes control, and the next record is read in. However, it does not meet
the conditions required by the WHERE clause, and so the third record is read in:

LAST.
USUBJID USUBJID VISITC VISITN HR

FIRST.
USUBJID

FIRST.
VISITN

LAST.
VISITN BL CHGBL

0 2 Day 1 2 73 1 1 1 . .

The values displayed in red have now all been overwritten by those on the new record read in via
the SET statement. The process is then repeated for the remaining records in the input dataset.

PROBLEM 2- MULTI-COLUMN TRANSPOSE

Suppose we have a SAS dataset of summarized laboratory data, containing one record per
parameter, category and treatment group. We need to report that data in a table with one record
per parameter and category, and the treatment group counts displayed in separate columns. The
input dataset looks like this:

ANALYTEC LISTTYPE LISTNUM RXGRP PATCT DENOM
CALCIUM Abnormal

Baseline
Values

1

1

6

260

CALCIUM Abnormal
Baseline
Values

1

2

4

227

CALCIUM Normal
Baseline and
Abnormal
EOT Values

2

1

5

260

CALCIUM Normal
Baseline and
Abnormal
EOT Values

2

2

6

227

We need to transpose this data to a reporting dataset looking like this:

ANALYTEC LISTTYPE LISTNUM RXGRP PATCT1 PATCT2 DENOM1 DENOM2
CALCIUM Abnormal

Baseline
Values

1

1

6

5

260

227

CALCIUM Normal
Baseline
and
Abnormal
EOT
Values

2

2

4

6

260

227

One possible solution is to use PROC TRANSPOSE to transpose the dataset by parameter and
category. However, the following code, transposing both variables in the same step, yields the
dataset shown below, which is not quite what we are looking for.

PROC TRANSPOSE DATA=LABS OUT=LABTRAN;
 BY ANALYTEC LISTTYPE LISTNUM;
 VAR PATCT DENOM;
 ID RXGRP;
RUN;

yields:

ANALYTEC LISTTYPE LISTNUM _NAME_ _1 _2
CALCIUM Abnormal

Baseline
Values

1

PATCT

6

5

CALCIUM Abnormal
Baseline
Values

1

DENOM

260

227

CALCIUM Normal
Baseline
and
Abnormal
EOT
Values

2

PATCT

4

6

CALCIUM Normal
Baseline
and
Abnormal
EOT
Values

2

DENOM

260

227

We can then split this dataset apart so that the PATCT and DENOM records end up stored in
separate datasets, and merge it back together by parameter and category, in order to reach our
target dataset. Note, though, that PROC TRANSPOSE requires one pass through the entire
dataset, splitting the resulting dataset apart requires another pass, and the subsequent merge
makes still another pass through the dataset. For small datasets, the three passes through the
data may not take much time or system resources. However, for larger datasets, each pass may
take a significant amount of execution time and/or resources.

ALTERNATIVE SOLUTION

An alternative solution involves a single pass through the dataset using a DOW-Loop. This
powerful technique moves the DATA step SET statement inside of a explicitly-coded DO-loop,
thus giving the programmer complete control over retention of variable values and the population
of the Program Data Vector (PDV). Remember that values of assigned variables, or variables
created by assignment statements in the DATA step, are not reset to missing until SAS returns to
the top of the DATA step.

The code to generate the desired reporting dataset directly from the input dataset looks like:

data labtran (drop=i patct denom rxgrp);
 array patcts (*) patct1-patct2;
 array denoms (*) denom1-denom2;

 *** Initialize arrays;
 do i=1 to dim(patcts;
 patcts(i) = 0;
 denoms(i) = 0;
 end;

 do until (last.listnum or eof);
 set labs end=eof;
 by analytec listnum;

 *** Populate arrays;
 patcts(rxgrp) = patct;
 denoms(rxgrp) = denom;
 end;

 output;
run;

The ARRAY statements define two arrays, one in which to store the patient subgroup counts for
each treatment group, and one in which to store the total number of patients in each treatment
group. The array initialization loop is executed every time control returns to the top of the DATA
step, after the last record for a category has been output.

The DOW-Loop itself begins with the DO UNTIL statement, and takes control from the traditional
implicit DATA step loop. Because the SET statement is inside of the DOW-loop, the loop is not
exited until after the last record for the category has been processed, and the array elements
populated inside of the loop are retained while all of the records for the category are read in, The
array elements are assigned variables in this example, and so are not reset until SAS reaches the
top of the DATA step. Thus, we can store values in PATCT1, PATCT2, DENOM1 and DENOM2
for all of the records in the category during the execution of the DOW-loop, without having them
reinitialized at the top of the DATA step. The single record for the category, containing the filled
arrays, is output at the completion of the DOW-loop. Control then returns to the top of the DATA
step, the arrays are reinitialized, and the records for the next category are read in.

CONCLUSION

The DOW-Loop technique takes advantage of the fact that SAS does not reset the values of
assigned variables until it reaches the top of the DATA step. Coding an explicit DO-loop
preventing SAS from returning to the top of the DATA step until it has read in all of the records for
a given subject allows you to retain a baseline value through processing of all post-baseline
records for that subject, and automatically reinitializes the computed baseline and change from
baseline variables after the last record for that subject has been processed. This technique then
enables the calculation of change from baseline in a single DATA step, instead of the multiple
passes through the data required by the algorithm frequently applied to this problem. It can
reduce the number of passes through a dataset required by a program in other applications, such
as multi-column transposes, and fewer passes through the dataset generally result in faster and
more efficient programs.

REFERENCES

For information on how the PDV is populated, see the SAS 9.1.3 On-Line Help and
Documentation.

For more information on applications of the DOW-Loop, visit the SAS-L listserv archives at
http://www.listserv.uga.edu/archives/sas-l.html, and search for postings by Ian Whitlock and Paul
Dorfman, among others.

Dorfman, Paul. (2008) “The DOW-Loop Unrolled”. PharmaSUG 2008 Conference Proceedings,
housed at http://www.lexjansen.com.

Chakravarthy, Venky, (2005). “RETAIN or NOT? Is LAG Far Behind?”. PharmaSUG 2005
Conference Proceedings, housed at http://www.lexjansen.com.

ACKNOWLEDGMENTS

Thanks to my colleagues at i3 Statprobe, who reviewed this paper and provided helpful
suggestions, to all of the people who gave me the inspiration for using this technique through
their postings on SAS-L, and to Don Henderson, who, so far as anyone can determine, was
probably the first person to try it..

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Nancy Brucken
i3 Statprobe
300 West Morgan Rd.
Ann Arbor, MI 48108

Work Phone: (734) 757-9045
E- mail: Nancy.Brucken@i3statprobe.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

