

A02 - 2008

Data Set Investigator - Automated Exception Reporting from an electronic data

dictionary with %DSI().

Authors:
Matthew T. Karafa, PhD (Paper and Main DSI macros)

Julie Thornton, MS (wheremissing, rangecheckcat rangecheckcont macros)

Abstract:
 Data cleaning and data sleuthing can be the most tedious and time consuming part of any
analysis. As part of the data elicitation process we often collect metadata about valid values, and
other data rules that can be used to quickly check for such problems. By using a small amount of
this metadata about the data set\u2019s variables the provided macro, %DSI(), can produce a
data exception report both by rule and by record ID which can be quickly turned back to the
client for data correction. %DSI() takes a comma separated data file defining data “rules” with
fields including variable name, type, valid values and ranges. These are then applied to the data
set using internal macros that report the records and values that violate the given set of rules.
These are then organized into a fairly simple, MSWord compliant HTML document, which can
be returned to the client for action.

Introduction
 In a typical data analysis setting, one of the largest time consuming chores that must be
dealt with is ensuring data accuracy and data integrity. Typically this involves a statistical
programmer poring over data values and allowable values in each of the fields, sending
information back and forth to the investigator and creating ad hoc reports to illustrate the
problems and come to an acceptable solution.

Define the Rules “Metadata”
 This first step can easily be done as part of the initial meeting with the client. As the
types of data are discussed, valid ranges and an initial data dictionary naturally flow as part of
the conversation. For example suppose you have a data set that will gather a gender, age, race,
some hospital dates, and blood pressure information. The initial discussion with the investigator
reveals that ages should be between 18 and 35 years; acceptable codes for gender are M and F;
acceptable codes for race are W,B, H, and O; and that all of the surgeries need to have happened
in either 2005 or 2006. Further, the investigator would like to look at the subset of males that are
under age 21 in a separate listing. Thus we can create a data dictionary that looks something like:

Table 1: Example of Data Dictionary “Metadata” for %DSI()
Varname VarType VarFormat AllowMissing Min Max ValidValueList SpecialRuleCodeRuleText
Name Type Format Missing OK Min val Max Val Valid Values SpecialRule NumRule Description
Id i ccfid n 1Valid CCFID
admit_dt d date n 1/1/05 31Dec06 2Check Valid Date
dcg_dt d date n 1/1/05 31Dec06 3Check Valid Date
Gender c cat y M F m f 4Gender Male or Female
Race c cat y W B H O w b h o 5Race White Black Hisp.Other
Age n cont y 18 35 6Age between 12 and 35
Dob d date n 1/1/1970 1/1/1988 7Check Valid DOB
Sbp n cont n 50 400 8Systolic between 50 and 400
Dbp n cont n 25 200 9Diastolic between 25 and 200
Age r spec gt 21 10All Men over 21
Gender r spec eq "M" 10All Men over 21
Age r spec gt 25 11All women over 25
gender r spec eq "F" 11All women over 25

Note that for all variables we provide a variable name, type, missing status a rule code number
and some rule code text. This text is important, as the macro’s reports will use this for to tag to
the report for those who violate a given rule. For variables of type cat [categorical], we define
valid values in a space-delimited list. For dates and continuous values we give the minimum and
maximum values. For our two level rule we define it as type “S,” and give the special conditions
which are basically the right hand side of a comparison test. Further, since the routine to read in
the rules dataset from csv comes from a modified version of Cram and Whitlock’s (REF) xls2sas
macro, the first line is the SAS variable names, and line 2 is the corresponding SAS labels.

Sample Macro call and parameters
 To call %DSI() we make a call that looks like the following:
%DSI(DS= MyData, Rules= “C:\data\datadict.csv”, RulesDlm=%str(','),
 ListingFile=T, HtmlFile=T, owrite_html=F, ofile_html=./Temp.html,
 PageBreakAtSplit=F, AppendToPrevRuns=F, ReportTitle=, DEBUG = 0);

The only two required parameters are DS and Rules. DS is the SAS data set you want to generate
the report on and Rules is the path to the data dictionary dataset mentioned in the prior section.
RulesDlm is an optional parameter to configure the dictionary data’s delimiter. Listingfile is a
toggle to send information to the SAS list file or output window. HTMLFile is a toggle to create
an MSWord compliant HTML report of the results. The parameters owrite_html and ofile_html
tell the macro to overwrite the word doc or append to it and provide the HTML file’s name.
PageBreakAtSplit puts each ID on its own page, and AppendtoPrevRuns allows one to use the
same report for multiple calls of DSI. ReportTitle lets you pass your own title to the %DSI()
report and DEBUG turns on several internal logging techniques used in the development of
%DSI().

Check Values
 Once called the macro reads in the dictionary data, and puts each field into some
delimited lists to be used like a queue in conjunction with %scan() to “pop” the information off
as needed. Then several sub-macros are called to check the given values against missing status
and for valid values. Each of these macros return a dataset with the IDvars passed to %DSI(), the

name of the problem variable, the value of the problem variable, the rule code that it violated and
the text description of that rule. If no errors are found, no data set is returned and %DSI() knows
that there are no problems of that type.

Output “By ID”
 Once the individual error datasets are made, they are all concatenated together and sorted
by the IDvar set. This new data set is then passed to an HTML coding routine which generates
the MSWOD file. Below is an exerpt of a sample of 3 id's based on our earlier data dictionary:

Table 2: Sample of 3 ID’s with problems from %DSI()
11499473
Problem Variable

Involved
Value of
Involved Variable

6 : Age between 18 and 35 age 55

2 : Check Valid Date admit_dt 17DEC2001

3 : Check Valid Date dcg_dt 26DEC2001

7 : Check Valid DOB dob 25OCT1946

16107018
Problem Variable

Involved
Value of
Involved Variable

0 : Missing Values dbp .

5 : Race White Black Hispanic Other race K

6 : Age between 12 and 35 age 63

2 : Check Valid Date admit_dt 15AUG2001

3 : Check Valid Date dcg_dt 24AUG2001

7 : Check Valid DOB dob 13MAR1961

16133018
Problem Variable

Involved
Value of
Involved Variable

1.1 : CCFID Invalid id 16133018

0 : Missing Values dob .

0 : Missing Values sbp .

0 : Missing Values dbp .

Conclusion
 By evaluating the metadata and using it to write SAS code for you, a nice report can be
generated using very high level language rather than coding a series of if-then-else checks.

	Race White Black Hisp.Other

