
Paper A11

Writing Testing-Aware Programs that Self-Report when Testing Options are
True

Ronald J. Fehd, Centers for Disease Control and Prevention, Atlanta, GA, USA

ABSTRACT Program development proceeds through four phases: investigation, development, unit test-
ing, and integration testing. Testing typically consumes 50% of project resources. Any
programming effort spent in support of testing may significantly reduce project costs and
help ensure the delivery of the project’s product: a set of tested and integrated programs.

This paper examines the architectural issues of writing SAS R© programs that are testing-
aware: that have a variable Testing whose default value is false, which can be reset to true
based on the values of options and which write information to the log when testing is true.

Topics covered include options used for testing, both command-line and used-anywhere;
example code for data step, includes and macro programs used as any of module, routine,
or subroutine.

Audience architects, designers, software engineers, project managers, intermediate to advanced pro-
grammers, advanced users.

Keywords call execute, echoauto, macro, module, mprint, options, parameterized include file, routine,
source2, subroutine, testing, verbose

Information programs using call execute to: 1. call parametized include files and 2. macros.

In this paper This paper contains the following topics.

Introduction 2

Writing Testing-Aware Programs Zip 4
Options Used while Testing 4
The Variable Testing 5
Testing Options in Different Program Types . . . 6
Using Call Routines and Functions 7

Examples 8
Site and Project 8
Programs for Testing 9
Using Includes 12
Using Macros . 16

Conclusion 19

1

INTRODUCTION

Overview The Introduction contains a discussion of these topics:

• History

• What is Information

• Options Used while Testing

• Information Needed while Testing

History Brooks in his book, Mythical Man-Month, Brooks Jr. [1, AW.Brooks.1995] provides the fol-
lowing chart of time spent in program development:

Phase Time Action Time
Design 1/2 Understand Problem: 1/3

Education and Research
Development Coding 1/6

Testing 1/2 Component or Unit Test 1/4
Systems or Integration Test 1/4

From the table we see that testing occurs in the following phases:

• development

• unit testing

• integration testing

What is
Information

Information is the difference
that makes a difference

Programs contain statements that implement an algorithm on a data structure. The most
common information wanted during testing is a report of metadata: the data structure of
data sets created or read during processing. When testing data steps that do calculations or
manipulate character variables notes written to the log are often helpful. Finally, an example
listing may show problems.

Options Used
while Testing

The following options are used in the examples. Option mprint is used to expand text from
macros; option source2 is used to echo statements in included files to the log; options
echoauto and verbose are command-line options and only write to the log during start-up.
They are therefore our prime candidates for differentiating between modules and subroutine
testing.

2

http://www.amazon.com/exec/obidos/tg/detail/-/0201835959/002-4796015-3029601?v=glance

Information
Needed while
Testing

A developer or tester might need the following information while testing.

Data Listing The Print procedure is useful during testing; using the data step option obs=
limits the number of rows.

1 PROC Print data = &SysLast.
2 (obs = 20);
3 title2 "&SysLast.";
4 run;

Data Step Notes Before v9 the put statement wrote to the default destination log, — file
log; — to the listing, — file print; — or to the most recent file named in the
file statement — file ’filename.txt’. The putlog statement writes only to
the log.

1 DATA _Null_;
2 putlog ’note:’ x=;

Note: the special list all cannot be used with putlog.

Macro Variable Values The %put statement can be used to show macro variable names
and their values.

1 %Put _global_;
2 %Put _local_; %*in macro;

Metadata data structure can be obtained from either of:

Proc Contents The Contents procedure prints a complete set of metadata to the list-
ing. Information includes:

• data set label
• number of observations
• data structure, sorted by variable name

Note: the two-page output is written to listing, compare to describe table,
which is written to log.

1 PROC Contents data = &SysLast.;
2 title2 "&SysLast.";
3 run;

Proc Sql The SQL procedure writes metadata to the log. The data structure is listed
in variable number order.

1 PROC SQL; describe table &SysLast.;
2 quit;

3

WRITING TESTING-AWARE PROGRAMS ZIP

Topics This section contains the following topics.

Topic Page

Options Used while Testing 4
The Variable Testing 5
Testing Options in Different Program Types 6
Using Call Routines and Functions 7

OPTIONS USED WHILE TESTING

Overview The purpose of this paper is to show that the following options can be used to turn on the
production of information during the testing process.

option group writes to log statements from
echoauto logcontrol autoexec
mprint macro macros
source2 logcontrol include files
verbose logcontrol configuration files

EchoAuto The option echoauto lists the statements in the autoexec; otherwise only the notes from
the statements in the autoexec are shown in the log. Option echoauto may be used only
on the command-line or in a configuration file. This option adds the option source2 to the
inclusion of the autoexec file; i.e.: %include ’autoexec.sas’ / source2;
Example usage:

1 rem name: MyProgram.bat
2 sas MyProgram -echoauto

Note: echoauto is in the options group LogControl.

Mprint The option mprint writes the text produced by macros to the log.
Example usage:

command line option name is preceeded by a hyphen

1 rem name: MyProgram.bat
2 sas MyProgram -mprint

in program

1 *name: MyProgram.sas
2 options mprint;

Note: mprint is in the options group Macro.

4

Source2 The option source2 writes the text contained in included files to the log.
Example usage:

command line option name is preceeded by a hyphen

1 rem name: MyProgram.bat
2 sas MyProgram -source2

in program

1 *name: MyProgram.sas
2 options source2;

Note: source2 is in the options group LogControl.

Verbose The option verbose writes the settings of options specified in any configuration files to the
log. This option, like echoauto is a command-line or configuration file only statement.
Example usage, command line:

1 rem name: MyProgram.bat
2 sas MyProgram -verbose

Note: verbose is in the options group LogControl.

Summary of
Options

Program ProcOptions-define-value.sas lists the full description of each option and the op-
tions in each group.

1 *name: ProcOptions-define-value.sas;
2 PROC Options define value option = echoauto;
3 PROC Options define value option = mprint ;
4 PROC Options define value option = oplist ;
5 PROC Options define value option = source2 ;
6 PROC Options define value option = verbose ;
7

8 PROC Options group = LogControl; *echoauto
9 source2

10 verbose ;
11 PROC Options group = Macro ; *mprint ;
12 run;

THE VARIABLE TESTING

Overview In this section I examine a variable Testing in each of:

• data step

• macro

5

Data Step In a data step the variable Testing is allocated as type numeric; as an integer its length
can be reduced to 4 bytes since its values are in (0,1).

1 DATA Routine;
2 attrib Testing length = 4;%*integer: boolean;
3 drop Testing ;
4 retain Testing 1;
5 *...;
6 if Testing then do;
7 putlog ’note: ’ x=;
8 end;

Macro In a macro the variable Testing is added to the parameter list.

1 %Macro RoutineA
2 (data =
3 ,Testing = 1
4) / des = ’description of macro’
5 ;
6 *...;
7 %if &Testing. %then %do;
8 %put _local_;
9 %end;

TESTING OPTIONS IN DIFFERENT PROGRAM TYPES

Discussion Programs are different in the hierarchy of processing. They may be, at the highest level, a
module, which calls other routines and subroutines. Routines may call subroutines. Sub-
routines do not call other programs. Testing is conducted according to the type of program:
once subroutines are tested, then they are used frequently by other modules and routines,
consequently their reporting can be minimized when testing is conducted on higher level
programs.
This table shows the the various types of programs and what other program types they call.

type may call
module routines and subroutines
routine other routines and subroutines
subroutine none

Truth Table This table shows the logic of use of combinations of options.

program command-line only used anywhere reporting or quiet
type EchoAuto op Verbose op mprint op source2 module routine subroutine
module T and (T or T) report report quiet
routine T or T or T or T . report quiet
subroutine T and (T or T) . . report

6

USING CALL ROUTINES AND FUNCTIONS

Overview This sections describes the call routines and functions used in the examples.

• Call Execute

• %nrstr: No Rescan String

• Cat* Functions

• Macro Functions

– %eval: Evaluate Macro Expressions

– %sysfunc getoption

Call Execute The call execute routine has one argument, a character expression, that contains either a
character variable, a sas statement or a macro invocation.

1 call execute(VarChar);
2 call execute(’*sas statement;’);

The call execute routine is used in the following examples to conditionally execute both sas
statements and macro calls.

%nrstr: No
Rescan String

The nrstr function has one argument, a character string, that, in the examples shown here,
contains a macro invocation. The nrstr function masks the special characters ampersand
(&) and percent-sign (%); this function is used to delay the expansion of macro calls until the
next step. The call execute routine is used in the following examples to conditionally execute
both sas statements and macro calls.
Fehd and Carpenter [5, sgf2007.113] discusses this problem and provides examples to show
the error when not using macro function nrstr.

1 call execute(’%nrstr(%MyMacro(data=testing))’);

Cat* Functions The cat* functions replace the concatenation operator (!!).

• cat: no trim

• catt: remove leading and trailing blanks

• cats: remove trailing blanks

• catx: remove leading and trailing blanks, add separator

7

http://www2.sas.com/proceedings/sgf2007/113-2007.pdf

Macro
Functions

sysfunc getoption The combination of macro functions sysfunc and getoption return
the value of a system option.

1 2 options nosource2;
2 3 %put text:%sysfunc(getoption(SOURCE2));
3 text:NOSOURCE2
4 4 options source2;
5 5 %put text:%sysfunc(getoption(SOURCE2));
6 text:SOURCE2

eval The macro function eval evaluates its argument and returns an integer.

1 7 %put false:%eval(0 or 0);
2 false:0
3 8 %put true :%eval(0 or 1);
4 true :1
5 9 options nosource2;
6 10 %put false:%eval(%sysfunc(getoption(Source2)) eq SOURCE2);
7 false:0
8 11 options source2;
9 12 %put true :%eval(%sysfunc(getoption(Source2)) eq SOURCE2);

10 true :1

EXAMPLES

In this Section This section has the following topics.

Topic Page

Site and Project 8
Programs for Testing 9
Using Includes 12
Using Macros 16

SITE AND PROJECT

8

Recommendations
for Testing

Folders The programs shown here can be stored in the following folders:

Site example
1 C:\SASsite\
2 C:\SASsite\includes files: LibWork, Test*
3 C:\SASsite\macros files: TestMacro

Project example
1 C:\SASproject\
2 C:\SASproject\ProjectA
3 C:\SASproject\ProjectA\sas programs
4 C:\SASproject\ProjectA\sas7b sas data sets
5 C:\SASproject\ProjectA\sas7bWork sas data sets during testing

Project autoexec has filename and libname references to above folders

Programs use two-level data set names — e.g.: LibWork.MyData — to save temporary
output data sets which are input to other programs

Testing reassign libref LibWork to save data sets to permanent folder for review while test-
ing

AutoExec
The include file autoexec.sas is used allocate filenames, libnames, and set global options.
Note-1 that the filenames Project and Site refer to the same folder, which has been
used for developing these examples. In practice the Site folder would be a site-wide folder
accessible by all projects. Note-2 the allocation of a second libname LibWork which is
used to save output data sets when unit testing of routines and subroutines. In production
this libref folder is the same as libref Work.

1 title ’SUG: Fehd: Writing Testing-aware Programs’;
2 filename Project ’.’ ;%*here;
3 filename Site ’.’ ;%*here;
4 options sasautos = (Project Site SASautos);
5 Libname Library ’..\sas7b’;%*sibling;
6 Libname LibWork "%sysfunc(getoption(Work))";

Note: Fehd [4, sugi30.267] discusses the option sasautos.

PROGRAMS FOR TESTING

Overview This sections shows subroutine programs used for testing.
Program Page

LibWork 10
TestDescribe 10
TestInclude 10
TestMacro 11
TestPrint-* 11

9

http://www2.sas.com/proceedings/sugi30/267-30.pdf

LibWork
This program clears the libref LibWork and assigns it a value of a permanent folder.

1 * name : LibWork.sas;
2 * description: when testing reassign Libref LibWork;
3 * to permanent folder ;
4 * purpose : save temp data sets for unit tests ;
5

6 DATA _Null_;
7 attrib Testing length = 4;
8 retain Testing %eval(0
9 or %sysfunc(getoption(EchoAuto))

10 eq ECHOAUTO
11 or %sysfunc(getoption(Mprint))
12 eq MPRINT
13 or %sysfunc(getoption(Source2))
14 eq SOURCE2
15 or %sysfunc(getoption(Verbose))
16 eq VERBOSE);
17 if Testing then do;
18 call execute("Libname LibWork clear; run;");
19 call execute("Libname LibWork ’..\sas7bWork’;");
20 end;
21 stop;
22 run;

TestDescribe
The include file TestDescribe.sas is used to write the data structure of a dataset to the log
when testing with options mprint or source2.

1 *name: TestDescribe.sas;
2 *description: for routine ;
3 * call execute describe table;
4 DATA _Null_;
5 attrib Testing length = 4;%*integer: boolean;
6 drop Testing ;
7 retain Testing %eval(0
8 or %sysfunc(getoption(MPRINT))
9 eq MPRINT

10 or %sysfunc(getoption(SOURCE2))
11 eq SOURCE2);
12 if Testing then do;
13 call execute(’PROC SQL;’);
14 call execute(’describe table &SysLast.;’);
15 call execute(’quit;’);
16 end;
17 run; %*calls executed in this step;

TestInclude
The include file TestInclude.sas is used to test the routine Call-Execute-Include (CxInclude).

1 *name: TestInclude.sas;
2 %put _global_;
3 run;

10

TestMacro
The macro TestMacro.sas is used to test the routine Call-Execute-Macro (CxMacro).

1 %Macro TestMacro(Testing = 1)
2 / des = ’site: echo parameter list to log’ parmbuff ;
3 %If &Testing. %then %put note: &SysMacroName. &SysPbuff.;
4 run; %Mend;

TestPrint
The include files TestPrint* are used to print the first few rows of a dataset when testing.

TestPrint-
Module

Checking echoauto and either of mprint or source2

1 *name: TestPrint-Module.sas;
2 *description: for module print SysLast;
3 DATA _Null_;
4 attrib Testing length = 4;%*integer: boolean;
5 drop Testing ;
6 retain Testing %eval(0
7 or %sysfunc(getoption(ECHOAUTO))
8 eq ECHOAUTO
9 and (%sysfunc(getoption(MPRINT))

10 eq MPRINT
11 or %sysfunc(getoption(SOURCE2))
12 eq SOURCE2));

TestPrint-
Routine

Checking either of mprint or source2

6 retain Testing %eval(0
7 or %sysfunc(getoption(MPRINT))
8 eq MPRINT
9 or %sysfunc(getoption(SOURCE2))

10 eq SOURCE2);

TestPrint-
Subroutine

Checking either of mprint or source2 and verbose

6 retain Testing %eval(0
7 or (%sysfunc(getoption(MPRINT))
8 eq MPRINT
9 or %sysfunc(getoption(SOURCE2))

10 eq SOURCE2)
11 and %sysfunc(getoption(VERBOSE))
12 eq VERBOSE);
13 if Testing then do;
14 call execute(’PROC Print data = &SysLast. ’);
15 call execute(’(obs = 20);’);
16 call execute(’title2 "&SysLast.";’);
17 end;
18 run; %*calls executed in this step;

11

USING INCLUDES

Overview This section describes the programs in the example of includes.

name type description
Example-Include module main
MakeNameList subroutine create data set: List
CxInclude routine process each row of List:

call subroutine: FreqOfInc
PrintSmry subroutine print output

Example-
Include This example of include file usage is a main module which calls two subroutines, Make-

NameList and PrintSmry, and one routine, Call-Execute-Include (CxInclude), which calls a
subroutine FreqOfInc. The routines and subroutines shown are examples of parameterized
include files.

Example-
Include
Input

1 *name: Example-Include.sas;
2 *from: FreqAll;
3

4 *input : make data set;
5 %Let MnLibName = sashelp;
6 %Let MnMemName = Class ;
7 %Let MnOutLib = LibWork;
8 %Let MnOutData = ListNames;
9 %Include Project(MakeNameList);

10 %Include Site (TestPrint-Module);

Example-
Include
Process

12 *process: call routine to execute subroutine;
13 %Let CxLibName = LibWork;
14 %Let CxMemName = &MnOutData.;
15 %Let CxInclude = Project(FreqOfInc);
16 %Let CxNames = LibName MemName Name Type;
17 %* subroutine FreqOfInc parameters;
18 %Let FoiOutLib = LibWork ;
19 %Let FoiOutData = ListSmry;
20 %Include Site (CxInclude);
21 %Include Site (TestPrint-Module);

Example-
Include
Output

23 *output : print;
24 %Let LibName = LibWork;
25 %Let MemName = &FoiOutData.;
26 %Include Project(PrintSmry);

12

Testing
Example-
Include

Example-Include.bat This program is used to execute the example module as a production
job.

1 rem Example-Include.bat
2 sas Example-Include

Example-Include-Test.bat The batch file used to test the example module contains the
options echoauto and source2 for includes.

1 rem Example-Include-Test.bat
2 sas Example-Include-Test -echoauto -source2
3 rem integration test module

Example-Include-Test This program is used to test the example module. Note: the testing
options are contained in the .bat file.

1 *name: Example-Include-Test.sas;
2 %Include Site(LibWork);
3 %Include Project(Example-Include);

MakeNameList
MakeNameList is a subroutine which creates the table of parameter values used by the list
processing routine Call-Execute-Include (CxInclude).

Program 1 *name: MakeNameList.sas;
2 *parameters: ;
3 *input :; *Let MnLibName = sashelp ;
4 *Let MnMemName = class ;
5 *output:; *Let MnOutLib = work ;
6 *Let MnOutData = ListNames;
7

8 PROC SQL noprint;
9 create table &MnOutLib..&MnOutData as

10 select LibName, MemName, Name, Type
11 from Dictionary.Columns
12 where LibName eq "%upcase(&MnLibName.)"
13 and MemName eq "%upcase(&MnMemName.)";
14 quit;

13

Testing
MakeNameList

MakeNameList-Test.bat note options for subroutine testing

1 rem MakeNameList-Test.bat
2 sas MakeNameList-Test -source2 -verbose
3 rem Test subroutine

MakeNameList-Test compare to usage in Example-Include; note TestPrint

1 *name: MakeList-Test.sas;
2 *note: test subroutine;
3 *note: write to LibWork;
4 * save for later tests;
5 %Include Site(LibWork);
6 %Let MnLibName = sashelp;
7 %Let MnMemName = class ;
8 %Let MnOutLib = LibWork;
9 %Let MnOutData = ListNames;

10 %Include Project(MakeNameList);
11 %Include Site (TestDescribe);
12 %Include Site (TestPrint-Subroutine);

CxInclude
CxInclude is a routine which reads a data set where each row contains the values used
by a parameterized include file; the routine makes global macro variables of each named
variable and then calls the named include file. Find the program in the Writing Testing-aware
Programs zip.
This routine is tested as a stand-alone unit with a dummy include file (TestInclude) and with
its production subroutine, FreqOfInc.

CxInclude, Unit
Test

CxInclude-Test-unit.bat unit test

1 rem CxInclude-Test.bat
2 call sas CxInclude-Test-unit -source2
3 rem unit test of routine

CxInclude-Test-unit calling a dummy include file; note: no TestPrint

1 *name: CxInclude-Test-unit.sas;
2 %Include Site(LibWork);
3 %Let CxLibName = LibWork;
4 %Let CxMemName = ListNames;
5 %Let CxInclude = Project(TestInclude);
6 %Let CxNames = LibName MemName Name Type;
7 %Include Project(CxInclude);

14

http://www.sascommunity.org/wiki/Image:Writing-Testing-Aware-Programs.zip
http://www.sascommunity.org/wiki/Image:Writing-Testing-Aware-Programs.zip

CxInclude,
Integration
Test

CxInclude-Test-integrate.bat unit test with production subroutine

1 rem CxInclude-Test-integrate.bat
2 sas CxInclude-Test-integrate -source2
3 rem integration test of routine

CxInclude-Test-integrate calling FreqOfInc; note: TestPrint

1 *name: CxInclude-Test-integrate.sas;
2 %Include Site(LibWork);
3 %Let CxLibName = LibWork;
4 %Let CxMemName = ListNames;
5 %Let CxInclude = Project(FreqOfInc);
6 %Let CxNames = LibName MemName Name Type;
7 %*subroutine FreqOfInc parms;
8 %Let FoiOutLib = LibWork;
9 %Let FoiOutData = TestReport;

10 %Include Site(CxInclude);
11 %Include Site(TestDescribe);
12 %Include Site(TestPrint-Routine);

FreqOfInc
The subroutine FreqOfInc is called by Call-Execute-Include (CxInclude); it does a proc freq
and standardizes the output data set. Find the program in the Writing Testing-aware Pro-
grams zip.

FreqOfInc-Test.bat note options for subroutine testing

1 rem FreqOfInc-Test.bat
2 sas FreqOfInc-Test -mprint -verbose
3 rem test subroutine

FreqOfInc-Test note TestPrint

1 *name: FreqOfInc-Test.sas;
2 %Include Site(LibWork);
3 %Let Libname = sashelp ;
4 %Let MemName = Class ;
5 %Let Name = Height ;
6 %Let Type = num ;
7 %Let FoiOutLib = LibWork ;
8 %Let FoiOutData = TestData;
9 %Include Project(FreqOfInc);

10 %Include Site(TestDescribe);
11 %Include Site(TestPrint-Subroutine);

15

http://www.sascommunity.org/wiki/Image:Writing-Testing-Aware-Programs.zip
http://www.sascommunity.org/wiki/Image:Writing-Testing-Aware-Programs.zip

PrintSmry
The subroutine PrintSmry prints the report data set. No testing subroutines are provided.

1 *name: PrintSmry.sas;
2 *note: from FreqAll;
3 *parameters: ;
4 %*input; *Let LibName = work;
5 *Let MemName = ListSmry;
6

7 Proc Print data = &LibName..&MemName.
8 (drop = MemName);
9 title2 "LibName: &Libname.";

10 title3 "MemName: &MemName.";
11 by VarName notsorted;
12 id VarName ;
13 run;

USING MACROS

Overview Programs:

name type description
Example-Macro module main:
ExMacro module create data set

call CxMacro
print summary

CxMacro routine process each row of List
FreqOf subroutine proc freq out=

Example-
Macro The example macro contains a call to the module ExMacro.

1 *name: Example-Macro.sas;
2 %ExMacro(LibName = sashelp
3 ,MemName = class);

Example-Macro.bat

1 rem Example-Macro.bat
2 sas Example-Macro

Example-Macro-Test.bat

1 rem Example-Macro-Test.bat
2 sas Example-Macro-Test -echoauto -mprint
3 rem Test module

16

ExMacro
As a module ExMacro contains the subroutines which make the list processing data set and
prints the output. It calls the routine Call-Execute-Macro (CxMacro) which generates the
calls of the subroutine macro FreqOf.
The code is similar to Example-Include so I show only dissimilar parts.
Find the program in the Writing Testing-aware Programs zip.
This shows the reassignment of the macro variable Testing to the values of the module
testing options echoauto and mprint.

1 *name: ExMacro.sas;
2 %Macro ExMacro
3 (LibName = sashelp
4 ,MemName = class
5 ,OutLib = Work
6 ,Testing = 0
7) / des = ’example macro as module’
8 ;
9 %Let Testing = %eval(&Testing

10 or %sysfunc(getoption(ECHOAUTO))
11 eq ECHOAUTO
12 and %sysfunc(getoption(MPRINT))
13 eq MPRINT);

ExMacro.sas subroutine: make list This is same code as the subroutine MakeNameList.

15

16 PROC SQL noprint;

ExMacro.sas subroutine: testing This is the same code as TestDescribe and TestPrint.

23

24 %If &Testing. %then %do;
25 Proc SQL; describe table &SysLast.;
26 quit;
27 Proc Print data = &SysLast.(obs = 20);
28 title2 &SysLast.;

ExMacro.sas routine: call execute macro subroutine FreqOf This routine is similar to
CxInclude.

30

31 %CxMacro(CxLibName = &OutLib.
32 ,CxMemName = ListNames
33 ,CxMacro = FreqOf
34 ,CxNames = LibName MemName Name Type

ExMacro.sas last test This is the same code as TestDescribe.

36

37 %If &Testing. %then %do;
38 Proc SQL; describe table &SysLast.;
39 quit;

17

http://www.sascommunity.org/wiki/Image:Writing-Testing-Aware-Programs.zip

CxMacro
The routine CxMacro is similar to the parameterized include file CxInclude. Find the program
in the Writing Testing-aware Programs zip.

CxMacro-Test.bat

1 rem CxMacro-Test.bat
2 sas CxMacro-Test -mprint
3 rem test routine

CxMacro-Test.sas

1 *name: CxMacro-Test.sas;
2 %Include Site(LibWork);
3 %CxMacro(CxLibName = LibWork
4 ,CxMemName = ListNames
5 ,CxMacro = TestMacro
6 ,CxNames = LibName MemName Name Type
7 ,Testing = 1
8);
9

FreqOf
The subroutine FreqOf is similar to the parameterized include file FreqOfInc. Find the pro-
gram in the Writing Testing-aware Programs zip.

FreqOf-Test.bat

1 rem FreqOf-Test.bat
2 sas FreqOf-Test -mprint -verbose
3 rem test subroutine

FreqOf-Test.sas

1 %Include Site(LibWork);
2 %FreqOf(Libname = sashelp
3 ,MemName = Class
4 ,Name = Height
5 ,Type = num
6 ,OutLib = LibWork
7 ,Testing = 1
8);
9 %Include Site(TestPrint-Subroutine);

18

http://www.sascommunity.org/wiki/Image:Writing-Testing-Aware-Programs.zip
http://www.sascommunity.org/wiki/Image:Writing-Testing-Aware-Programs.zip

CONCLUSION

Summary Testing programs may take up to half of time on a project. In this paper I have demonstrated
the use of include files and additional code within macros that may be used to provide
necessary information when testing.

Suggested
Reading

Call Execute and %nrstr Fehd and Carpenter [5, sgf2007.113] demonstrate the timing of
the error of using call execute of macros without the macro function %nrstr.

Documentation Fehd [2, sugi30.067] provides a template for a program description.

Proc Freq Fehd [7, sgf2007.028] wrote the proc freq code upon which the example includes
and macros in this paper are based.

Project Fehd [6] provides a production project using the testing methods described here.

Using Options Fehd [3, sugi30.004] shows a macro ProgList, which tests options.

REFERENCES

[1] Frederick P. Brooks Jr. The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition, 2/E.
Addison-Wesley, 1995. URL http://www.aw-bc.com/catalog/academic/product/0,,0201835959,
00%2ben-USS_01DBC.html.

[2] Ronald Fehd. Journeymen’s tools: The writing for reading and reuse program header. In Proceedings of
the 30th SAS User Group International Conference, 2005. URL http://www2.sas.com/proceedings/
sugi30/067-30.pdf. Coders’ Corner, 4 pp.; topics: documentation, program development costs, quality,
reuse, theory; info: example program documentation header.

[3] Ronald Fehd. Journeymen’s tools: Two macros — proglist and putmvars — to show calling sequence and
parameters of routines. In Proceedings of the 30th SAS User Group International Conference, 2005. URL http:
//www2.sas.com/proceedings/sugi30/004-30.pdf. Coders’ Corner, 8 pp.; topics: tracing included
routine and subroutine calls, using parameterized include files; info: using options when testing, writing list of
macro variables to log.

[4] Ronald Fehd. A SASautos companion: Reusing macros. In Proceedings of the 30th SAS User Group Inter-
national Conference, 2005. URL http://www2.sas.com/proceedings/sugi30/267-30.pdf. Tutorials,
12 pp.; topics: autocall, autoexec, configuration file (sasv9.cfg), compiled and stored macros, masking, options
(mautosource, mstored, sasmstore), program reuse, sasautos (environment variable, filename, option); info:
autoexec examples, utility program ListMcat: show same-named macros in different catalogs.

[5] Ronald Fehd and Art Carpenter. List processing basics: Creating and using lists of macro variables. In Pro-
ceedings of the SAS Global Forum, 2007. URL http://www2.sas.com/proceedings/forum2007/113-
2007.pdf. Hands On Workshop, 20 pp.; comparison of methods: making and iterating macro arrays, scanning
macro variable, writing calls to macro variable, write to file then include, call execute; using macro function nrstr
with call execute argument; 11 examples, bibliography.

[6] Ronald J. Fehd. Freqlibname: A data review routine for all memnames in a libname. In Proceedings of the
NorthEast SAS User Group Conference, 2007. Coders’ Corner, 22 pp.; topics: replacing macros with call
execute of parameterized include files, saving procs freq and summary output data set; info: complete test suite
of modules, routines, and subroutines, getting mode from proc freq.

19

http://www2.sas.com/proceedings/forum2007/113-2007.pdf
http://www2.sas.com/proceedings/sugi30/067-30.pdf
http://www2.sas.com/proceedings/forum2007/028-2007.pdf
http://www2.sas.com/proceedings/sugi30/004-30.pdf
http://www.aw-bc.com/catalog/academic/product/0,,0201835959,00%2ben-USS_01DBC.html
http://www.aw-bc.com/catalog/academic/product/0,,0201835959,00%2ben-USS_01DBC.html
http://www2.sas.com/proceedings/sugi30/067-30.pdf
http://www2.sas.com/proceedings/sugi30/067-30.pdf
http://www2.sas.com/proceedings/sugi30/004-30.pdf
http://www2.sas.com/proceedings/sugi30/004-30.pdf
http://www2.sas.com/proceedings/sugi30/267-30.pdf
http://www2.sas.com/proceedings/forum2007/113-2007.pdf
http://www2.sas.com/proceedings/forum2007/113-2007.pdf

[7] Ronald J. Fehd. Journeymen’s tools: Data review macro freqall – using proc sql list processing with dictio-
nary.columns to eliminate macro do loops. In Proceedings of the SAS Global Forum, 2007. URL http:
//www2.sas.com/proceedings/forum2007/028-2007.pdf. Coders’ Corner, 10 pp.; topics: designing
macros for reporting, creating and using macro arrays, writing text of macro calls into macro variable, executing
macro calls in macro variable, bibliography.

To get the code examples in this paper search
http://www.sascommunity.org for the Writing
Testing-aware Programs zip.

Author: Ronald Fehd mailto:RJF2@cdc.gov
Centers for Disease Control
4770 Buford Hwy NE
Atlanta GA 30341-3724

SAS and all other SAS Institute Inc. product or
service names are registered trademarks or trade-
marks of SAS Institute Inc. in the USA and other
countries. R© indicates USA registration.

about the author:
education: B.S. Computer Science, U/Hawaii, 1986

SUGI attendee since 1989
SAS-L reader since 1994

experience: programmer: 20+ years
data manager at CDC, using SAS: 18+ years
author: 12+ SUG papers

SAS-L: author: 4,000+ messages to SAS-L since1997
Most Valuable SAS-L contributor: 2001, 2003

Document Production: This paper was
typeset in LATEX. For further information
about using LATEX to write your SUG pa-
per, consult the SAS-L archives:

http://www.listserv.uga.edu/cgi-bin/wa?S1=sas-l
Search for :
The subject is or contains: LaTeX
The author’s address : RJF2
Since : 01 June 2003

20

http://www2.sas.com/proceedings/forum2007/028-2007.pdf
http://www2.sas.com/proceedings/forum2007/028-2007.pdf
http://www.sascommunity.org
http://www.sascommunity.org/wiki/Image:Writing-Testing-Aware-Programs.zip
http://www.sascommunity.org/wiki/Image:Writing-Testing-Aware-Programs.zip
mailto:RJF2@cdc.gov
http://www.latex-project.org/
http://www.listserv.uga.edu/cgi-bin/wa?S1=sas-l

