
PaperA03-2007
Table Lookups...You Want Performance?
Rob Rohrbough, Rohrbough Systems Design, Inc.

Presented to the Midwest SAS® Users Group
Monday, October 29, 2007

Paper Number A3

Abstract

Over the years SAS Software has provided many ways of accessing data related to a table
or file. They range from match merges, to SQL joins and the use of indices, to formats
(yes, formats), to the hash object. Each serves its own purpose in different contexts. This
paper will give you a review of many of them with examples and syntax, and it will
discuss their advantages and disadvantages. We will look at performance considerations
and discuss the new Hash Object introduced to the Data Step in SAS 9.1.3.

Introduction

One of the most common issues in dealing with data is associating values in a relatively
short list with each record in a large dataset. We typically call this “table lookup”. On
the surface, the problem looks easy – especially for users familiar with the ubiquitous
SQL language. However, when we try to optimize table lookups for a sizable database
the performance isn’t always what we desire. SAS gives us a myriad of solutions to
choose from. As with all performance issues, your “mileage” may vary. So, we attempt
here to illustrate several techniques and compare their performance in a totally artificial
environment – with apologies and encouragement to pick one or two to try in your own
environment.

This paper covers the following techniques:

1. Join with PROC SQL – a left join that will retain target records having no
lookup match.

2. Data Step Merge – of the target and lookup files.

3. Array Lookup – with temporary data step arrays and a “DOW” loop.

4. Format Lookup – with data step initialization using “flex code”.

5. Format Lookup – with PROC FORMAT initialization.

6. Manual Hash

7. Lookup with the SAS9 Hash Object

Prepared by Rohrbough Systems Design, Inc. - 1 of 11 -

All seven techniques solve the same problem with the same data. In the discussion below
we will have brief exposure to the items in quotes above.

The Problem and Solutions

We have a list of hospital visits, in which patients do not have their city or state listed.
They do have their zip codes and we have a file of zip codes with city names. We would
like to summarize by city and/or state. However, we want to account for those patients
where there is no matching zip code. The visit history file (50MB) has 63,022 records
and the zip code lookup file (2MB) has 29,470 records.

We want to compare performance and choose the best alternative for this situation. You
may have situations for which the best solution is not the one shown to be most efficient
here. For instance, you may have data sets whose sizes differ from this example. A
much smaller lookup data set may perform better with the techniques that bring the
lookup into memory. As we will see here, some solutions may perform much differently
than we would expect on our own intuition.

Join with PROC SQL

The simplest is sometimes the best. SAS Institute continues to work on optimization of
PROC SQL. In many cases it can give performance comparable to or exceeding a data
step. Here is a SAS log snippet (from SAS v 8.2) that looks up city and state based on
zip for our visit file:

29726 * Join with proc SQL;
29727 proc sql;
29728 create table TabLook.bothSQL as
29729 select distinct a.*, b.City, b.ST
29730 from TabLook.Visit a left join TabLook.Zip b
29731 on a.PTzip = b.zip
29732 ;
NOTE: Table TABLOOK.BOTHSQL created, with 63022 rows and 129 columns.

29733 quit;
NOTE: PROCEDURE SQL used:
 real time 35.64 seconds
 cpu time 4.99 seconds

In this example we create a table that is an outer join of the visit file and the zip code
lookup file. We specify a “left join” since we do not want to lose any visit records in
which the zip code is not valid. Also, we do not account for duplicates. The list of zip
codes we used does contain a few duplicates as we shall see later. Notice that our visits
did not hit any of them as evidenced by the same number of rows (63022) in our result
dataset, bothSQL, as in our source, Visit, dataset.

 - Page 2 of 11 -

Data Step Merge

Faster in most cases – not always dramatic as this (also with v8.2):

29740 * Data Step Merge;
29741 proc sort data=TabLook.Visit out=TabLook.VisitSort;
29742 by PtZip;

NOTE: There were 63022 observations read from the data set TABLOOK.VISIT.
NOTE: The data set TABLOOK.VISITSORT has 63022 observations and 127 variables.
NOTE: PROCEDURE SORT used:
 real time 6.89 seconds
 cpu time 1.15 seconds

29743 proc sort data=TabLook.Zip out=TabLook.ZipSort;
29744 by zip;

NOTE: There were 29470 observations read from the data set TABLOOK.ZIP.
NOTE: The data set TABLOOK.ZIPSORT has 29470 observations and 8 variables.
NOTE: PROCEDURE SORT used:
 real time 0.29 seconds
 cpu time 0.09 seconds

29745 data TabLook.BothMerge;
29746 merge TabLook.VisitSort (in=a)
29747 TabLook.ZipSort (in=b rename=zip=PtZip keep=zip City ST);
29748 by PtZip;
29749 if a;
29750 run;

NOTE: There were 63022 observations read from the data set TABLOOK.VISITSORT.
NOTE: There were 29470 observations read from the data set TABLOOK.ZIPSORT.
NOTE: The data set TABLOOK.BOTHMERGE has 63022 observations and 129 variables.
NOTE: DATA statement used:
 real time 1.53 seconds
 cpu time 0.35 seconds

Note that this example still does not account for duplicates.

Array Lookup

If you have a short lookup, this technique may be efficient. However, if your lookup
table is significant as it is here, this can be extraordinarily slow (also shown with 8.2):

29755 data TabLook.BothArray (keep=from--mrreas10 City ST);
29756 array Zips(30000) $5 ;
29757 array Cities(30000) $17;
29758 array States(30000) $2;
29759 retain z i (0 0);
29760 do until (lasta);
29761 set TabLook.zip end=lasta;

 - Page 3 of 11 -

29762 z + 1;
29763 Zips(z) = Zip;
29764 Cities(z) = City;
29765 States(z) = ST;
29766 end; * until;
29767
29768 do until (lastb);
29769 set TabLook.Visit end=lastb;
29770 City = '';
29771 ST = '';
29772 do i = 1 to z;
29773 if PtZip = Zips(i) then do;
29774 City = Cities(i);
29775 ST = States(i);
29776 leave; * Choose first if duplicates;
29777 end; * if;
29778 end; * do i;
29779 output;
29780 end; * do until;
29781 stop;
29782 run;

NOTE: There were 29470 observations read from the data set TABLOOK.ZIP.
NOTE: There were 63022 observations read from the data set TABLOOK.VISIT.
NOTE: The data set TABLOOK.BOTHARRAY has 63022 observations and 129 variables.
NOTE: DATA statement used:
 real time 5:38.85
 cpu time 5:35.93

Note that this example, almost by default, takes the first of any duplicate zip code. Also,
we chose an array size of 30,000 because we knew that the zip code table contained only
29,470 values. If we did not know how many zip code values there were or we were
going to repeat this lookup with potentially different numbers of zip values, we could use
the NOBS= option in a prior data step to place the exact count in a macro variable that we
could then use to precisely define the array sizes every time.

As for the lack of efficiency, there are search techniques, e.g., binary search, that we
could use to speed the array lookup DO loop. However, with SAS features such
FORMATs and the Hash Object, there is very little reason to hand-code such a search
technique.

Format Lookup - PROC FORMAT flex code

This technique is one of the author’s personal favorites (pre-SAS9). It is a little more
code, but can be packaged in an include file that can be called once. It actually generates
code (“flex code”) that creates a format that can be used in many subsequent data steps:

48 * Format Lookup - PROC FORMAT flex code;
49 data TabLook.ZipClean
50 Tablook.ZipDups;
51 set TabLook.ZipSort;
52 by Zip;

 - Page 4 of 11 -

53 if first.zip then output TabLook.ZipClean;
54 else output Tablook.ZipDups;
55 run;

NOTE: There were 29470 observations read from the data set TABLOOK.ZIPSORT.
NOTE: The data set TABLOOK.ZIPCLEAN has 29467 observations and 8 variables.
NOTE: The data set TABLOOK.ZIPDUPS has 3 observations and 8 variables.
NOTE: DATA statement used (Total process time):
 real time 0.07 seconds
 cpu time 0.05 seconds

56 data _NULL_; * Create translation format;
57 length start $7;
58 length label $30;
59 set TabLook.ZipClean end=last;
60 file "D:\RSD\Tools\Tutorial\TableLookups\DataV9flxFmt\zipfmt.flx";
61 if _N_ = 1 then put @3 'proc format;' /
62 @5 'value $zips (min=5)';
63 start = quote(trim(zip));
64 label = put(City, $char17.) || put(ST, $char2.);
65 label = quote(trim(label));
66 put @7 start ' = ' label;
67 if last then put @7 "OTHER = ' '" /
68 @7 ';' / 'quit;';
69 run;

NOTE: The file "D:\RSD\Tools\Tutorial\TableLookups\DataV9flxFmt\zipfmt.flx" is:
 File Name=D:\RSD\Tools\Tutorial\TableLookups\DataV9flxFmt\zipfmt.flx,
 RECFM=V,LRECL=256

NOTE: 29472 records were written to the file
 "D:\RSD\Tools\Tutorial\TableLookups\DataV9flxFmt\zipfmt.flx".
 The minimum record length was 5.
 The maximum record length was 38.
NOTE: There were 29467 observations read from the data set TABLOOK.ZIPCLEAN.
NOTE: DATA statement used (Total process time):
 real time 0.82 seconds
 cpu time 0.08 seconds

70 %include "D:\RSD\Tools\Tutorial\TableLookups\DataV9flxFmt\zipfmt.flx";
NOTE: Format $ZIPS has been output.

NOTE: PROCEDURE FORMAT used (Total process time):
 real time 0.62 seconds
 cpu time 0.50 seconds

29543 data TabLook.BothFmtFlx;
29544 set TabLook.Visit;
29545 City = substr(put(ptZip, $zips.), 1, 17);
29546 ST = substr(put(ptZip, $zips.), 18, 2);
29547 run;

NOTE: There were 63022 observations read from the data set TABLOOK.VISIT.
NOTE: The data set TABLOOK.BOTHFMTFLX has 63022 observations and 129 variables.

 - Page 5 of 11 -

NOTE: DATA statement used (Total process time):
 real time 28.71 seconds
 cpu time 0.59 seconds

Here we specified the first of any duplicate zip codes to load into our format. We could
have used “if last.zip” to choose the last of any duplicate. In practicality you may wish to
have a more discriminating algorithm.

We used a hard-coded path in the Windows environment to store the generated code. We
could have declared a temporary file with a “FILENAME SASCODE TEMP;” statement
and then used the SASCODE file ref for the temporary code. This has the advantage of
portability among platforms, allocating the file in system temporary storage. Also, it
automatically discards the generated code. An advantage of explicitly declaring a path
for the current platform is that you can examine the generated code for debugging.

Notice the use of the QUOTE function to anticipate any embedded quotes in the city
name that could interfere with the quoting used in the flex code. This example was
executed on a virtual machine separate from the benchmarks appearing later. The
benchmarks give a more accurate assessment of the relative speeds of the techniques.

Format Lookup - PROC FORMAT with a control data set

If you are intimidated by generating code programmatically, SAS provides a convenient
way to generate a format for table lookup directly from an existing data set (example
SAS v8.2):

29501 data TabLook.ctrl;
29502 set TabLook.ZipClean (rename=(zip=start)) end=last;
29503 keep start label fmtname type hlo;
29504 retain fmtname '$zips' type 'c';
29505 label = put(City, $char17.) || put(ST, $char2.);
29506 output;
29507 if last then do;
29508 hlo = 'O';
29509 label = ' ';
29510 output;
29511 end; * if;
29512 run;

NOTE: There were 29467 observations read from the data set TABLOOK.ZIPCLEAN.
NOTE: The data set TABLOOK.CTRL has 29468 observations and 5 variables.
NOTE: DATA statement used (Total process time):
 real time 0.06 seconds
 cpu time 0.05 seconds

29513 proc format cntlin=TabLook.ctrl;
NOTE: Format $ZIPS is already on the library.
NOTE: Format $ZIPS has been output.
29514 run;

 - Page 6 of 11 -

NOTE: PROCEDURE FORMAT used (Total process time):
 real time 0.18 seconds
 cpu time 0.18 seconds

NOTE: There were 29468 observations read from the data set TABLOOK.CTRL.

29515 data TabLook.BothFmtCtrl;
29516 set TabLook.Visit;
29517 City = substr(put(ptZip, $zips.), 1, 17);
29518 ST = substr(put(ptZip, $zips.), 18, 2);
29519 run;

NOTE: There were 63022 observations read from the data set TABLOOK.VISIT.
NOTE: The data set TABLOOK.BOTHFMTCTRL has 63022 observations and 129 variables.
NOTE: DATA statement used (Total process time):
 real time 14.77 seconds
 cpu time 0.69 seconds

Since the inception of the CNTLIN= option in PROC FORMAT, SAS Institute has
recommended this approach over the Flex-code approach. It eliminates the extra step of
having to generate “flex” code.

Using the OUTPUT statement when producing the control data set is critical. If omitted,
you will lose the last value to your “catch-all” (hlo = 'O'). Note that the code for this
example does not match the benchmarks later in the paper due to correcting this issue.

SAS uses a binary search for its format lookups – starting at the middle and repeating the
process if no match in the half revealed to contain the match based on the comparison
results. However, if you know the likely occurrence of the lookup values and believe that
ordering them in likelihood order would be even faster than a binary search, you can
specify the NOTSORTED option on your PROC FORMAT statement. E.g., in our
running example, if you know the zip code 12345 occurs 90% of the time in the visit
table, you could force a hit the first time in 90% of the lookups by placing 12345 as the
first format range.

Manual Hash

This is a variation on the array solution – with a much faster result. It is not an advanced
lookup scheme, like a binary search, but an even faster method – a direct lookup (hash)
using the value of the lookup variable (key) as an array or memory offset (also SAS v8.2
here):

59305 data TabLook.BothManHash (keep=from--mrreas10 City ST);
59306 array Cities(100000) $17 _temporary_;
59307 array States(100000) $2 _temporary_;
59308 retain i (0);
59309 do until (lasta);
59310 set TabLook.ZipClean end=lasta;
59311 i = input(zip, 5.0);
59312 Cities(i) = City;

 - Page 7 of 11 -

59313 States(i) = ST;
59314 end; * until;
59315
59316 do until (lastb);
59317 set TabLook.Visit end=lastb;
59318 if ptZip > '00000' then do;
59319 i = input(ptZip, 5.0);
59320 City = Cities(i);
59321 ST = States(i);
59322 end; else do;
59323 City = ' ';
59324 ST = ' ';
59325 end; * if;
59326 output;
59327 end; * do until;
59328 stop;
59329 run;

NOTE: There were 29467 observations read from the data set TABLOOK.ZIPCLEAN.
NOTE: There were 63022 observations read from the data set TABLOOK.VISIT.
NOTE: The data set TABLOOK.BOTHMANHASH has 63022 observations and 129 variables.
NOTE: DATA statement used:
 real time 0.98 seconds
 cpu time 0.32 seconds

The array here is larger than for the array search technique since we have to account for
every possible value of the key field, ptZip. Since we did not account for duplicates
when we built our hash array, the last duplicate will be chosen. To choose the first, we
would have to test the Cities and/or States arrays to see if a value had already been stored.

If we didn’t know the range of values for our lookup keys – in this case zip codes, we
could use a PROC MEANS MIN RANGE beforehand to find the minimum and
maximum values for they keys. This actually would minimize the number of array
elements needed for the array. Instead of declaring a table for all the theoretical values as
we did for our example, we could define the size of the array as the range. We then
would offset each value by the minimum (INPUT(zip,5.) + min). Alternatively, we could
incorporate the minimum and maximum directly as the end points using macro variables
built from the PROC MEANS results (e.g., ARRAY Cities (&min:&max)). Then we
would not have to use an offset with the key variable when storing or accessing the
values in the arrays.

My thanks to Paul Dorfman, who has published numerous papers on the topic – including
hashing techniques for character variables and other cases (such as RAM constraints)
when the value of the key variable cannot be used directly. More information may be
found by searching the SAS-L archives at http://www.listserv.uga.edu/cgi-
bin/wa?S1=sas-l for the keyword “hash” in the subject and the keyword “Dorfman” in the
author.

 - Page 8 of 11 -

http://www.listserv.uga.edu/cgi-bin/wa?S1=sas-l
http://www.listserv.uga.edu/cgi-bin/wa?S1=sas-l

Lookup with the SAS 9 Hash Object

But wait! Paul Dorfman no longer gives papers on manual hash objects (at least not that
I recall at SUGI 30). There he gave a paper with Koen Vyverman, “Data Step Hash
Objects as Programming Tools”. The manual hash example above was fortunate since all
zip codes (100,000 of them) fit into resident memory (RAM). What if they don’t? What
if the keys are sparse? Answer to both: much more sophisticated (translation: painful)
coding. Want to avoid it and use hashes painlessly? Use the SAS 9 hash object:

29619 data TabLook.BothV9Hash (drop=rc zip) ;
29620 length Zip $5 City $17 ST $2;
29621 declare AssociativeArray hh () ;
29622 rc = hh.DefineKey ('zip') ;
29623 rc = hh.DefineData ('Zip', 'City', 'ST') ;
29624 rc = hh.DefineDone () ;
29625 do until (eof1) ;
29626 set TabLook.ZipClean (keep=Zip City ST) end=eof1 ;
29627 rc = hh.add() ;
29628 end ;
29629 do until (eof2) ;
29630 set TabLook.Visit end=eof2 ;
29631 rc = hh.find (key: ptZip);
29632 if rc ^= 0 then do;
29633 City = ' ';
29634 ST = ' ';
29635 end; * if;
29636 output ;
29637 end ;
29638 stop ;
29639 run ;

NOTE: There were 29467 observations read from the data set TABLOOK.ZIPCLEAN.
NOTE: There were 63022 observations read from the data set TABLOOK.VISIT.
NOTE: The data set TABLOOK.BOTHV9HASH has 63022 observations and 129 variables.
NOTE: DATA statement used (Total process time):
 real time 2.29 seconds
 cpu time 0.54 seconds

 - Page 9 of 11 -

Observations

If you looked at the timings in the log snippets for each technique, you might be
somewhat misinformed about the performance as the first six techniques were performed
with SAS 8.2, the seventh with SAS 9.1.3. Also the FORMAT examples were executed
on a virtual machine and not representative of the true performance of those techniques.
Here is a table comparing the timings on the same native hardware:

Run Time
(Seconds)

Technique Disk SAS8 SAS9
SQL - outer (left) join Same 35.64 8.73
Merge left after sorts Same 8.71 3.37
Array lookup - sequential Same 338.85 144.03
PROC FORMAT - flex code Same 1.09 1.89
PROC FORMAT - control data set Same 1.27 2.43
Manual Hash Same 0.98 2.84
Hash Object Lookup Same 2.29

With the exception of the sequential array lookup, the SAS 8.2 techniques get faster from
top to bottom. The same is somewhat true of SAS 9.1.3; however, the differences
among those that beat three seconds may not be statistically significant. I will note, too,
that the first time I ran the hash object method, it completed in just over one second.

Also, it is interesting that the three slowest techniques were significantly improved in
SAS 9.1.3 while the faster techniques actually slowed, apparently significantly.
“Apparently” since anything under two seconds may be due to a slower setup internally
in SAS to gain speed in streaming execution. At the time of this writing, the author
cannot verify that. So, the lesson here is to “roll your own”, i.e., consider more than one
solution if performance is important to you – and benchmark it. Your mileage may vary.

Conclusion

The purpose of this paper is to give you a variety of techniques that can help you address
the table lookup problem with dispatch. Keep in mind that the term “table lookup” infers
a value (or values) being supplied for each record in a larger table. The larger the “small”
table is in relation to the “large” table, the more the problem looks like a match merge,
which probably be addressed with one of the first two techniques. Depending on how
small your “small” table is, and potentially on other factors, you have an arsenal of
approaches. Now, go out and decide on your personal favorite!

 I

 - Page 10 of 11 -

Sources

1. http://ftp.sas.com/techsup/download/sample/datastep/tables.html, “Table lookup
with a small table using array processing”, SAS Institute.

2. U.S. Census Bureau, 1990 Zip Code by State file, hosted by PCI Geomatics, at
http://spatialnews.geocomm.com/newsletter/2000/jan/zipcodes.html.

3. SAS 9.1 Help and Documentation, Your complete Guide to Syntax, How To,
Examples, Procedures, Concepts, What’s New, and Tutorials, ©2002-2003,
SAS Institute Inc., Cary, NC,
http://support.sas.com/onlinedoc/913/docMainpage.jsp.

4. Dorfman, Vyverman, “Data Step Hash Objects as Programming Tools”, Paper
236-30, SUGI 30 Proceedings, http://www2.sas.com/proceedings/sugi30/236-
30.pdf.

5. Rick Aster and Rhena Seidman, Professional SAS programming Secrets,
Windcrest®/McGraw-Hill, 1991, (“flex code”).

All the examples were taken from one of the above sources or from RSD production
code.

For More Information

Rob Rohrbough
Rohrbough Systems Design, Inc.
Omaha, Nebraska
Rob@RohrboughSystems.com
http://www.RohrboughSystems.com
(402) 343-1493

The examples provided in this paper are available on RSD’s website, above. If you have
trouble locating or downloading, please contact the author.

The Fine Print

SAS®, SAS Institute Inc., and other product or service names are registered trademarks
or trademarks of their respective organizations.

 - Page 11 of 11 -

http://ftp.sas.com/techsup/download/sample/datastep/tables.html
http://spatialnews.geocomm.com/newsletter/2000/jan/zipcodes.html
http://support.sas.com/onlinedoc/913/docMainpage.jsp
http://www2.sas.com/proceedings/sugi30/236-30.pdf
http://www2.sas.com/proceedings/sugi30/236-30.pdf
mailto:Rob@RohrboughSystems.com
http://www.rohrboughsystems.com/

